Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera, F., Valero, E., Millán, C., Mauricio, J.C., & Ortega, J.M. (1997). Cellular fatty acid composition of two physiological races of Saccharomyces cerevisiae during fermentation and flor veil formation in biological aging of fine wine. Belgian J. Brew. Biotechnol., 2, 39–42.

    Google Scholar 

  • Aguilera, F., Peinado, R.A., Millán, C., Ortega, J.M., & Mauricio, J.C. (2006). Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int. J. Food Microbiol., 110, 34–42.

    Article  CAS  Google Scholar 

  • Alexander, H., Bertrand, F., & Charpentier, C. (1998). Ethanol induced yeast film formation with cell surface hydrophobicity as a major determinant. Food Technol. Biotechnol., 36, 27–30.

    Google Scholar 

  • Aranda, A., & del Olmo, M. (2003). Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast, 20, 747–759.

    Article  CAS  Google Scholar 

  • Aranda, A., Querol, A., & del Olmo, M. (2002). Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines. Arch. Microbiol., 177, 304–312.

    Article  CAS  Google Scholar 

  • Augustyn, O.P.H., Van Wyk, C.J., Muller, C.J., Kepner, R.E., & Webb, A.D. (1971). The structure of solerone (5-acetyldihydro-2-(3H)furanone) a substituted gamma-lactone involved in wine aroma. J. Agric. Food Chem., 19, 1128–1130.

    Article  CAS  Google Scholar 

  • Barón, R., Mayén, M., Mérida, J., & Medina, M. (1997) Changes in phenolic compounds and browning during biological aging of sherry-type wine. J. Agric. Food Chem., 45, 1682–1685.

    Article  Google Scholar 

  • Benítez, T., & Codón, A.C. (2005). Levaduras. Saccharomyces cerevisiae III. Levaduras de vinos de crianza biológica. In A.V. Carrascosa, R. Muñoz & R. González (Eds.), Microbiología del vino (pp. 78–113). Madrid, Spain: A.M.V. Ediciones.

    Google Scholar 

  • Berlanga, T. M., Atanasio, C., Mauricio, J. C., & Ortega, J. M. (2001). Influence of aeration on the physiological activity of flor yeasts. J. Agric. Food Chem., 49, 3378–3384.

    Article  CAS  Google Scholar 

  • Berlanga, T., Peinado, R., Millán, C., Mauricio, J. C., & Ortega, J. M. (2004a). Influence of blending on the content of different compounds in the biological aging of sherry wines. J. Agric. Food Chem., 52, 2577–2581.

    Article  CAS  Google Scholar 

  • Berlanga, T., Peinado, R., Millán, C., & Ortega, J.M. (2004b). Discriminant analysis of sherry wine during biological aging. Am. J. Enol. Vitic., 55, 407–411.

    CAS  Google Scholar 

  • Berlanga, T.M., Millán, C., Mauricio, J.C., & Ortega, J.M. (2006). Influence of nitrogen on biological aging of sherry wine. J. Sci. Food Agric., 86, 2113–2118.

    Article  CAS  Google Scholar 

  • Blandino, A., Caro, I., & Cantero, D. (1997). Comparative study of alcohol dehydrogenase activity in flor yeast extracts. Biotechnol. Lett., 19, 651–654.

    Article  CAS  Google Scholar 

  • Botella, M.A., Perez-Rodriguez, L., Domecq, B., & Valpuesta, V. (1990). Amino acid content of fino and oloroso sherry wines. Am. J. Enol. Vitic., 41, 12–15.

    CAS  Google Scholar 

  • Bravo-Abad, F. (1986). Crianza biológica de vino: procedimiento tradicional de vinos finos de D.O. Jerez y D.O. Montilla-Moriles. Enología y Enotecnia, 1, 15–19.

    Google Scholar 

  • Budroni, M., Zara, S., Zara, G., Pirino, G., & Mannazzu, I. (2005). Peculiarities of flor strains adapted to Sardinian sherry-like wine ageing conditions. FEMS Yeast Res., 5, 951–958.

    Article  CAS  Google Scholar 

  • Charpentier, C., & Feuillat, M. (1993). Yeast autolysis. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 225–242). Langhorne: Harwood Academic Publisher.

