Advertisement

Biologically Aged Wines

  • Rafael A. Peinado
  • Juan C. Mauricio

Keywords

Aging Time Biological Aging Gluconic Acid White Wine Wine Yeast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, F., Valero, E., Millán, C., Mauricio, J.C., & Ortega, J.M. (1997). Cellular fatty acid composition of two physiological races of Saccharomyces cerevisiae during fermentation and flor veil formation in biological aging of fine wine. Belgian J. Brew. Biotechnol., 2, 39–42.Google Scholar
  2. Aguilera, F., Peinado, R.A., Millán, C., Ortega, J.M., & Mauricio, J.C. (2006). Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int. J. Food Microbiol., 110, 34–42.CrossRefGoogle Scholar
  3. Alexander, H., Bertrand, F., & Charpentier, C. (1998). Ethanol induced yeast film formation with cell surface hydrophobicity as a major determinant. Food Technol. Biotechnol., 36, 27–30.Google Scholar
  4. Aranda, A., & del Olmo, M. (2003). Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast, 20, 747–759.CrossRefGoogle Scholar
  5. Aranda, A., Querol, A., & del Olmo, M. (2002). Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines. Arch. Microbiol., 177, 304–312.CrossRefGoogle Scholar
  6. Augustyn, O.P.H., Van Wyk, C.J., Muller, C.J., Kepner, R.E., & Webb, A.D. (1971). The structure of solerone (5-acetyldihydro-2-(3H)furanone) a substituted gamma-lactone involved in wine aroma. J. Agric. Food Chem., 19, 1128–1130.CrossRefGoogle Scholar
  7. Barón, R., Mayén, M., Mérida, J., & Medina, M. (1997) Changes in phenolic compounds and browning during biological aging of sherry-type wine. J. Agric. Food Chem., 45, 1682–1685.CrossRefGoogle Scholar
  8. Benítez, T., & Codón, A.C. (2005). Levaduras. Saccharomyces cerevisiae III. Levaduras de vinos de crianza biológica. In A.V. Carrascosa, R. Muñoz & R. González (Eds.), Microbiología del vino (pp. 78–113). Madrid, Spain: A.M.V. Ediciones.Google Scholar
  9. Berlanga, T. M., Atanasio, C., Mauricio, J. C., & Ortega, J. M. (2001). Influence of aeration on the physiological activity of flor yeasts. J. Agric. Food Chem., 49, 3378–3384.CrossRefGoogle Scholar
  10. Berlanga, T., Peinado, R., Millán, C., Mauricio, J. C., & Ortega, J. M. (2004a). Influence of blending on the content of different compounds in the biological aging of sherry wines. J. Agric. Food Chem., 52, 2577–2581.CrossRefGoogle Scholar
  11. Berlanga, T., Peinado, R., Millán, C., & Ortega, J.M. (2004b). Discriminant analysis of sherry wine during biological aging. Am. J. Enol. Vitic., 55, 407–411.Google Scholar
  12. Berlanga, T.M., Millán, C., Mauricio, J.C., & Ortega, J.M. (2006). Influence of nitrogen on biological aging of sherry wine. J. Sci. Food Agric., 86, 2113–2118.CrossRefGoogle Scholar
  13. Blandino, A., Caro, I., & Cantero, D. (1997). Comparative study of alcohol dehydrogenase activity in flor yeast extracts. Biotechnol. Lett., 19, 651–654.CrossRefGoogle Scholar
  14. Botella, M.A., Perez-Rodriguez, L., Domecq, B., & Valpuesta, V. (1990). Amino acid content of fino and oloroso sherry wines. Am. J. Enol. Vitic., 41, 12–15.Google Scholar
  15. Bravo-Abad, F. (1986). Crianza biológica de vino: procedimiento tradicional de vinos finos de D.O. Jerez y D.O. Montilla-Moriles. Enología y Enotecnia, 1, 15–19.Google Scholar
  16. Budroni, M., Zara, S., Zara, G., Pirino, G., & Mannazzu, I. (2005). Peculiarities of flor strains adapted to Sardinian sherry-like wine ageing conditions. FEMS Yeast Res., 5, 951–958.CrossRefGoogle Scholar
  17. Charpentier, C., & Feuillat, M. (1993). Yeast autolysis. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 225–242). Langhorne: Harwood Academic Publisher.Google Scholar
