Advertisement

Keywords

Volatile Compound Grape Juice White Wine Grape Berry Grape Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, N.A., Coombe, B.G. & Williams, P.J. (1991). The contribution of hydrolyzed flavour precursors to quality differences in Shiraz juice and wines: an investigation by sensory descriptive analysis. Am. J. Enol. Vitic., 42, 167–174.Google Scholar
  2. Arevalo Villena, M., Ubeda Iranzo, J. & Briones Perez, A. (2006). Relationship between Debaryomyces pseudopolymorphus enzymatic extracts and release of terpenes in wine. Biotechnol. Prog., 22, 375–381.CrossRefGoogle Scholar
  3. Artajona, J., Bobet, R., Marco, J., Sabat, F. (1990). Expériences d’hyperoxygénation au Penedés. Rev. Franc. Œnol., 124, 65–67.Google Scholar
  4. Aryan, A.P., Wilson, B., Strauss, C. & Williams, P.J. (1987). The properties of glycosidases of Vitis vinifera and a comparison of their α-glucosidase activity with that of exogenous enzymes. An assessment of possible application in enology. Am. J. Enol. Vitic., 38, 182–188.Google Scholar
  5. Bartowsky, E.J., Costello, P.J., Villa, A. & Henschke, P.A. (2004). The chemical and sensorial effects of lysozyme addition to red and white wines over six months cellar storage. Aus. J. Grape Wine Res., 10, 143–150.CrossRefGoogle Scholar
  6. Bayonove, C., Günata, Y., Sapis, J.C., Baumes, R., Dugelay, I. & Grassin, C. (1996). Enhancement of wine aromas by enzyme hydrolysis of glycosidic precursors from the grape. In C.S. Stockley, A.N. Sas, R.S. Johnstone & Lee, T.H., (Eds.), Maintaining the competitive edge: proceedings of the ninth Australian wine industry technical conference. Adelaide, South Australia 16–19 July 1995. Adelaide, South Australia.Google Scholar
  7. Boido, E., Lloret, A., Medina, K., Carrau, F. & Della Cassa, E. (2002). Effect of α-glycosidase activity of Oenococcus oeni on the glycosylated flavour precursors of Tannat wine during malolactic fermentation. J. Agric. Food Chem., 50, 2344–2349.CrossRefGoogle Scholar
  8. Charoenchai, C., Fleet, G.H., Henschke, P.A. & Todd, B.E.N (1997). Screening of non-Saccharomyces wine yeast for the presence of extracellular hydrolytic enzymes. Aus. J. Grape Wine Res., 6, 190–196.Google Scholar
  9. Cheynier, V., Souquet, J.M., Samson, A. & Moutounet, M. (1991). Hyperoxidation: influence of various oxygen supply levels on oxidation kinetics of phenolic compounds and wine quality. Vitis, 30, 107–115.Google Scholar
  10. Cordonnier, R., & Bayonove, C. (1974). Mise en évidence dans la baie de raisin, variété Muscat d’Alexandrie, de monoterpènes liés révélables par une ou plusieurs enzymes du fruit. Compte rendus Académie Science Paris, 278, 3387–3390 Série D.Google Scholar
  11. Cordonnier, R., & Bayonove, C. (1981). Etude de la phase préfermentaire de la vinification: extraction et formation de certain composes de l’arôme, cas des terpenols, des aldehydes et des alcools en C6. Conn. Vigne Vin, 15, 269–286.Google Scholar
  12. Cordonnier, R. & Dugal, A. (1968). Les activites proteolytiques du raisin. Ann. Technol. Agric. 17, 189–206.Google Scholar
  13. Crouzet, J. (1986). Les enzymes et l’arôme des vins. Rev. Fran. Ônol., 102, 42–49.Google Scholar
  14. D’Incecco N., Bartowsky E.J., Kassara S., Lante A., Spettoli, P. & Henschke, P.A. (2004). Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation. Food Microbiol., 21, 257–265.CrossRefGoogle Scholar