    Google Scholar 

  • Charpentier, C., Etiévant, P., & Guichard, E. (2000). Vinificación de los vinos de velo: vino Jaune, Jerez y otros. In C. Flanzy (Ed.), Enología: Fundamentos Científicos y Tecnológicos (pp. 531–539). Madrid, Spain: A. Madrid Vicente, Ediciones, & Ediciones Mundi-Prensa.

    Google Scholar 

  • Charpentier, C., Dos Santos, A.M., & Feuillat M. (2004). Release of macromolecules by Saccharomyces cerevisiae during ageing of French flor sherry wine “Vin jaune”. Int. J. Food Microbiol., 96, 253–262.

    Article  CAS  Google Scholar 

  • Chatonnet, P., Boidron, J.N., & Pons, M. (1990). Élevage des vins rouges es fût de chene: évolution de certains composés volatils et de leur impact aromatique. Sci. Aliment., 10, 565–578.

    CAS  Google Scholar 

  • Cooper, T.G. (1982). Nitrogen metabolism in Saccharomyces cerevisiae. In J.N. Strathern, E.W. Jones & J.B. Broach (Eds.), The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression (pp. 39–99). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Cortés, M.B. (2002) Aplicación de cultivos puros de Saccharomyces cerevisiae a la crianza biológica de vinos finos de la D.O. Montilla-Moriles. (Doctoral dissertation, University of Córdoba, Spain, 2002).

    Google Scholar 

  • Cortés, M. B., Moreno, J., Zea, L., Moyano, L., & Medina, M. (1998). Changes in aroma compounds of sherry wines during their biological aging carried out by Saccharomyces cerevisiae races bayanus and capensis. J. Agric. Food Chem., 46, 2389–2394.

    Article  Google Scholar 

  • Cortés, M.B., Moreno, J., Zea, L., Moyano, L., & Medina, M. (1999) Response of the aroma fraction in sherry wines subjected to accelerated biological aging. J. Agric. Food Chem., 47, 3297–3302.

    Article  CAS  Google Scholar 

  • Da Silva Ferreira, A.C., Barbe, J.C., & Bertrand, A. (2002). Heterocyclic acetals from glycerol and acetaldehyde in port wine: Evolution with aging. J. Agric. Food Chem., 50, 2560–2564.

    Article  CAS  Google Scholar 

  • Dubois, P., Rigaud, J., & Dekimpe, J. (1976). Identification de la diméthyl-4,5-terahydrofuranedione-2,3-dans le vin jaune du Jura. Lebens. Wiss. Technol., 9, 366–368.

    CAS  Google Scholar 

  • Esteve-Zarzoso, B., Peris-Torán, M.J., García-Maiquez, E., Uruburu, F., & Querol, A. (2001). Yeast population dynamics during the fermentation and biological aging of sherry wines. App. Environ. Microbiol., 67, 2056–2061.

    Article  CAS  Google Scholar 

  • Esteve-Zarzoso, B., Fernández-Espinar, M.T., & Querol, A. (2004). Authentication and identification of Saccharomyces cerevisiae “flor” yeast races involved in sherry ageing. Antonie van Leeuwenhoek, 85, 151–158.

    Article  CAS  Google Scholar 

  • Etiévant, P.X. (1991). Wine In H. Maarse (Ed.), Volatile compound in food and beverages (pp. 483–546). Zeist (The Netherlands): H.TNO-CIVO. Food Analysis Institute.

    Google Scholar 

  • Farris, G.A., Sinigaglia, M., Budroni, M., & Guerzoni, M.E., (1993). Cellular fatty acid composition in film-forming strains of two physiological races of Saccharomyces cerevisiae. Lett. App. Microbiol., 17, 215–219.

    Article  CAS  Google Scholar 

  • Fernández, M.J., Gómez-Moreno, C., & Ruiz-Amil, M. (1972). Induction of isoenzymes of alcohol dehydrogenase in “flor” yeast. Arch. Microbiol., 84, 153–160.

    Google Scholar 

  • Fernández-Espinar, M.T., Esteve-Zarzoso, B., Querol, A., & Barrio, E. (2000). RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie van Leeuwenhoek, 78, 87–97.

    Article  Google Scholar 

  • Fidalgo, M., Barrales, R.R., Ibeas, J.I., & Jimenez, J. (2006). Adaptive evolution by mutations in the FLO11 gene. PNAS, 103, 11228–11233.