  18. Charpentier, C., Etiévant, P., & Guichard, E. (2000). Vinificación de los vinos de velo: vino Jaune, Jerez y otros. In C. Flanzy (Ed.), Enología: Fundamentos Científicos y Tecnológicos (pp. 531–539). Madrid, Spain: A. Madrid Vicente, Ediciones, & Ediciones Mundi-Prensa.Google Scholar
  19. Charpentier, C., Dos Santos, A.M., & Feuillat M. (2004). Release of macromolecules by Saccharomyces cerevisiae during ageing of French flor sherry wine “Vin jaune”. Int. J. Food Microbiol., 96, 253–262.CrossRefGoogle Scholar
  20. Chatonnet, P., Boidron, J.N., & Pons, M. (1990). Élevage des vins rouges es fût de chene: évolution de certains composés volatils et de leur impact aromatique. Sci. Aliment., 10, 565–578.Google Scholar
  21. Cooper, T.G. (1982). Nitrogen metabolism in Saccharomyces cerevisiae. In J.N. Strathern, E.W. Jones & J.B. Broach (Eds.), The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression (pp. 39–99). New York: Cold Spring Harbor Laboratory.Google Scholar
  22. Cortés, M.B. (2002) Aplicación de cultivos puros de Saccharomyces cerevisiae a la crianza biológica de vinos finos de la D.O. Montilla-Moriles. (Doctoral dissertation, University of Córdoba, Spain, 2002).Google Scholar
  23. Cortés, M. B., Moreno, J., Zea, L., Moyano, L., & Medina, M. (1998). Changes in aroma compounds of sherry wines during their biological aging carried out by Saccharomyces cerevisiae races bayanus and capensis. J. Agric. Food Chem., 46, 2389–2394.CrossRefGoogle Scholar
  24. Cortés, M.B., Moreno, J., Zea, L., Moyano, L., & Medina, M. (1999) Response of the aroma fraction in sherry wines subjected to accelerated biological aging. J. Agric. Food Chem., 47, 3297–3302.CrossRefGoogle Scholar
  25. Da Silva Ferreira, A.C., Barbe, J.C., & Bertrand, A. (2002). Heterocyclic acetals from glycerol and acetaldehyde in port wine: Evolution with aging. J. Agric. Food Chem., 50, 2560–2564.CrossRefGoogle Scholar
  26. Dubois, P., Rigaud, J., & Dekimpe, J. (1976). Identification de la diméthyl-4,5-terahydrofuranedione-2,3-dans le vin jaune du Jura. Lebens. Wiss. Technol., 9, 366–368. Google Scholar
  27. Esteve-Zarzoso, B., Peris-Torán, M.J., García-Maiquez, E., Uruburu, F., & Querol, A. (2001). Yeast population dynamics during the fermentation and biological aging of sherry wines. App. Environ. Microbiol., 67, 2056–2061.CrossRefGoogle Scholar
  28. Esteve-Zarzoso, B., Fernández-Espinar, M.T., & Querol, A. (2004). Authentication and identification of Saccharomyces cerevisiae “flor” yeast races involved in sherry ageing. Antonie van Leeuwenhoek, 85, 151–158.CrossRefGoogle Scholar
  29. Etiévant, P.X. (1991). Wine In H. Maarse (Ed.), Volatile compound in food and beverages (pp. 483–546). Zeist (The Netherlands): H.TNO-CIVO. Food Analysis Institute.Google Scholar
  30. Farris, G.A., Sinigaglia, M., Budroni, M., & Guerzoni, M.E., (1993). Cellular fatty acid composition in film-forming strains of two physiological races of Saccharomyces cerevisiae. Lett. App. Microbiol., 17, 215–219.CrossRefGoogle Scholar
  31. Fernández, M.J., Gómez-Moreno, C., & Ruiz-Amil, M. (1972). Induction of isoenzymes of alcohol dehydrogenase in “flor” yeast. Arch. Microbiol., 84, 153–160.Google Scholar
  32. Fernández-Espinar, M.T., Esteve-Zarzoso, B., Querol, A., & Barrio, E. (2000). RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie van Leeuwenhoek, 78, 87–97.CrossRefGoogle Scholar
  33. Fidalgo, M., Barrales, R.R., Ibeas, J.I., & Jimenez, J. (2006). Adaptive evolution by mutations in the FLO11 gene. PNAS, 103, 11228–11233.CrossRefGoogle Scholar
