SparklingWines and Yeast Autolysis

  • Adolfo J. Martínez-Rodríguez
  • Encarnación Pueyo


Yeast Strain Botrytis Cinerea Grape Variety Wine Yeast Yeast Cell Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre, H., & Guilloux-Benatier, M. (2006). Yeast autolysis in sparkling wine – a review. Aust. J. Grape Wine Res., 12, 119–127.CrossRefGoogle Scholar
  2. Alexandre, H., Heintz, D., Chassagne, D., Guilloux-Benatier, M., Charpentier, C., & Feuillat, M. (2001). Protease A activity and nitrogen fractions released during alcoholic fermentation and autolysis in enological conditions. J. Ind. Microbiol. Biotechnol., 26, 235–240.CrossRefGoogle Scholar
  3. Andrés-Lacueva, C., Löpez-Tamames, E., Lamuela-Raventös, R.M., Buxaderas, S., & de la Torre-Boronat, M.C. (1996a). Characteristics of sparkling base wines affecting foam behavior. J. Agric. Food Chem., 44, 989–995.CrossRefGoogle Scholar
  4. Andrés-Lacueva, C., Gallart, M., López-Tamames, E., & Lamuela-Raventós, R.M. (1996b). Influence of variety and aging on foaming properties of sparkling wine (Cava). 1. J. Agric. Food Chem., 44, 3826–3829.CrossRefGoogle Scholar
  5. Andrés-Lacueva, C., Lamuela-Raventós, R.M., Buxaderas, S., and de la Torre-Boronat, M.C. (1997). Influence of variety and aging on foaming properties of Cava (sparkling wine). 2. J. Agric. Food Chem., 45, 2520–2525.CrossRefGoogle Scholar
  6. Arnold, W.N. (1980). Yeast Cell Envelopes. Biochemistry, Biophysics and Ultraestructure Volume 2. In W.N.Arnold (Ed), Autolysis (pp. 93–103). Boca Raton: CRC Press.Google Scholar
  7. Babayan, T.L., & Bezrukov, M.G. (1985). Autolysis in yeast. Acta Biotechnol., 5, 129–136.CrossRefGoogle Scholar
  8. Bidan, P., Feuillat, M., & Moulin, J.P. (1986). Les vins mousseux. Rapport de la France. 65ème Asemblèe Génerale de L’OIV. Bull. OIV, 59, 563–626.Google Scholar
  9. Bikerman, J.J. (1938). The unit of foaminess. Trans. Faraday Soc., 34, 634–638.CrossRefGoogle Scholar
  10. Brissonet, F., & Maujean, A. (1991). Identification of some foam-active compounds in Champagne base wines. Am. J. Enol. Vitic., 42, 97–102.Google Scholar
  11. Brissonet, F., & Maujean, A. (1993). Characterization of foaming proteins in a champagne base wine. Am. J. Enol. Vitic., 44, 297–301.Google Scholar
  12. Busova, K., Magyar, I., and Janky. F. (1994). Effect of immobilized yeasts on the quality of bottle-fermented sparkling wine. Acta Aliment. Hung., 23, 9–23.Google Scholar
  13. Caridi, A. (2006). Enological functions of parietal yeast mannoproteins. Antonie Van Leeuwenhoek, 89, 417–422.CrossRefGoogle Scholar
  14. Casey, J. (1987). Effervescence in sparkling wines. Austr. Grapegr. Winemaker, 280, 55–62.Google Scholar
  15. Casey, J. (1995). Effervescence in sparkling wines: the sequel. Austr. Grapegr. Winemaker, n° 378a, 37–47.Google Scholar
  16. Casey, J. (2000). Méthode champenoise or mythes champenoises. Austr. Grapegr. Winemaker, n° 438a, 168–178.Google Scholar
  17. Cebollero, E., & GonzÁlez, R. (2006). Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines. Appl. Environ. Microbiol., 72, 4121–4127.CrossRefGoogle Scholar
  18. Cebollero, E., & GonzÁlez, R. (2007). Autophagy: From basic research to its application in food biotechnology. Biotechnol. Adv., 25, 396–409.CrossRefGoogle Scholar
  19. Cebollero, E., Carrascosa, A.V., and GonzÁlez, R. (2005). Evidence for yeast autophagy during simulation of sparkling wine aging: A reappraisal of the mechanism of yeast autolysis in wine. Biotechnol. Prog., 21, 614–616.CrossRefGoogle Scholar