    Article  CAS  Google Scholar 

  • García-Maiquez, E. (1988). Les levures de voile dans l’elaboration des vins de xéres. In Application à l’oenologie des progrés récents en microbiologie et en fermentation. (341–372). Paris, France: Commission des Communautés européennes Programme COMET.

    Google Scholar 

  • Guichard, E., Pham, T.T., & Charpentier, C. (1997). Le sotolon, marqueur de la typicité de l’arome des vins du Jura. Rev. Oenol., 82, 32–34.

    Google Scholar 

  • Guijo, S., Millán, C., & Ortega, J.M. (1986). Fermentative features of vinification and maduration yeasts isolated in the Montilla-Moriles region of Southern Spain. Food Microbiol., 3, 133–142.

    Article  CAS  Google Scholar 

  • Guijo, S., Mauricio, J.C., Salmon, J.M., & Ortega, J.M. (1997). Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and “flor” film ageing of dry sherry-type wines. Yeast, 13, 101–117.

    Article  CAS  Google Scholar 

  • Haslam, E., & Lilley, T.H. (1988). Natural astringency in foodstuffs. A molecular interpretation. CRC Crit. Rev. Food Sci. Nut., 27, 1–40.

    Article  CAS  Google Scholar 

  • Ibeas, J.I., & Jiménez, J. (1996). Genomic complexity and chromosomal rearrangements in wine-laboratory yeast hybrids. Curr. Gen., 30, 410–416.

    Article  CAS  Google Scholar 

  • Ibeas, J.I., Lozano, I., Perdigones, F., & Jiménez, J. (1996). Detection of Dekkera-Brettanomyces strains in sherry by a nested PCR method. App. Environ. Microbiol., 62, 998–1003.

    CAS  Google Scholar 

  • Ibeas, J.I., Lozano, I., Perdigones, F., & Jiménez, J. (1997). Dynamics of flor yeast populations during the biological aging of sherry wines. Am. J. Enol. Vitic., 48, 75–79.

    Google Scholar 

  • Infante, J.J. (2002). Aplicación de métodos de Biología Molecular para la caracterización y mejora genética de levaduras de velo de flor responsables de la crianza biológica de los vinos de Jerez. (Doctoral dissertation, University of Cadiz, Spain, 2002).

    Google Scholar 

  • Infante, J.J., Dombek, K.M., Rebordinos, L., Cantoral, J.M., & Young, E.T. (2003) Genome-wide amplifications caused by chromosomal rearrangements play a mojor role in the adaptive evolution of natural yeast. Genetics, 165, 1745–1759.

    CAS  Google Scholar 

  • Ingledew, W.M., Magnus, C.A., & Sosulski, F.W. (1987). Influence of oxygen on proline utilization during the wine fermentation. Am. J. Enol. Vitic., 38, 246–248.

    CAS  Google Scholar 

  • Ishigami, M., Nakagawa, Y., Hayakawa, M., & Iimura, Y. (2004). FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 237, 425–430.

    CAS  Google Scholar 

  • Ishigami, M., Nakagawa, Y., Hayakawa, M., & Iimura, Y. (2006). FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast. Biosci. Biotechnol. Biochem., 70, 660–666.

    Article  CAS  Google Scholar 

  • Jiménez, J., & Benítez, T. (1987). Genetic analysis of highly ethanol-tolerant wine yeasts. Curr. Gen., 12, 421–428.

    Article  Google Scholar 

  • Marcilla, J, Feduchy, E., & Alas, G. (1936). Contribución al estudio de las levaduras que forman velo sobre ciertos vinos de elevado grado alcohólico. Anales del Centro de Investigaciones Vinícolas de Madrid, 1, 1–219.

    Google Scholar 

  • Martin, B., & Etievant, P.X. (1991). Quantitative determination of solerone and sotolona in flor sherries by two dimensional-capillary GC. HRC CC., 14, 133–135.

    CAS  Google Scholar 

  • Martínez, P., Valcárcel, M.J., González, P., Benítez, T., & Pérez, L. (1993). Consumo de etanol, glicerina y aminoácidos totales en vinos finos durante la crianza biológica bajo “velo de flor”. Aliment. Equipos Tecnol. 12, 61–65.

    Google Scholar 

  • Martínez, P., Codón, A.C., Pérez, L., & Benítez, T. (1995). Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Yeast, 11, 1399–1411.