  34. García-Maiquez, E. (1988). Les levures de voile dans l’elaboration des vins de xéres. In Application à l’oenologie des progrés récents en microbiologie et en fermentation. (341–372). Paris, France: Commission des Communautés européennes Programme COMET.Google Scholar
  35. Guichard, E., Pham, T.T., & Charpentier, C. (1997). Le sotolon, marqueur de la typicité de l’arome des vins du Jura. Rev. Oenol., 82, 32–34.Google Scholar
  36. Guijo, S., Millán, C., & Ortega, J.M. (1986). Fermentative features of vinification and maduration yeasts isolated in the Montilla-Moriles region of Southern Spain. Food Microbiol., 3, 133–142.CrossRefGoogle Scholar
  37. Guijo, S., Mauricio, J.C., Salmon, J.M., & Ortega, J.M. (1997). Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and “flor” film ageing of dry sherry-type wines. Yeast, 13, 101–117.CrossRefGoogle Scholar
  38. Haslam, E., & Lilley, T.H. (1988). Natural astringency in foodstuffs. A molecular interpretation. CRC Crit. Rev. Food Sci. Nut., 27, 1–40.CrossRefGoogle Scholar
  39. Ibeas, J.I., & Jiménez, J. (1996). Genomic complexity and chromosomal rearrangements in wine-laboratory yeast hybrids. Curr. Gen., 30, 410–416.CrossRefGoogle Scholar
  40. Ibeas, J.I., Lozano, I., Perdigones, F., & Jiménez, J. (1996). Detection of Dekkera-Brettanomyces strains in sherry by a nested PCR method. App. Environ. Microbiol., 62, 998–1003.Google Scholar
  41. Ibeas, J.I., Lozano, I., Perdigones, F., & Jiménez, J. (1997). Dynamics of flor yeast populations during the biological aging of sherry wines. Am. J. Enol. Vitic., 48, 75–79.Google Scholar
  42. Infante, J.J. (2002). Aplicación de métodos de Biología Molecular para la caracterización y mejora genética de levaduras de velo de flor responsables de la crianza biológica de los vinos de Jerez. (Doctoral dissertation, University of Cadiz, Spain, 2002).Google Scholar
  43. Infante, J.J., Dombek, K.M., Rebordinos, L., Cantoral, J.M., & Young, E.T. (2003) Genome-wide amplifications caused by chromosomal rearrangements play a mojor role in the adaptive evolution of natural yeast. Genetics, 165, 1745–1759.Google Scholar
  44. Ingledew, W.M., Magnus, C.A., & Sosulski, F.W. (1987). Influence of oxygen on proline utilization during the wine fermentation. Am. J. Enol. Vitic., 38, 246–248.Google Scholar
  45. Ishigami, M., Nakagawa, Y., Hayakawa, M., & Iimura, Y. (2004). FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 237, 425–430.Google Scholar
  46. Ishigami, M., Nakagawa, Y., Hayakawa, M., & Iimura, Y. (2006). FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast. Biosci. Biotechnol. Biochem., 70, 660–666.CrossRefGoogle Scholar
  47. Jiménez, J., & Benítez, T. (1987). Genetic analysis of highly ethanol-tolerant wine yeasts. Curr. Gen., 12, 421–428.CrossRefGoogle Scholar
  48. Marcilla, J, Feduchy, E., & Alas, G. (1936). Contribución al estudio de las levaduras que forman velo sobre ciertos vinos de elevado grado alcohólico. Anales del Centro de Investigaciones Vinícolas de Madrid, 1, 1–219.Google Scholar
  49. Martin, B., & Etievant, P.X. (1991). Quantitative determination of solerone and sotolona in flor sherries by two dimensional-capillary GC. HRC CC., 14, 133–135.Google Scholar
  50. Martínez, P., Valcárcel, M.J., González, P., Benítez, T., & Pérez, L. (1993). Consumo de etanol, glicerina y aminoácidos totales en vinos finos durante la crianza biológica bajo “velo de flor”. Aliment. Equipos Tecnol. 12, 61–65.Google Scholar