  15. Daenen, L., Saison. D., Sterckx, F., Delvaux, F.R., Verachtert, H. & Derdelinckx, G. (2007). Scrrenening and evaluationof the glucoside hydorlase activity of Saccharomyces and Brettanomyces brewing yeasts. J. Appl. Miocrobiol. doi: 10.1111/j.1365-2672.2007.03566.xGoogle Scholar
  16. Darriet, P., Boidron, J. N. & Dubourdieu, D. (1988). L’hydrolyse des hétérosides terpéniques du Muscat a petits grains par les enzymes périplasmatiques de Saccharomyces cerevisiae. Conn. Vigne Vin, 22, 89–195.Google Scholar
  17. Darriet, P., Tominaga, T., lavigne, V., Boidron, J.-N. & Dubourdieu, D. (1995). Identification of a powerful aromatic compound if Vitis vinifiera L. var Sauvignon wines: 4-mercapto-4methypentan-2-one. Flavour and Fragrance Journal, 10, 385–392.CrossRefGoogle Scholar
  18. Davis, C.R., Wibowo, D., Fleet, G.H. & Lee, T.H. (1988). Properties of wine lactic acid bacteria: their potential oenological significance. Am. J. Enol. Vitic., 39, 137–142.Google Scholar
  19. Delcroix, A., Günata, Z. Y., Sapis, J. C., Salmon, J. M. & Bayonove, C. (1994). Glycosidase activities of three enological yeast strains during winemaking: Effect on terpenols content of Muscat wine. Am. J. Enol. Vitic., 45, 291–296.Google Scholar
  20. Delfini, C., Cocito, C., Bonino, M., Schellino, R., Gaia, P. & Baiocchi, C. (2001). Definitive evidence for the actual contribution of yeast in the transformation of neutral precursors of grape aromas. J. Agric. Food Chem., 49, 5397–5408.CrossRefGoogle Scholar
  21. Dizy, M., & Bisson, L. (2000). Proteolytic activity of yeast strains during grape juice fermentation. Am. J. Enol. Vitic., 51, 155–167.Google Scholar
  22. Doco, T., Lecas, M., Pellerin, P., Brillouet, J.-M. & Moutounet, M. (1995) Les polysaccharides pectique de la pulpe et de la pellicule de raisin. Quel devenir pendant la phase pré-fermentaire? Rev. Fran. Oenol., 153, 15–23.Google Scholar
  23. Du Plessis, H.W., Steger, C.L.C., du Toit, M. & Lambrechts, M.G. (2002). The occurrence of malolactic fermentation in brandy base wine and its influence on brandy quality. J. Appl. Microbiol., 92, 1005–1013.CrossRefGoogle Scholar
  24. Dubernet, M. (1974). Recherches sur la tyrosinase de Vitis vinifera et la laccase de Botrytis cinerea. Applications technologiques. Thèse de doctorate, Université de Bordeaux II.Google Scholar
  25. Dubourdieu, D. & Lavigne, V. (1990). Incidence de l’hyperoxygénation sur la composition chimique et les qualities organoleptiques des vins blancs secs du Bordelais. Rev. Fran. Œnol., 124, 58–61.Google Scholar
  26. Dubourdieu, D., Ollivier, C., & Boidron, J.N. (1986). Incidences des opérations préfermentaires sure la composition chimique et les qualités organoleptiques des vins blancs. Conn. Vigne Vin, 20, 53–76.Google Scholar
  27. Dubourdieu, D., Tominaga, T., Mnsneuf, I., Peyrot de Gachons, C. & Murat, M.L. (2006). The role of yeast in grape flavor development during fermentation: the example of Sauvignon blanc. Am. J. Enol. Vitic., 57, 81–88.Google Scholar
  28. Ducruet, J., Glories, Y. & Canal, R. M. (2000). Mécanisme d’action et utilisation raisonnée d’une préparation enzymatique de maceration. Rev. Oenol., 27(96), 17–19.Google Scholar
  29. Ferreira, R.B., Picarra-Pereira, M.A., Monteiro, S., Loureiro, V.B. & Teixeira, A.R. (2002). The wine proteins. Trends Food Sci. Technol., 12, 230–239.CrossRefGoogle Scholar
  30. Francis, I.L., Sefton, M.A., & Williams. P.J. (1992). Sensory descriptive analysis of the aroma of hydrolysed flavour precursor fractions from Semillon, Chardonnay, and Sauvignon blanc grape juices. J. Sci Food Agric., 59, 511–520.CrossRefGoogle Scholar