  20. Charpentier, C., & Feuillat, M. (1992). The Yeasts, vol. III. In A.H. Rose and J.S. Harrison (Eds), Yeast autolysis (pp. 315–386). New York: Academic Press.Google Scholar
  21. Charpentier, C., & Feuillat, M. (1993). Wine Microbiology and Biotechnology. In G.H. Fleet (Ed), Yeast autolysis (pp. 225–242).Chur: Harwood Academic Publishers.Google Scholar
  22. Charpentier, C., and Freyssinet, M. (1989). The mechanism of yeast autolysis in wine. Yeast, 5,181–186.Google Scholar
  23. Charpentier, C., Aussenac, J., Charpentier, M., Prome, J.C., Duteurtre, B., & Feuillat, M. (2005). Release of nucleotides and nucleosides during yeast autolysis: kinetics and potential impact on flavor. J. Agric. Food Chem., 53, 3000–3007.CrossRefGoogle Scholar
  24. Cilindre, C., Castro, A.J., Clément, C., Jeandet, P., & Marchal, R. (2007). Influence of Botrytis cinerea infection on Champagne wine proteins (characterized by two-dimensional electrophoresis/immunodetection) and wine foaming properties. Food Chem., 103, 139–149.CrossRefGoogle Scholar
  25. Colagrande, O., Silva, A., & Fumi, M.D. (1994). Recnt applications of biotechnology in wine production. Biotecnol. Progr., 10, 2–18.CrossRefGoogle Scholar
  26. Connew, S. (1998). Yeast autolysis. A review of current rersearch. Aust. NZ Wine Ind. J., 13, 61–64.Google Scholar
  27. Dambrouck, T., Marchal, R., Cilindre, C., Parmentier, M., & Jeandet, P. (2005). Determination of the grape invertase content (using PTA-ELISA) following various fining treatments versus. Changes in the total protein content of wine. Relationship with wine foamability. J. Agric. Food Chem., 53, 8782–8789.CrossRefGoogle Scholar
  28. De La Presa-Owens, C., Schlich, P., Davies, H.D., & Noble, A.C. (1998). Effect of Methode Champenoise process on aroma flavour of four V. vinifera varieties. Am. J. Enol. Vitic., 49, 289–294.Google Scholar
  29. Divies, C., Cachon, R., Cavin, J.F., & Prevost, H. (1994). Theme-4-immobilized cell technology in wine production. Crit. Rev. Biotechnol., 14, 135–153.CrossRefGoogle Scholar
  30. Dupin, I.V.S., McKinnon, B.M., Ryan, C., Boulay, M., Markides, A.J., Jones, G.P., Williams, P.J., & Waters, E.J. (2000). Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: Their release during fermentation and lees contact and a proposal for their mechanism of action. J. Agric. Food Chem., 48, 3098–3105.CrossRefGoogle Scholar
  31. Dussaud, A., Robillard, B., Carles, B., Duteurtre, B., & Vignesadler, M. (1994). Exogenous lipids and ethanol influences on the foam behavior of sparkling base wines. J. Food Sci., 59, 148.CrossRefGoogle Scholar
  32. Edward, M., Eschenbruch, R., & Molan, P.C. (1982). Foaming in winemaking. Eur. J. Appl. Microbiol. Biotechnol., 16, 105–109.CrossRefGoogle Scholar
  33. Feuillat, M. (2003). Yeast macromolecules: Origin, composition, and enological interest. Am. J. Enol. Vitic., 54, 211–213.Google Scholar
  34. Feuillat, M., & Charpentier, C. (1982). Autolysis of yeast in champagne.Am. J. Enol. Vitic., 33, 6–13.Google Scholar
  35. Fornairon-Bonnefond, C., Camarasa, C., Moutounet, M., & Salmon, J.M. (2002). New trends on yeast autolysis and wine ageing on lees: A bibliographic review. J. Int. Sci. Vigne Vin, 36, 49–69.Google Scholar
  36. Francioli, S., Torrens, J., Riu-Aumatell, M., López-Tamames, E., & Buxaderas, S. (2003). Volatile compounds by SPME-GC as age markers of sparkling wines. Am. J. Enol. Vitic., 54, 158–162.Google Scholar
  37. Fumi, M.D., Trioli, G., & Colagrande, O. (1987a). Preliminary assessment on the use of immobilized yeast-cells in sodium alginate for sparkling wine processes. Biotechnol. Lett., 9, 339–342.CrossRefGoogle Scholar