  51. Martínez, P., Codón, A.C., Pérez, L., & Benítez, T. (1995). Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Yeast, 11, 1399–1411.CrossRefGoogle Scholar
  52. Martínez, P., Pérez Rodríguez, L., & Benítez, T. (1997a). Evolution of flor yeast population during the biological aging of fino sherry wine. Am. J. Enol. Vitic., 48, 160–168.Google Scholar
  53. Martínez, P., Pérez Rodríguez, L., & Benítez, T. (1997b). Factors which affect velum formation by flor yeasts isolated from sherry wine. Syst. App. Microbiol., 20, 154–157.Google Scholar
  54. Martínez, P., Pérez Rodríguez, L., & Benítez, T. (1997c). Velum formation by flor yeasts isolated from sherry wine. Am. J. Enol. Vitic., 48, 55–62.Google Scholar
  55. Martínez, P., Valcárcel, M.J., Pérez, L., & Benítez, T. (1998). Metabolism of Saccharomyces cerevisiae flor yeasts during fermentation and biological aging of fino sherry: by-products and aroma compounds. Am. J. Enol. Vitic., 49, 240–250.Google Scholar
  56. Martínez de la Ossa, E., Caro, I., Bonat, M., Pérez, L., & Domecq, B. (1987). Dry extract in sherry and its evolution in the aging of sherry. Am. J. Enol. Vitic., 38, 321–325.Google Scholar
  57. Martínez-Rodríguez, A. J., & Polo, M. C. (2000). Enological aspects of yeast autolysis. In Recent Res. Devel. Microbiology, 4, (pp. 285–301). Trivandrum, India: Research Signpost.Google Scholar
  58. Masuda, M., Okawa, E.C., Nishimura, K.I., & Yunome, H. (1984). Identification of 4,5-dimetyl-3-hydroxy-2(5H)-furanone (sotolona) and ethyl 9-hydroxy-nonanone in botrytised wine and evaluation of the roles of compounds characteristic of it. J. Agric. Food Chem., 48, 2702–2710.Google Scholar
  59. Mauricio, J.C., & Ortega, J.M. (1997). Nitrogen compounds in wine during its biological aging by two flor film yeasts: an approach to accelerated biological aging of dry sherry–type wines. Biotechnol. Bioeng., 53, 159–167.CrossRefGoogle Scholar
  60. Mauricio, J.C., Guijo, S., & Ortega, J.M. (1991). Relationship between phospholipid and sterol contents in Saccharomyces cerevisiae and Torulaspora delbrueckii and their fermentation activity in grape musts. Am. J. Enol. Vitic., 42, 301–308.Google Scholar
  61. Mauricio, J.C., Moreno, J.J., Valero, E.M., Zea, L., Medina, M., & Ortega, J.M. (1993). Ester formation and specific activities of in vitro alcohol acetyltransferase and esterase by Saccharomyces cerevisiae during grape must fermentation. J. Agric. Food Chem., 41, 2086–2091.CrossRefGoogle Scholar
  62. Mauricio, J.C., Moreno, J., & Ortega, J.M. (1997). In vitro specific activities of alcohol and aldehyde dehydrogenases from two flor yeasts during controlled wine aging. J. Agric. Food Chem., 45, 1967–1971.CrossRefGoogle Scholar
  63. Mauricio, J.C., Valero, E. Millán, C., & Ortega, J.M. (2001). Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts. J. Agric. Food Chem., 49, 3310–3315.CrossRefGoogle Scholar
  64. Mauricio, J.C., Moreno, J., & Ortega, J.M. (2003). Aceleración de la crianza biológica mediante aireaciones periódicas. In VII Jornadas Científicas de los Grupos de Investigación Enológica (pp. 117–119). Logroño, Spain: Gobierno de la Rioja.Google Scholar
  65. Mérida, J., Lopez-Toledano, A., Marquez, T., Millan, C., Ortega, J.M., & Medina, M. (2005). Retention of browning compounds by yeasts involved in the winemaking of sherry type wines. Biotechnol. Lett., 27, 1565–1570.CrossRefGoogle Scholar
  66. Mesa, J.J., Infante, J.J., Rebordinos, L., & Cantoral, J.M. (1999). Characterization of yeasts involved in the biological ageing of sherry wines. Lebensm. Wiss. Technol., 32, 114–120.CrossRefGoogle Scholar