  31. Francis, I.L., Kassara, S., Noble, A.C. & Williams, P.J. (1999). The contribution of glycoside precursors to Cabernet Sauvignon and Merlot aroma: sensory and compositional studies. In A.L. Waterhouse & S.E Ebeler (Eds.), Chemistry of wine flavour (pp. 13–30) American Chemical Society: Washington, DC.Google Scholar
  32. Fukuda, K., Yamamoto, N., Kiyokawa, Y., Yanagiuchi, T., Wakay, Y., Kitamoto, K., Inoue, Y. & Kimura, A. (1998). Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. App. Environ. Microbiol., 64, 4076–4078.Google Scholar
  33. Gerbaux, V., Villa, A., Monamy, C. & Bertrand, A. (1997). Use of lysozyme to inhibit malolactic fermentation and to stabilize wine after malolactic fermentation. Am. J. Enol. Vitic., 48,49–54.Google Scholar
  34. Gerbaux, V., Villa, A., Monamy, C. & Bertrand, A. (2002). Influence of maceration temperature and enzymes on content of volatile phenols in Pinot noir wines. Am. J. Enol. Vitic., 53,131–137.Google Scholar
  35. Gil, J.V. & Valles, S. (2001). Effect of macerating enzymes on red wine aroma at laboratory scale: addition or expression by transgenic wine yeast. J. Agric. Food Chem., 49, 5515–5523.CrossRefGoogle Scholar
  36. Gil, J.V., Manzanares, P. Genoves, S. Valles, S. & Gonzalez-Candelas, L. (2005). Over-production of the major exoglucanase of Saccharomyces cerevisiae led to an increase in the aroma of wine. Int. J. Food Microbiol., 103, 57–68.CrossRefGoogle Scholar
  37. Grimaldi, A., McLean, H. & Jiranek, V. (2000). Identification and partial characterization of glycosidic activity of commercial strains of the lactic acid bacterium, Oenococcus oeni. Am. J. Enol. Vitic., 51, 362–369.Google Scholar
  38. Guilloux-Benatier, M., Son, H.S., Bouhier, M. Feuillat, M. (1993). Activités enzymatiques: glycosidases et peptidases chez Leuconostoc oenos au cours de la croissance bactérienne. Influence des macromolécules des levures. Vitis, 32, 51–57.Google Scholar
  39. Günata, Y.Z., Bitteur, S., Brillouet, J.-M., Bayonove, C. L. & Cordonnier, R. E. (1988). Sequential enzymic hydrolysis of potentially aromatic glycosides from grapes. Carbohydr. Research, 184, 139–149.CrossRefGoogle Scholar
  40. Günata, Y.Z., Bayonove, C.L., Cordonnier, R.E., Arnaud, A. & Glazy, P. (1990a). Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamii β-glucosidases. J. Sci. Food Agric., 50, 499–506.CrossRefGoogle Scholar
  41. Günata, Y.Z., Bayonove, C.L., Tapiero, C. & Cordonnier, R.E. (1990b). Hydrolysis of grape monoterpenyl β-D-glucosides by various β-glucosidases. J. Agric. Food Chem., 38,1232–1236.CrossRefGoogle Scholar
  42. Günata, Y.Z., Dugelay, I., Sapis, J.C., Baumes, R., & Bayonove, C. (1993) Role of enzymes in the use of the flavour potential from grape glycosides in winemaking. In P. Schreier & P., Winterhalter, (Eds). Progress in flavour precursor studies: analysis-generation-biotechnology. Carol Stream Allured Publishing Corporation 219–234.Google Scholar
  43. Günata, Y.Z., Dugelay, I., Sapis, J.-C., Baumes, R. & Bayonove, C. (1994). Role of enzymes in the use of flavour potential from grapes glycosides in winemaking. In P. Schreier & P. Winterhalter (Eds.), Progress in flavour precursor studies. Proceedings of the international conference (pp. 219–245), Allured Publishing Corporation: Carol Stream, IL.Google Scholar
  44. Günata, Y.Z., Bondeel, C., Vallier, M.J., Lepoutre, J.P., Sapis, J.-C. & Watanabe, N. (1998). An endoglycosidase from grape berry skin of Cv. M. Alexandria hydrolyzing potentially aromatic disaccharides glycosides . J. Agric. Food Chem., 46, 2748–2753.CrossRefGoogle Scholar