  38. Fumi, M.D., Trioli, G., & Silva, A. (1987b). Autolisi di Saccharomyces cerevisiaein vini spumantizzati in bottiglia: uno studio biochimico ultraestructurale. Ind. Bevande, 16, 340–344.Google Scholar
  39. Gallart, M., López-Tamames, E., & Buxaderas, S. (1997). Foam measurements in wines: comparasion of parameters obtained by gas sparging method. J. Agric. Food Chem., 45, 4687–4690.CrossRefGoogle Scholar
  40. Gallart, M., López-Tamames, E., Suberbiola, G., and Buxaderas, S. (2002). Influence of fatty acids on wine foaming. J. Agric. Food Chem., 50, 7042–7045.CrossRefGoogle Scholar
  41. Gallart, M., TomÁs, X., Suberbiola, G., López-Tamames, E., & Buxaderas, S. (2004). Relationship between foam parameters obtained by gas-spaging method and sensory evaluation os sparkling wines. J. Sci. Food Agric., 84, 127–133.CrossRefGoogle Scholar
  42. Girbau-Sóla, T., López-Tamames, E., BujÁn, J., & Buxaderas, S. (2002a). From aptitude of Trepat and Monastrell red varieties in Cava elaboration. 1. Base wine characteristics. J. Agric. Food Chem., 50, 5596–5599.CrossRefGoogle Scholar
  43. Girbau-Sóla, T., López-Barajas, E., López-Tamames, E., & Buxaderas, S. (2002b). From aptitude of Trepat and Monastrell red varieties in Cava elaboration. 2. Second fermentation and aging.. J. Agric. Food Chem., 50, 5600–5604.CrossRefGoogle Scholar
  44. Godia, F., Casas, C., & Sola, C. (1991). Application of immobilized yeast-cells to sparkling wine fermentation. Biotecnol. Progr., 7, 468–470.CrossRefGoogle Scholar
  45. Gónzalez, R., Martínez-Rodríguez, A.J., & Carrascosa, A.V. (2003). Yeast autolytic mutants potentially useful for sparkling wine production. Int. J. Food Microbiol., 84, 21–26.Google Scholar
  46. Hernawan, T., & Fleet, G.H. (1995). Chemical and cytological changes during the autolysis of yeast. J. Ind. Microbiol., 14, 440–450.CrossRefGoogle Scholar
  47. Hidalgo, J. (2003). Tratado de enología. Madrid: Mundi prensa.Google Scholar
  48. Hidalgo, P., Pueyo, E., Pozo-Bayón, M.A., Martínez-Rodríguez, A.J., Martín-Álvarez, P., Polo, M.C. (2004). Sensory and analytical study of rose sparkling wines manufactured by second fermentation in the bottle. J. Agric. Food Chem., 52, 6640–6645.CrossRefGoogle Scholar
  49. Houg, M.D., & Maddox, I.S. (1970). Yeast autolysis. Process Biochem., 5, 50–52.Google Scholar
  50. Jordan, A.D., & Napper, D.H. (1994). Some aspect of the physical chemistry of bubble and foam phenomena in sparkling wine. Sixth Australian Wine Industry Conference, 237–246.Google Scholar
  51. Klis, F.M., Mol, P., Hellingwerf, K., & Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev., 26, 239–256.CrossRefGoogle Scholar
  52. Komano, H., Rockwell, N., Wang, G.T., Krafft, G.A., & Fuller, R.S. (1999). Purification and characterization of the yeast glycosylphosphatidylinositol-anchored, monobasic-specific aspartyl protease yapsin 2 (Mkc7p). J. Biol. Chem., 271, 24421–24437.Google Scholar
  53. Lao, C., Santamaría, A., López-Tamames, E., Bujan, J., Buxaderas, S., & de la Torre-Boronat, M.C. (1999). Effect of grape pectic enzyme treatment on foaming properties of white musts and wines. Food Chem., 65, 169–173.CrossRefGoogle Scholar
  54. Liger-Belair, G. (2005). The physics and chemistry behind the bubbling properties of Champagne and sparkling wines: a state-of-the-art Review. J. Agric. Food Chem., 53, 2788–2802.CrossRefGoogle Scholar
  55. Liger-Belair, G., Marchal, R., Robillard, B., Vignes-Adler, M., Maujean, A., & Jeandet, P. (1999). Study of effervescence in a glass of Champagne: frecuencies of bubble formation, growth rates and velocities of rising bubble. Am. J. Enol. Vitic., 50, 317–323.Google Scholar