    Article  Google Scholar 

  • Martínez, P., Pérez Rodríguez, L., & Benítez, T. (1997a). Evolution of flor yeast population during the biological aging of fino sherry wine. Am. J. Enol. Vitic., 48, 160–168.

    Google Scholar 

  • Martínez, P., Pérez Rodríguez, L., & Benítez, T. (1997b). Factors which affect velum formation by flor yeasts isolated from sherry wine. Syst. App. Microbiol., 20, 154–157.

    Google Scholar 

  • Martínez, P., Pérez Rodríguez, L., & Benítez, T. (1997c). Velum formation by flor yeasts isolated from sherry wine. Am. J. Enol. Vitic., 48, 55–62.

    Google Scholar 

  • Martínez, P., Valcárcel, M.J., Pérez, L., & Benítez, T. (1998). Metabolism of Saccharomyces cerevisiae flor yeasts during fermentation and biological aging of fino sherry: by-products and aroma compounds. Am. J. Enol. Vitic., 49, 240–250.

    Google Scholar 

  • Martínez de la Ossa, E., Caro, I., Bonat, M., Pérez, L., & Domecq, B. (1987). Dry extract in sherry and its evolution in the aging of sherry. Am. J. Enol. Vitic., 38, 321–325.

    Google Scholar 

  • Martínez-Rodríguez, A. J., & Polo, M. C. (2000). Enological aspects of yeast autolysis. In Recent Res. Devel. Microbiology, 4, (pp. 285–301). Trivandrum, India: Research Signpost.

    Google Scholar 

  • Masuda, M., Okawa, E.C., Nishimura, K.I., & Yunome, H. (1984). Identification of 4,5-dimetyl-3-hydroxy-2(5H)-furanone (sotolona) and ethyl 9-hydroxy-nonanone in botrytised wine and evaluation of the roles of compounds characteristic of it. J. Agric. Food Chem., 48, 2702–2710.

    Google Scholar 

  • Mauricio, J.C., & Ortega, J.M. (1997). Nitrogen compounds in wine during its biological aging by two flor film yeasts: an approach to accelerated biological aging of dry sherry–type wines. Biotechnol. Bioeng., 53, 159–167.

    Article  CAS  Google Scholar 

  • Mauricio, J.C., Guijo, S., & Ortega, J.M. (1991). Relationship between phospholipid and sterol contents in Saccharomyces cerevisiae and Torulaspora delbrueckii and their fermentation activity in grape musts. Am. J. Enol. Vitic., 42, 301–308.

    CAS  Google Scholar 

  • Mauricio, J.C., Moreno, J.J., Valero, E.M., Zea, L., Medina, M., & Ortega, J.M. (1993). Ester formation and specific activities of in vitro alcohol acetyltransferase and esterase by Saccharomyces cerevisiae during grape must fermentation. J. Agric. Food Chem., 41, 2086–2091.

    Article  CAS  Google Scholar 

  • Mauricio, J.C., Moreno, J., & Ortega, J.M. (1997). In vitro specific activities of alcohol and aldehyde dehydrogenases from two flor yeasts during controlled wine aging. J. Agric. Food Chem., 45, 1967–1971.

    Article  CAS  Google Scholar 

  • Mauricio, J.C., Valero, E. Millán, C., & Ortega, J.M. (2001). Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts. J. Agric. Food Chem., 49, 3310–3315.

    Article  CAS  Google Scholar 

  • Mauricio, J.C., Moreno, J., & Ortega, J.M. (2003). Aceleración de la crianza biológica mediante aireaciones periódicas. In VII Jornadas Científicas de los Grupos de Investigación Enológica (pp. 117–119). Logroño, Spain: Gobierno de la Rioja.

    Google Scholar 

  • Mérida, J., Lopez-Toledano, A., Marquez, T., Millan, C., Ortega, J.M., & Medina, M. (2005). Retention of browning compounds by yeasts involved in the winemaking of sherry type wines. Biotechnol. Lett., 27, 1565–1570.

    Article  CAS  Google Scholar 

  • Mesa, J.J., Infante, J.J., Rebordinos, L., & Cantoral, J.M. (1999). Characterization of yeasts involved in the biological ageing of sherry wines. Lebensm. Wiss. Technol., 32, 114–120.