  45. Guth, H. (1997). Quantitation and sensory studies of character impact odorants of different white wines varieties. J. Agric. Food Chem., 45, 3027–3032.CrossRefGoogle Scholar
  46. Howell, K.S., Klein, M., Swiegers, J.H., Hayasaka, Y., Elsey, G.M., Fleet, G.H., HØj, P.B., Pretorius, I.S. & de Barros Lopez, M.A. (2005). Genetic determinant of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation. App. Environ. Microbiol., 71, 5420–54416.CrossRefGoogle Scholar
  47. King, E., Swiegers, J.H., Travis, B., Francis, I.L., Pretorius, I.S. & Connors, P. (2007). Modulating Sauvignon Blanc wine aroma through co-inoculated fermentations. Australian & New Zealand Grapegrower & Winemaker, 525, 102–108.Google Scholar
  48. Klingshirn, L., Liu, M. & Gallander, J.F. (1987). Higher alcohols formation in wines as related to the particle size profiles of juice insoluble solids. Am. J. Enol. Vitic., 38, 207–209.Google Scholar
  49. Kotseridis, Y., Baumes, R.L. & Skouroumounis, G. (1999). Quantitative determination of free and hydrolytically liberated β-damascenone in red grapes and wines using a stable isotope dilution assay. J. Chromatog., 849, 245–254.CrossRefGoogle Scholar
  50. Lavigne-Cruège, V. (1996). Recherches sur les composes volatils soufres formes par la levure au cours de la vinification et de l’élevage des vins blancs secs. Thèse doctorat, Université de Bordeaux II.Google Scholar
  51. Le Traon-Masson, M-P., & Pellerin, P. (1998). Purification and characterization of two β-D-glucosidases from an Aspergillus niger enzyme preparation: affinity and specificity toward glucosylated compounds characteristic of the processing of fruits. Enzyme Microb. Technol., 22, 374–382.CrossRefGoogle Scholar
  52. Lilly, M., Lambrechts, M.G. & Pretorius, I.S. (2000). Effect of increased yeast alcohol acetyltransferase an activity on the flavour profile of wine and distillates. App. Environ. Microbiol., 66, 744–753.CrossRefGoogle Scholar
  53. Lilly, M., Bauer, F.F., Lambrechts, M.G., Swiegers, J.H., Cozzolino, D. & Pretorius, I.S. (2006a). The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profile of wine and distillates. Yeast, 23, 641–659.CrossRefGoogle Scholar
  54. Lilly, M., Bauer, F.F., Styger, G., Lambrechts, M.G., & Pretorius, I.S. (2006b). The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res., 6,726–743.CrossRefGoogle Scholar
  55. Lopez, R., Ortin, N., Perez-Trujillo, J.P., Cacho J. & Ferreira, V. (2003) Impact odorants of different young white wines from the Canary Islands. J. Agric. Food Chem., 51, 3419–3425.CrossRefGoogle Scholar
  56. Loscos, N., Hernandez-Orte, P., Cacho, J., Ferreira, V. (2007) Release and Formation of Varietal Aroma Compounds during Alcoholic Fermentation from Nonfloral Grape Odorless Flavor Precursors Fractions. J. Agric. Food Chem., 55, 6674–6684.CrossRefGoogle Scholar
  57. Louw, C., La Grange, D., Pretorius I.S & van Rensburg P. (2006). The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavour. J. Biotechnol., 125, 447–461.CrossRefGoogle Scholar
  58. Maicas, S., Gil, J.-V., Pardo, I. & Ferrer, S. (1999). Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res. Inter., 32, 491–496.CrossRefGoogle Scholar
  59. Mason, A.B. & Dufour, J-P. (2000). Alcohol acetyltranferase and the significance of ester synthesis in yeast. Yeast, 16, 1278–1298.CrossRefGoogle Scholar
  60. Mateo, J.J. & Di Stefano, R. (1997). Description of the $\upbeta$-glucosidase activity of wine yeasts. Food Microbiol., 14, 583–591.CrossRefGoogle Scholar