  67. Mesa, J.J., Infante, J.J., Rebordinos, L., Sanchez, J.A., & Cantoral, J.M. (2000). Influence of the yeast genotypes on enological characteristics of sherry wines. Am. J. Enol. Vitic., 51, 15–21.Google Scholar
  68. Morata, A., Calderón, F., Gómez-Cordovés, M.C., González, M.C., Colomo, B., & Suárez-Lepe, J.A. (2007). Evolución del contenido de antocianos en mostos de Cabernet Sauvignon (Vitis vinifera L.) fermentados y criados con levaduras de velo. In M. Ramirez (Ed.), Avances en Ciencias y Técnicas Enológicas (pp. 188–189). Badajoz, Spain: Junta de Extremadura.Google Scholar
  69. Moreno, J.A. (2005). Influencia del tipo de envejecimiento sobre el perfil aromático de los vinos generosos andaluces. (Doctoral dissertation, University of Córdoba, Spain, 2005).Google Scholar
  70. Moreno, J.A., Zea, L., Moyano, L., Moreno, J.J., & Medina, M. (2001). Aplicación de un modelo de regresión simple a la crianza biológica de vinos finos de la Denominación de Origen Montilla-Moriles. In VII Congreso Nacional de Enólogos. Pamplona, Spain.Google Scholar
  71. Moreno, J.A., Zea, L., Moyano, L., & Medina, M. (2004). Aroma compounds as markers of the changes in sherry wine subjected to biological ageing. Food Control, 16, 333–338.CrossRefGoogle Scholar
  72. Moreno-Arribas, M.V., & Polo, M. C. (2005). Winemaking biochemistry and microbiology: Current knowledge and future trends. Crit. Rev. Food Sci. Nut., 45, 265–286.CrossRefGoogle Scholar
  73. Muller, C.J., Kepner, R.E., & Webb, A.D. (1973). Lactones in wines – a review. Am. J. Enol. Vitic., 24, 47–57.Google Scholar
  74. Muñoz, D. (2003). Aceleración de la crianza biológica de vinos finos mediante oxigenaciones controladas. (Doctoral dissertation, University of Córdoba, Spain, 2003)Google Scholar
  75. Muñoz, D., Valero, E., Moreno, J., Moyano, L., Zea, L., & Medina, M. (2002). Estudio del aprovechamiento de la biomasa procedente de la crianza biológica de vinos finos. In XXII Jornadas de Viticultura y Enología Tierra de Barros (pp. 243–252). Badajoz, Spain: Cultural Santa Ana.Google Scholar
  76. Muñoz, D., Peinado, R.A., Medina, M., & Moreno, J. (2005). Biological aging of sherry wines using pure cultures of two flor yeast strain under controlled microaeration. J. Agric. Food Chem., 53, 5258–5264.CrossRefGoogle Scholar
  77. Muñoz, D., Peinado, R.A., Medina, M., & Moreno, J. (2007). Biological aging of sherry wines under periodic and controlled microaeration with Saccharomyces cerevisiae var. capensis: Effect on odorant series.Food Chem., 100, 1188–1195.Google Scholar
  78. Ough, C. S., & Amerine, M. A. (1958). Studies on acetaldehyde production under pressure, oxygen and agitation. Am. J. Enol. Vitic., 9, 111–123.Google Scholar
  79. Ough, C. S., & Amerine, M. A. (1972). Further studies with submerged flor sherry. Am. J. Enol. Vitic., 23, 128–131.Google Scholar
  80. Peinado, R.A., Moreno, J.J., Ortega, J.M., & Mauricio, J.C. (2003). Effect of gluconic acid consumption during simulation of biological aging of sherry wines by a flor yeast strain on the final volatile compounds. J. Agric. Food Chem., 51, 6198–6203.CrossRefGoogle Scholar
  81. Peinado, R.A., Moreno, J., Bueno, J.E., Moreno, J.A., & Mauricio J.C. (2004a). Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem., 84, 585–590.CrossRefGoogle Scholar
  82. Peinado, R.A., Mauricio, J.C., Medina, M., & Moreno, J. (2004b). Effect of Schizosaccharomyces pombe on aromatic compounds in dry sherry wines containing high level of gluconic acid. J. Agric. Food Chem., 52, 4529–4534.CrossRefGoogle Scholar
  83. Peinado, R.A., Mauricio, J.C., & Moreno, J. (2006a). Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chem., 94, 232–239.Google Scholar