  56. Liger-Belair, G., Lemaresquier, H., Robillard, B., Duteurtre, B., & Jeandet, P. (2001). The secrets of fizz in Champagne wines: a phenomenological study. Am. J. Enol. Vitic., 52, 88–92.Google Scholar
  57. Liger-Belair, G., Marchal, R., and Jeandet, P. (2002). Close-up on bubble nucleation in a glass of Champagne. Am. J. Enol. Vitic., 53, 151–153.Google Scholar
  58. Liger-Belair, G., Tufalle, A., Jeandet, P., and Sartorelli, J.C. (2006). Champagne experiences various rhythmical bubbling regimes in a flute. J. Agric. Food Chem., 54, 6989–6994.CrossRefGoogle Scholar
  59. López-Barajas, M., Viu-Marco, A., López-Tamames, E., Buxaderas, S., and de la Torre-Boronat, M.C. (1997). Foaming in grape juices of white varieties. J. Agric. Food. Chem., 45, 2526–2529.CrossRefGoogle Scholar
  60. López-Barajas, M., López-Tamames, E., Buxaderas, S., and de la Torre-Boronat, M.C. (1998). Effect of vinification and variety on foam capacity of wine. Am. J. Enol. Vitic., 49, 397–402.Google Scholar
  61. López-Barajas, M., López-Tamames, E., Buxaderas, S., TomÁs, X., and de la Torre, M.C. (1999). Prediction of wine foaming. J. Agric. Food Chem., 47, 3743–3748.CrossRefGoogle Scholar
  62. Loyaux, D., Roger, S., and Adda, J. (1981). The evolution of champagne volatiles during ageing.J. Sci. Food Agric., 32, 1254–1258.CrossRefGoogle Scholar
  63. Lurton, L., Segain, J.P., and Feuillat, M. (1989). Etude de la protéolyse au cours de l’autolyse de levures en milieu acide. Sci. Aliments, 9, 111–124.Google Scholar
  64. Machet., F., Robillard, B., and Duteurtre, B. (1993). Application of image analysis to foam stability of sparkling wines. Sci. Aliments, 13, 73–87.Google Scholar
  65. Malvy, J., Robillard, B, and Duteurtre, B. (1994). Influence des protéines sur le comportement de la mousse des vins de Champagne. Sci. Aliments, 14, 87–98.Google Scholar
  66. Marchal, R., Tabary, I., Valade, M., Moncomble, D., Viaux, L., Robillard, B., and Jeandet, P. (2001). Effects of Botrytis cinerea infection on Champagne wine foaming properties. J. Sci. Food Agric., 81, 1371–1378.CrossRefGoogle Scholar
  67. Marchal, R., Chaboche, D., Douillard, R., and Jeandet, P. (2002). Influence of lysozyme treatments on Champagne base wine foaming properties. J. Agric. Food Chem., 50, 1420–1428.CrossRefGoogle Scholar
  68. Marchal, R., Warchol, M., Cilindre, C., and Jeandet, P. (2006). Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties. J. Agric. Food Chem., 54, 5157–5165.CrossRefGoogle Scholar
  69. Martínez-Rodríguez, A.J., and Polo, M.C. (2000a). Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J. Agric. Food Chem., 48, 1081–1085.CrossRefGoogle Scholar
  70. Martínez-Rodríguez, A.J., and Polo, M.C. (2000b). Recent Res. Devel. Microbiology Volume 4. In S.G. Pandalai (Ed), Enological aspects of yeast autolysis.(pp. 285–301). Trivandrum: Research Signpost.Google Scholar
  71. Martínez-Rodríguez, A.J., and Polo, M.C. (2003). Effect of the addition of bentonite to the tirage solution on the nitrogen composition and sensory quality of sparkling wines. Food Chem., 81, 383–388.CrossRefGoogle Scholar
  72. Martínez-Rodríguez, A.J., Carrascosa, A.V., Barcenilla, J. M., Pozo-Bayón, M. A.,and Polo, M. C. (2001a). Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production. Food Microbiol., 18, 183–191.CrossRefGoogle Scholar
  73. Martínez-Rodríguez, A.J., Polo, M.C., and Carrascosa, A.V. (2001b). Structural and ultrastructural changes in yeast cells during autolysis in a model wine system and in sparkling wines. Int. J. Food Microbiol., 71, 45–51.CrossRefGoogle Scholar