    Article  CAS  Google Scholar 

  • Mesa, J.J., Infante, J.J., Rebordinos, L., Sanchez, J.A., & Cantoral, J.M. (2000). Influence of the yeast genotypes on enological characteristics of sherry wines. Am. J. Enol. Vitic., 51, 15–21.

    CAS  Google Scholar 

  • Morata, A., Calderón, F., Gómez-Cordovés, M.C., González, M.C., Colomo, B., & Suárez-Lepe, J.A. (2007). Evolución del contenido de antocianos en mostos de Cabernet Sauvignon (Vitis vinifera L.) fermentados y criados con levaduras de velo. In M. Ramirez (Ed.), Avances en Ciencias y Técnicas Enológicas (pp. 188–189). Badajoz, Spain: Junta de Extremadura.

    Google Scholar 

  • Moreno, J.A. (2005). Influencia del tipo de envejecimiento sobre el perfil aromático de los vinos generosos andaluces. (Doctoral dissertation, University of Córdoba, Spain, 2005).

    Google Scholar 

  • Moreno, J.A., Zea, L., Moyano, L., Moreno, J.J., & Medina, M. (2001). Aplicación de un modelo de regresión simple a la crianza biológica de vinos finos de la Denominación de Origen Montilla-Moriles. In VII Congreso Nacional de Enólogos. Pamplona, Spain.

    Google Scholar 

  • Moreno, J.A., Zea, L., Moyano, L., & Medina, M. (2004). Aroma compounds as markers of the changes in sherry wine subjected to biological ageing. Food Control, 16, 333–338.

    Article  CAS  Google Scholar 

  • Moreno-Arribas, M.V., & Polo, M. C. (2005). Winemaking biochemistry and microbiology: Current knowledge and future trends. Crit. Rev. Food Sci. Nut., 45, 265–286.

    Article  CAS  Google Scholar 

  • Muller, C.J., Kepner, R.E., & Webb, A.D. (1973). Lactones in wines – a review. Am. J. Enol. Vitic., 24, 47–57.

    Google Scholar 

  • Muñoz, D. (2003). Aceleración de la crianza biológica de vinos finos mediante oxigenaciones controladas. (Doctoral dissertation, University of Córdoba, Spain, 2003)

    Google Scholar 

  • Muñoz, D., Valero, E., Moreno, J., Moyano, L., Zea, L., & Medina, M. (2002). Estudio del aprovechamiento de la biomasa procedente de la crianza biológica de vinos finos. In XXII Jornadas de Viticultura y Enología Tierra de Barros (pp. 243–252). Badajoz, Spain: Cultural Santa Ana.

    Google Scholar 

  • Muñoz, D., Peinado, R.A., Medina, M., & Moreno, J. (2005). Biological aging of sherry wines using pure cultures of two flor yeast strain under controlled microaeration. J. Agric. Food Chem., 53, 5258–5264.

    Article  CAS  Google Scholar 

  • Muñoz, D., Peinado, R.A., Medina, M., & Moreno, J. (2007). Biological aging of sherry wines under periodic and controlled microaeration with Saccharomyces cerevisiae var. capensis: Effect on odorant series.Food Chem., 100, 1188–1195.

    Google Scholar 

  • Ough, C. S., & Amerine, M. A. (1958). Studies on acetaldehyde production under pressure, oxygen and agitation. Am. J. Enol. Vitic., 9, 111–123.

    CAS  Google Scholar 

  • Ough, C. S., & Amerine, M. A. (1972). Further studies with submerged flor sherry. Am. J. Enol. Vitic., 23, 128–131.

    Google Scholar 

  • Peinado, R.A., Moreno, J.J., Ortega, J.M., & Mauricio, J.C. (2003). Effect of gluconic acid consumption during simulation of biological aging of sherry wines by a flor yeast strain on the final volatile compounds. J. Agric. Food Chem., 51, 6198–6203.

    Article  CAS  Google Scholar 

  • Peinado, R.A., Moreno, J., Bueno, J.E., Moreno, J.A., & Mauricio J.C. (2004a). Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem., 84, 585–590.

    Article  CAS  Google Scholar 

  • Peinado, R.A., Mauricio, J.C., Medina, M., & Moreno, J. (2004b). Effect of Schizosaccharomyces pombe on aromatic compounds in dry sherry wines containing high level of gluconic acid. J. Agric. Food Chem., 52, 4529–4534.