  61. McMahon, H., Zoecklein, B. W., Fugelsang, K. & Jasinsky, Y. (1999). Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. J. Ind. Microbiol. Biotechnol., 23, 198–203.CrossRefGoogle Scholar
  62. Moio, L., M. Ugliano, A. Genovese, A. Gambuti, R. Pessina, & P Piombino (2004). Effect of antioxidant protection of must on volatile compounds and aroma shelf life of Falanghina (Vitis vinifera L.) wine. J. Agric. Food Chem., 52, 891–897.CrossRefGoogle Scholar
  63. Muller-Spöth, H. (1990). Historique des expérimentations de vinification sans SO$2$ et par oxygénation. Rev. Fran. Œnol., 124, 5–12.Google Scholar
  64. Nagel, C.W. & Graber, W.R. (1988). Effect of must oxidation on quality of white wines. Am. J. Enol. Vitic., 39, 1–4.Google Scholar
  65. Paetzold, M., Dulau, L. & Dubourdieu, D. (1990). Fractionnement et caractérisation des glycoproteines dans les moûts de raisins blancs. J. Inter. Sci. Vigne Vin, 24, 13–28.Google Scholar
  66. Perez-Gonzalez, J.A., Gonzalez, R., Querol, A., Sendra, J. & Ramon, D. (1993). Constructionof a recombinant wine yeast strain expressing b-(1,4)-endoglucanase and its use in mictovinication process. App. Environ. Microbiol., 59, 2801–2806.Google Scholar
  67. Pocock, K.F., Høj, P.B., Adams, K.S., Kwiatkowsky, M.J. & Waters, E.J. (2003). Combined heat and proteolytic enzyme treatment of white wines reduces haze forming protein content without detrimental effect. Aus. J. Grape Wine Res., 9, 56–63.CrossRefGoogle Scholar
  68. Ramey, D.D. & Ough, C.S. (1980). Volatile ester hydrolysis or formation during storage of model solutions and wines. J. Agric. Food Chem., 28, 928–934.CrossRefGoogle Scholar
  69. Revilla, I., & González-SanJosé, M.L. (1998). Methanol release during fermentation of red grapes treated with pectolytic enzymes. Food Chem., 80, 205–214.CrossRefGoogle Scholar
  70. Ribereau-Gayon, P., Dubourdieu, D., Donèche, B. & Lonvaud, A. (2006). Handobbok of Oenology, Vol I. John Wiley & Sons Ltd, Chichester, England.Google Scholar
  71. Rigaud, J., Cheynier, V., Souquet, J.M. & Moutonet, M. (1990). Mécanismes d’oxydation des polyphenols dans les mouts blancs. Rev. Fran. Oenol., 124, 27–31.Google Scholar
  72. Rosi, I., Vinnella, M. & Domizio, P. (1994). Characterization of β-glucosidase activity in yeast of enological origin. J. App. Bacteriol., 77, 519–527.Google Scholar
  73. Saerens, S.M.G, Verstappen, K.J., Van Laere, S.D.M., Voet, A.R.D.Van Dijck, P., Delvaux, F.R. & Thevelein, J.M. (2006). The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J. Biol. Chem., 281, 4446–4456.CrossRefGoogle Scholar
  74. Salgues, M., Cheynier, V., Günata, Z. & Wylde, R. (1986). Oxidation of grape juice 2-S-glutathionyl caffeoyl tartaric acid by Botrytis cinerea laccase and characterization of a new substance: 2,5-di-S-glutathionyl caffeoyl tartaric acid. J. Food Sci., 51, 1191–1194.CrossRefGoogle Scholar
  75. Sarry, J.-E. & Günata, Y.Z. (2004). Plant and microbial glycoside hydrolases: volatiles release from glycosidic aroma precursors. Food Chem., 87, 509–521.CrossRefGoogle Scholar
  76. Schneider, V. (1998). Must Hyperoxidation: A Review. Am. J. Enol. Vitic., 49, 65–73.Google Scholar
  77. Sefton, M.A. (1998). Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera cvs Merlot and Cabernet Sauvignon. Aus. J. Grape Wine Res., 4, 30–38.CrossRefGoogle Scholar