  74. Martínez-Rodríguez, A.J., Carrascosa, A.V., Martín-Álvarez, P.J., Moreno-Arribas, V., and Polo, M.C. (2002). Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method.J. Ind. Microbiol. Biot., 29, 314–322.CrossRefGoogle Scholar
  75. Martínez-Rodríguez, A.J., GonzÁlez, R., and Carrascosa, A.V. (2004). Morphological changes in autolytic wine yeast during aging in two model systems. J. Food Sci., 69, 233–239.CrossRefGoogle Scholar
  76. Martynenko, N.N., and Gracheva, I.M. (2003). Physiological and biochemical characteristics of immobilized Champagne yeasts and their participation in champagnizing processes: A review. Appl. Biochem. Microbiol., 39, 439–445.CrossRefGoogle Scholar
  77. Martynenko, N.N., Gracheva, I.M., Sarishvili, N.G., Zubov, A.L., El’Registan, G.I., and Lozinsky, V.I. (2004). Immobilization of Champagne yeasts by inclusion into cryogels of polyvinil alcohol: Means of preventing cell release from the carrier matrix. Appl. Biochem. Microbiol., 40, 158–164.CrossRefGoogle Scholar
  78. Maujean, A., Gomerieux, T., and Garnier, J.M. (1988). A survey of the durability and quality of foam in sparkling wines. I. Adjustment of a technique to measure the spontaneous as well as provoked effervescence in fizzy drinks. Bull. l’OIV, 61, 25–35.Google Scholar
  79. Maujean, A., Poinsaut, P., Dantan, H., Brissonnet, F., and Cossiez, E. (1990). Study of the performance and quality of the foam in sparkling wines. II. Perfecting of a measuring techniques for foaming abality, performance and stability of the foam in sparkling wines. Bull. l’OIV, 63, 405–427.Google Scholar
  80. Moine-Ledoux, V., and Dubourdieu, D. (2000). Role yeast mannoproteins with regard to tartaric stabilisation of wines. Bull. l’O.I.V, 75, 471–482.Google Scholar
  81. Molan, P.C., Edwards, M., and Eschenbruch, R. (1982). Foaming in winemaking. Eur. Appl. Microbiol. Biotechnol., 16, 110–113.CrossRefGoogle Scholar
  82. Molnar, I., Oura, E., and Suomalainen, H. (1981). Study of volatile substances produced during the autolysis of champagne yeast. Acta Alimentaria, 10, 27–36.Google Scholar
  83. Moreno-Arribas, V., Pueyo, E., and Polo, M.C. (1996). Peptides in musts and wines. Changes during the manufacture of cavas (Sparkling wines). J. Agric. Food Chem., 44, 3783–3788.Google Scholar
  84. Moreno-Arribas, V., Bartolomé, B., Pueyo, E., and Polo, M.C. (1998a). Isolation and characterization of individual peptides from wine. J. Agric. Food Chem., 46, 3422–3425.CrossRefGoogle Scholar
  85. Moreno-Arribas, V., Pueyo, E., Polo, M.C. and Martín-Álvarez, P.J. (1998b). Changes in the amino acid composition of the diffeent nitrogenous fractions during the aging of wine with yeast. J. Agric. Food Chem., 70, 309–317.Google Scholar
  86. Moreno-Arribas, V., Pueyo, E., Nieto, F.J., Matín-Álvarez, P.J., and Polo, M.C. (2000). Influence of the polysaccharides and the nitrogen compounds on foaming properties of sparkling wines. Food Chem., 70, 309–317.CrossRefGoogle Scholar
  87. Moreno-Arribas, M.V., Pueyo, E., and Polo, M.C. (2002). Analytical methods for the characterization of proteins and peptides in wines. Anal. Chim. Acta, 458, 63–75.CrossRefGoogle Scholar
  88. Morfaux, J.N. and Dupuy, P. (1966). Comparaison de l exsorption des acides amines par une souche de Saccharomyces cerevisiae et un mutant resistant a la canavanine. C. R. Biologies, 263, 1224.Google Scholar
  89. Nunez, Y.P., Carrascosa, A.V., González, R., Polo, M.C., and Martínez-Rodríguez, A.J. (2005). Effect of accelerated autolysis of yeast on the composition and foaming properties of sparkling wines elaborated by a champenoise method. J. Agric. Food Chem., 53, 7232–7237.CrossRefGoogle Scholar