  84. Peinado, R.A., Moreno, J.J., Villalba, J.M., González-Reyes, J.A., Ortega, J.M., & Mauricio, J.C. (2006b). Yeast biocapsules: a new immobilization method and their applications. Enz. Microb. Technol., 40, 79–84.CrossRefGoogle Scholar
  85. Pérez, L. (1982). Consideraciones técnicas en la elaboración del Jerez. In II Jornadas universitarias sobre el Jerez (pp. 167–197). Cádiz, Spain: Universidad de Cádiz.Google Scholar
  86. Pham, T.T., Guichard, E., Schlich, P., & Charpentier, C. (1995). Optimal conditions for the formation of sotolon from α-ketobutyric acid in the french “Vin Jaune”. J. Agric. Food Chem., 43, 2616–2619.CrossRefGoogle Scholar
  87. Plata, M.C., Mauricio, J.C., Millán, C., & Ortega, J.M. (1998). In vitro specific activity of alcohol acetyl-transferase and esterase in two flor yeast strains during biological aging of sherry wines. J. Ferment. Bioeng., 85, 369–374.CrossRefGoogle Scholar
  88. Purevdorj-Gage, B., Orr, M.E., Stoodley, P., Sheehan, K.B., & Hyman, L.E. (2007). The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system. FEMS Yeast Res., 7, 372–379.CrossRefGoogle Scholar
  89. Rankine, B.C. (1955). Yeast cultures in Australian winemaking. Am. J. Enol. Vitic., 6, 11–15.Google Scholar
  90. Romano, P., & Suzzi, G. (1996). Origin and production of acetoin during wine yeast fermentation. App. Environ. Microbiol., 62, 309–315.Google Scholar
  91. Sancho, E.D., Hernandez, E., & Rodriguez-Navarro, A. (1986). Presumed sexual isolation in yeast populations during production of sherrylike wine. App. Environ. Microbiol., 51, 395–397.Google Scholar
  92. Suárez-Lepe, J.A., & Iñigo-Leal, B. (2004). Microbiología Enológica. Fundamentos de vinificación (pp. 673–716). Madrid, Spain: Ediciones Mundi-Prensa.Google Scholar
  93. Usseglio-Tomasset, L. (1983) Influence de la température de conservation sur les caractéristiques physico-chimiques et organoleptiques des vins (Vins aromatiques). Bull. OIV, 623, 19–34.Google Scholar
  94. Valero, E., Millán, C., & Ortega, J.M. (2002). Changes in the lipid composition of Saccharomyces cerevisiae race capensis (G1) during alcoholic fermentation and flor film formation. Lebensm. Wiss. Technol., 35, 593–599.Google Scholar
  95. Valero, E., Millán, C., Ortega, J.M., & Mauricio, J.C. (2003). Concentration of amino acids in wine after the end of fermentation by Saccharomyces cerevisiae strains. J. Sci. Food Agric., 83, 830–835.CrossRefGoogle Scholar
  96. Verstrepen, K.J., & Klis, F.M. (2006). Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol., 60, 5–15.CrossRefGoogle Scholar
  97. Zara, S., Bakalinsky, A.T., Zara, G., Pirino, G. Demontis, M.A., & Budroni, M. (2005). FLO11-Based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. App. Environ. Microbiol., 71, 2934–2939.CrossRefGoogle Scholar
  98. Zea, L., Moreno, J., Ortega, J.M., Mauricio, J.C., & Medina, M. (1995) Comparative study of the γ-butyrolactone and pantolactone contents in cells and musts during vinification by three Saccharomyces cerevisiae races. Biotechnol. Lett., 17, 1351–1356.CrossRefGoogle Scholar
  99. Zea, L., Moyano, L., Moreno, J.A., & Medina, M. (2007). Aroma series as fingerprints for biological ageing in fino sherry-type wines. J. Sci. Food Agric., 87, 2319–2326.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rafael A. Peinado
  • Juan C. Mauricio
    • 1
  1. 1.Professor of Microbiology, Departamento de Microbiología, Edificio Severo Ochoa, Campus Universitario de RabanalesUniversidad de CórdobaSpain

Personalised recommendations