  78. Sefton, M.A., Skouroumounis, G.K., Massy-Westropp, R.A. & Williams, P.J. (1989). Norisoprenoids in Vitis vinifera white wine grapes and the identification of a precursor of β-damascenone in these fruits. Aus. J. Chem., 42, 2071–2084.Google Scholar
  79. Sefton, M.A., Francis, I.L. & Williams, P.J. (1993). The volatile composition of Chardonnay juices. A study by flavor precursors analysis. Am. J. Enol. Vitic., 44, 359–370.Google Scholar
  80. Sefton, M.A., Francis, I.L. & Williams, P.J. (1994). Free and bound secondary metabolites of Vitis vinifera grape cv. Sauvignon blanc. J. Food Sci., 59, 142–147.CrossRefGoogle Scholar
  81. Singleton, V.L. (1987). Oxygen with Phenols and Related Reactions in Musts, Wines, and Model Systems: Observations and Practical Implications. Am. J. Enol. Vitic., 38, 69–77.Google Scholar
  82. Singleton, V.L., Sieberhagen, P.H.A., De Wet, P. & Van Wyk C.J. (1975). Composition and sensory qualities of wines prepared from white grapes by fermentation with and without grape solids. Am. J. Enol. Vitic., 26, 62–69.Google Scholar
  83. Skouroumounis, G.K., Massy-Westropp, R.A., Sefton, M.A., Williams, P.J. (1993). β-Damascenone} Formation in juices and wines In P. Schreier & P. Winterhalter (Eds.), Progress in Flavour Precursor Studies, (pp. 275–278), Allured, Publishing Corp., Carol Stream, IL.Google Scholar
  84. Skouroumounis, G.K. & Sefton, M.A. (2000). Acid-catalyzed hydrolysis of alcohols and their β-D-glucopyranosides. J. Agric. Food Chem., 48, 2033–2039.CrossRefGoogle Scholar
  85. Swiegers, J.H., Francis, I.L., Herderich, M. & Pretorius, I.S. (2006). Meeting consumer expectations through management in vineyard and winery, the choice of yeast for fermentation offers great potential to adjust the aroma of Sauvignon Blanc. Wine Ind. J., 21, 34–42.Google Scholar
  86. Swiegers, J.H., Capone, D.L., Pardon, K.H., Elsey, G.M., Sefton, M.A., Francis, I.L. & Pretorius, I.S. (2007). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast, 24, 561–574.CrossRefGoogle Scholar
  87. Tamborra, P., Martino, N. & Esti, M. (2004). Laboratory test on glycosidase preparations in wine. Anal. Chim. Acta, 513, 299–303.CrossRefGoogle Scholar
  88. Tominaga, T., Peyrot de Gachons. C. & Dubourdieu, D. (1998). A new type of flavour precursors in Vitis vinifera L. cv. Sauvignon blanc: S-cysteine conjugates. J. Agric. Food Chem., 46,5215–5219.CrossRefGoogle Scholar
  89. Tominaga, T., Baltenweck-Guyot, C., Peyrot de Gachons. C. & Dubourdieu, D. (2000). Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. Am. J. Enol. Vitic., 51, 178–181.Google Scholar
  90. Ugliano, M. & Moio, L. (2005). Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem., 53, 10134–10139.CrossRefGoogle Scholar
  91. Ugliano, M., & Moio, L. (2006). The influence of malolactic fermentation and Oenococcus oeni strain on glycosidic aroma precursors and related volatile compounds of red wine. J. Sci. Food Agric., 86, 2468–2476.CrossRefGoogle Scholar
  92. Ugliano, M., Genovese, A., & Moio, L. (2003). Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. JJ. Agric. Food Chem., 51, 5073–5078.CrossRefGoogle Scholar
  93. Ugliano, M., Bartowsky E.J., McCarthy, J., Moio, L. & Henschke P.A. (2006). Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomyces yeast strains. J. Agric. Food Chem., 54, 6322–6331.CrossRefGoogle Scholar
  94. Usseglio-Tomasset, L. (1978). Acquisitions récentes sur les phénomènes colloïdaux dans les mouts et les vins. Ann. Technol. Agric., 27, 261–274.Google Scholar