  90. Nunez, Y.P., Carrascosa, A.V., González, R., Polo, M.C., and Martínez-Rodríguez, A. (2006). Isolation and characterization of a thermally extracted yeast cell wall fraction potentially useful for improving the foaming properties of sparkling wine. J. Agric. Food Chem., 54, 7898–7903.CrossRefGoogle Scholar
  91. Obiols, J.M., de la Presa-Owens, C., Buxaderas, S., Bori, J. L., and de la Torre-Boronat, M.C. (1998). Protocolo de evaluación de la formación de la efervescencia y espuma en un vino espumoso. ACE, Revista d’ Enología, 15, 3–8.Google Scholar
  92. Olsen, V., Cawley, N.X., Brandt, J., Egel-Mitani, M., and Loh, Y.P.(1999). Identification and characterization of Saccharomyces cerevisiae yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene. Biochem. J., 339, 407–411.Google Scholar
  93. Ough, C.S. (1992). Winemaking basics. New York: Food Product Press.Google Scholar
  94. Péron, N., Cagna, A., Valade, M., Marchal, R., Maujean, A., Robillard, B., Aguié-Béghin, V., and Douillard, R. (2000). Characterisation by drop tensiometry and by ellipsometry of the adsorption layer formed at the air Champagne wine interface. Adv. Colloid Interfac. Sci., 88, 19–36.CrossRefGoogle Scholar
  95. Péron, N., Cagna, A., Valade, M., Bliard, C., Aguié-Béghin, V., and Douillard, R. (2001). Layers of macromolecules at the Champagne/air interface and the stability of Champagne bubbles. Langmuir, 17, 791–797.CrossRefGoogle Scholar
  96. Péron, N., Meunier, J., Cagna, A., Valade, M., and Douillard, R. (2004). Phase separation in molecular layers of macromolecules at the Champagne-air interface. J. Microsc., 214, 89–98.CrossRefGoogle Scholar
  97. Piton, M., Charpentier, C., and Troton, D. (1988). Cell wall and lipid changes in Saccharomyces cerevisiae during aging of champagne wine. Am. J. Enol. Vitic., 39, 221–226.Google Scholar
  98. Pozo-Bayón, M.A., Pueyo, E., Martín-álvarez, P.J., Martínez-Rodríguez, A.J., and Polo, M.C. (2003). Influence of yeast strain, bentonite addition, and aging time on volatile compounds of sparkling wines. Am. J. Enol. Vitic., 54, 273–278.Google Scholar
  99. Pozo-Bayón, M.A., Polo, M.C., Martín-álvarez, P.J., and Pueyo, E. (2004). Effect of vineyard yield on the composition of sparkling wines produced from the grape cultivar Parellada. Food Chem., 86, 413–419.CrossRefGoogle Scholar
  100. Pueyo, E., Martín-álvarez, P.J., and Polo, M.C. (1995). Relationship between foam characteristics and chemical composition in wines and cavas (sparkling wines). Am. J. Enol. Vitic., 46, 518–524.Google Scholar
  101. Pueyo, E., Martínez-Rodríguez, A., Polo, M.C., Santa-Maria, G., and Bartolomé, B. (2000). Release of lipids during yeast autolysis in a model wine system. J. Agric. Food Chem., 48, 116–122.CrossRefGoogle Scholar
  102. Puig-Deu, M., López-Tamames, E., Buxaderas, S., and de la Torre-Boronat, M.C. (1999). Food Chem., 66, 35–42.Google Scholar
  103. Roberts, R.T., Keeney, P.J., and Wainwright, T. (1978). Effects of lipids and related materials on beer foam. J. Inst. Brewing, 84, 9–12.Google Scholar
  104. Robillard, B., Delpuech, E., Viaux, L., Malvy, J., Vignes-Adler, M. and Duteurtre, B. (1993). Improvements of methods for sparkling wine foam measurements and effect of wine filtration on foam behavior. Am. J. Enol. Vitic., 44, 387–392.Google Scholar
  105. Robillard, B., Viaux, L., and Duteurtre, B. (1995). Medición de la espuma por visión artificial. Sevi., (2567–68), 3656–3659.Google Scholar