    Article  CAS  Google Scholar 

  • Peinado, R.A., Mauricio, J.C., & Moreno, J. (2006a). Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chem., 94, 232–239.

    CAS  Google Scholar 

  • Peinado, R.A., Moreno, J.J., Villalba, J.M., González-Reyes, J.A., Ortega, J.M., & Mauricio, J.C. (2006b). Yeast biocapsules: a new immobilization method and their applications. Enz. Microb. Technol., 40, 79–84.

    Article  CAS  Google Scholar 

  • Pérez, L. (1982). Consideraciones técnicas en la elaboración del Jerez. In II Jornadas universitarias sobre el Jerez (pp. 167–197). Cádiz, Spain: Universidad de Cádiz.

    Google Scholar 

  • Pham, T.T., Guichard, E., Schlich, P., & Charpentier, C. (1995). Optimal conditions for the formation of sotolon from α-ketobutyric acid in the french “Vin Jaune”. J. Agric. Food Chem., 43, 2616–2619.

    Article  Google Scholar 

  • Plata, M.C., Mauricio, J.C., Millán, C., & Ortega, J.M. (1998). In vitro specific activity of alcohol acetyl-transferase and esterase in two flor yeast strains during biological aging of sherry wines. J. Ferment. Bioeng., 85, 369–374.

    Article  Google Scholar 

  • Purevdorj-Gage, B., Orr, M.E., Stoodley, P., Sheehan, K.B., & Hyman, L.E. (2007). The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system. FEMS Yeast Res., 7, 372–379.

    Article  CAS  Google Scholar 

  • Rankine, B.C. (1955). Yeast cultures in Australian winemaking. Am. J. Enol. Vitic., 6, 11–15.

    Google Scholar 

  • Romano, P., & Suzzi, G. (1996). Origin and production of acetoin during wine yeast fermentation. App. Environ. Microbiol., 62, 309–315.

    CAS  Google Scholar 

  • Sancho, E.D., Hernandez, E., & Rodriguez-Navarro, A. (1986). Presumed sexual isolation in yeast populations during production of sherrylike wine. App. Environ. Microbiol., 51, 395–397.

    CAS  Google Scholar 

  • Suárez-Lepe, J.A., & Iñigo-Leal, B. (2004). Microbiología Enológica. Fundamentos de vinificación (pp. 673–716). Madrid, Spain: Ediciones Mundi-Prensa.

    Google Scholar 

  • Usseglio-Tomasset, L. (1983) Influence de la température de conservation sur les caractéristiques physico-chimiques et organoleptiques des vins (Vins aromatiques). Bull. OIV, 623, 19–34.

    Google Scholar 

  • Valero, E., Millán, C., & Ortega, J.M. (2002). Changes in the lipid composition of Saccharomyces cerevisiae race capensis (G1) during alcoholic fermentation and flor film formation. Lebensm. Wiss. Technol., 35, 593–599.

    CAS  Google Scholar 

  • Valero, E., Millán, C., Ortega, J.M., & Mauricio, J.C. (2003). Concentration of amino acids in wine after the end of fermentation by Saccharomyces cerevisiae strains. J. Sci. Food Agric., 83, 830–835.

    Article  CAS  Google Scholar 

  • Verstrepen, K.J., & Klis, F.M. (2006). Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol., 60, 5–15.

    Article  CAS  Google Scholar 

  • Zara, S., Bakalinsky, A.T., Zara, G., Pirino, G. Demontis, M.A., & Budroni, M. (2005). FLO11-Based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. App. Environ. Microbiol., 71, 2934–2939.

    Article  CAS  Google Scholar 

  • Zea, L., Moreno, J., Ortega, J.M., Mauricio, J.C., & Medina, M. (1995) Comparative study of the γ-butyrolactone and pantolactone contents in cells and musts during vinification by three Saccharomyces cerevisiae races. Biotechnol. Lett., 17, 1351–1356.

    Article  CAS  Google Scholar 

  • Zea, L., Moyano, L., Moreno, J.A., & Medina, M. (2007). Aroma series as fingerprints for biological ageing in fino sherry-type wines. J. Sci. Food Agric., 87, 2319–2326.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peinado, R.A., Mauricio, J.C. (2009). Biologically Aged Wines. In: Moreno-Arribas, M.V., Polo, M.C. (eds) Wine Chemistry and Biochemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74118-5_5

Download citation

Publish with us

Policies and ethics