  95. Van Rensburg, P., T. Stidwell, M.G. Lambrechts, R.R. Cordero Otero & I.S. Pretorius. (2005). Development and assessment of arecombinant Saccharomyces cerevisiae wine yeast producing two aroma-enhancing $β$ glucosidases encoded by the Saccharomycopsis fibuligera BGL1 and BGL2 genes. Annal. of Microbiology 55, 33–42.Google Scholar
  96. Vidal, S., Williams, P., Doco, T., Moutounet, M. & Pellerin, P. (2003). The polysaccharides of red wine: Total fractionation and characterization. Carbohydr. Polym., 54, 439–447.CrossRefGoogle Scholar
  97. Voirin, S.G., Baumes, R., Bitteur, S.M., Günata, Z.Y. & Bayonove, C. (1990). Novel monoterpene disaccharide glycosides in Vitis vinifera grapes. J. Agric. Food Chem., 83, 1373–1378.CrossRefGoogle Scholar
  98. Voirin, S.G., Baumes, R., Sapis, C.L. & Bayonove, C. (1992). Analytical methods for monoterpene glycosides in grape and wine II. Qualitative and quantitative determination of monoterpene glycosides in grape. J. Chromatogr., 595, 269–281.CrossRefGoogle Scholar
  99. Waters, E.J. (1991). Heat unstable wine proteins and their interactions with wine polysaccharides. PhD thesis. University of Adelaide, Australia.Google Scholar
  100. Waters, E.J., Shirley N.J. & Williams, P.J. (1996). Nuisance proteins of wine are grape pathogenesis-related proteins. Aus. J. Grape Wine Res., 1, 86–93.CrossRefGoogle Scholar
  101. Williams, P.J., Strauss, C.R., Wilson, B. & Massy-Westropp, R. (1982). Novel monoterpene disaccharide precursors of Vitis vinifera grapes and wine. Phytochemistry, 12, 2013–2020.CrossRefGoogle Scholar
  102. Williams, P. J., Francis, I.L. & Black. S. (1996). Changes in concentration of juice and must glycosides, including flavour precursors, during primary fermentation. In T. Henick-Kling & Wolf, T. (Eds.), Proceedings of the IVth International Symposium on cool climate viticulture and enology (pp. VI-5–VI-9). Rochester, NY.Google Scholar
  103. Winterhalter, P. (1991). 1,1,6-trimethyl-1,2-dihydronaphtalene (TDN) formation in wine. 1. Studies on the hydrolysis of 2,6,10,10-tetramethyl-1-oxaspiro-[4,5] -dec-6-ene-2,8-diol rationalizing the origin of TDN and related C$13$ norisoprenoids in Riesling wine. J. Agric. Food Chem., 39, 1825–1829.CrossRefGoogle Scholar
  104. Winterhalter, P., Sefton, M.A., & Williams, P.J.. (1990). Two-dimensional GC-DCCC analysis of the glycoconjugates of monoterpenes, norisoprenoids, and shikimate-derived metabolites form Riesling wine. J. Agric. Food Chem., 38, 1041–1048.CrossRefGoogle Scholar
  105. Winterhalter, P., Sefton, M. A. & P.J. Williams. (1991). Volatile C13 norisoprenoids are generated from multiple precursors. Am. J. Enol. Vitic., 41, 277–283.Google Scholar
  106. Wirth, J, Guo, W., Baumes, R. & Günata, Y. Z. (2002). Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from Vitis vinifera Muscat of Alexandria and Shiraz cultivars. J. Agric. Food Chem., 49, 2917–2923.CrossRefGoogle Scholar
  107. Zoecklein, B.W., Marcy, J.E. & Jasinsky, Y. (1997a). Effect of fermentation, storage sur lie or post-fermentation thermal processing on White Riesling (Vitis vinifera L.) glycoconjugates. Am. J. Enol. Vitic., 48, 397–402.Google Scholar
  108. Zoecklein, B.W., Marcy, J.E., Williams, J.M. & Jasinsky, Y. (1997b). Effect of native strain of Saccharomyces cerevisiae on glycosyl-glucose, potential volatile terpenes, and selected aglycones of White Riesling (Vitis vinifera L.) wines. J. Food Comp. Anal., 10, 55–65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Maurizio Ugliano
    • 1
  1. 1.The Australian Wine Research InstituteAustralia

Personalised recommendations