  106. Senèe, J., Viaux, L., Robillard, B., Duteurtre, B., and Vignes-Adler, M. (1998). The endogenous particles of a sparkling wine and their influence on the foaming behaviour. Food Hidrocoll., 12, 217–226.CrossRefGoogle Scholar
  107. Senèe, J., Robillard, B., and Vignes-Adler, M. (1999). Films and foams of Champagne wines. Food Hydrocoll., 13, 15–26.CrossRefGoogle Scholar
  108. Senèe, J., Robillard, B., and Vignes-Adler, M. (2001). The $ζ$-potential of the endogenous particles of a wine of Champagne in relation to the foam behaviour. Colloid. Surf. B- Biointerfaces, 21, 59–67.CrossRefGoogle Scholar
  109. Takeo, K., Yamamura, M., and Kamihara, T. (1989). Ultrastructural alterations in Saccharomyces cerevisiae cells in association with elevated temperature-induced autolysis.FEMS Microbiol. Lett., 61, 297–300.CrossRefGoogle Scholar
  110. Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demostrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol., 19, 301–311.CrossRefGoogle Scholar
  111. Tini, V., Zambonelli, C., Beneveli, M.,and Castellari, L. (1995). I ceppi autolisogeni di Saccharomyces cerevisiae in spumantizzazione. Ind. Bevande XXIV, 113–118.Google Scholar
  112. Todd, B.E.N., Fleet, G.H., and Henschke, P.A. (2000). Promotion of autolysis through the interaction of killer and sensitive yeasts: potential application in sparkling wine production. Am. J. Enol. Vitic., 51, 65–72.Google Scholar
  113. Trevelyan, W.E. (1978). Effect of procedures for the reduction of the nucleic acid content of SCP on the DNA content of Saccharomyces cerevisiae. J. Sci. Food Agric., 29, 903–908.CrossRefGoogle Scholar
  114. Tufaile, A., Sartorelli, J., Jeandet, P., and Liger-Belair, G. (2007). Chaotic bubbling and nonstagnant foams. Phys. Rev. E, 75, 066216.CrossRefGoogle Scholar
  115. Uzel, S., Chappell, M.A., and Payne, J. (2006). Modeling the cycles of growth and detachment of bubbles in carbonated beverages. J. Phys. Chem., B, 110, 7579–7586.CrossRefGoogle Scholar
  116. Vanrell, G., Cabanillas, P., Albet, S., Canals, J.M., Arola, L., and Zamora, F. (2002). étude des composés influençant la mousse des cavas. Rev. Franc. Oenol., n° 196, 30–36.Google Scholar
  117. Vanrell, G., Canals, R., Esteruelas, M., Fort, F., Canals, J.M., and Zamora, F. (2007). Influence of the use of bentonite as a riddling agent on foam quality and protein fraction of sparkling wines (Cava). Food Chem., 104, 148–155.CrossRefGoogle Scholar
  118. Viaux, L., Morard, C., Robillard, B., and Duteurtre, B. (1994). The impact of base wine filtration on Champagne foam behavior. Am. J. Enol. Vitic., 45, 407–409.Google Scholar
  119. Voisin, C., Jeandet, P., and Liger-Belair, G. (2005). On the 3D-reconstruction of Taylor-like bubbles trapped inside hollow cellulose fibers acting as bubble nucleation sites in supersaturated liquids. Colloid. Surf. A-Physiochem. Eng. Asp., 263, 303–314.CrossRefGoogle Scholar
  120. Yokotsuka, K., Yajima, M., and Matsudo, T. (1997). Production of bottle-fermentated sparkling wine using yeast immobilized in double-layer gel beads or strands. Am. J. Enol. Vitic., 48, 471–481.Google Scholar
  121. Zhao, J., and Fleet, G.H. (2003). Degradation of DNA during the autolysis of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol., 30, 175–182.Google Scholar
  122. Zhao, J., and Fleet, G.H. (2005). Degradation of RNA during the autolysis of Saccharomyces cerevisiaeproduces predominantly ribonucleotides . J. Ind. Microbiol. Biotechnol., 9, 415–423.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Adolfo J. Martínez-Rodríguez
    • 1
  • Encarnación Pueyo
  1. 1.Instituto de Fermentaciones Industriales (CSIC).Spain

Personalised recommendations