Statistical Techniques for the Interpretation of Analytical Data

  • Pedro J. Martín-Álvarez


Partial Little Square Linear Discriminant Analysis Canonical Correlation Analysis Canonical Variable Principal Component Regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afifi, A.A., & Azen, S.P. (1979). Statistical analysis. A computer oriented. Academic Press, Inc. New York.Google Scholar
  2. Afifi A.A., & Clark V. (1996). Computer-Aided Multivariate Analysis. Chapman & Hall, London.Google Scholar
  3. Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Martín-Álvarez, P.J., & Polo, M.C. (2007). Influence of malolactic fermentation, postfermentative treatments and ageing with lees on nitrogen compounds of red wines. Food Chem., 103, 572–581.CrossRefGoogle Scholar
  4. Barcenilla, J.M., Martin-Alvarez, P.J., Vian, A., & González, R. (2003). Characterization of yeast strains on the basis of autolytic activity and volatile compounds. Food Sci. Technol. Int., 9, 95–100.CrossRefGoogle Scholar
  5. Brereton, R.G. (1990). Chemometrics: applications of mathematics and statistics to laboratory system. Ellis Horwood Limited, Chichester, England.Google Scholar
  6. Cabezas, L., González-Viñas M.A., Ballesteros C., & Martín-Álvarez P.J. (2006). Application of partial least squares regression to predict sensory attributes of artisanal and industrial Manchego cheeses. Eur. Food Res. Technol., 222, 223–228.CrossRefGoogle Scholar
  7. Cabezudo M.D., Polo, M.C., Herráiz, M., Reglero, G., González-Raurich, M., áceres, I., & Martín-Álvarez, P.J. (1986). Using discriminant analysis to characterize Spanish variety white wines. In: The Shelf Life of Foods and Beverages, pp. 186–204. Ed. by G. Charalambous. Elsevier Science Publishers B.V., Amsterdam.Google Scholar
  8. Cela, R. (1994). Avances en Quimiometría PrÁctica. Servicio de Publicaciones de la Universidad de Santiago de Compostela. Santiago de Compostela.Google Scholar
  9. Dizy, M., Martín-Álvarez, P.J., Cabezudo, M.D., & Polo, M.C. (1992). Grape, apple and pineapple juice characterisation and detection of mixtures. J. Sci. Food Agric., 60, 47–53.CrossRefGoogle Scholar
  10. Draper, N.R., & Smith, H. (1981). Applied regression analysis. John Wiley and Sons, Inc., New York.Google Scholar
  11. García-Ruíz, A., Cabezas L., Martín-Álvarez P.J., & Cabezudo M.D. (1998). Prediction of the ripening times of Manchego cheese using multivariate statistical analyses: A preliminary study. Z. Lebensm. Unters. Forsch., 206, 382–386.CrossRefGoogle Scholar
  12. Gardiner, W.P. (1997). Statistical Analysis Methods for Chemists. A Software Based Approach. The Royal Society of Chemistry, Cambridge, UK.Google Scholar
  13. González-Viñas, M.A., Ballesteros, C., Martín-Álvarez, P.J., & Cabezas, L. (2007). Relationship between sensory and instrumental measurements of texture for artisanal and industrial manchego cheeses. J. Sens. Stud., 22, 462–476.CrossRefGoogle Scholar
  14. Hernández, T., Estrella, I., Carlavilla, D., Martín-Álvarez, P.J., & Moreno-Arribas, M.V. (2006). Phenolic compounds in red wine subjected to industrial malolactic fermentation and ageing on lees. Anal. Chim. Acta, 563, 116–125.CrossRefGoogle Scholar
  15. Herraiz, T., Martín-Álvarez, P.J., Reglero, G., Herraiz, M., & Cabezudo, M.D. (1990). Effects of the presence of skins during alcoholic fermentation on the composition of wine volatiles. Vitis, 29, 239–249.Google Scholar
  16. Herranz, A., Serna, P., Barro, C., Martín-Álvarez, P.J., & Cabezudo, M.D. (1989). Application of the statistical multivariate analysis to the differentiation of whiskies of different brands. Food Chem., 31, 73–81.CrossRefGoogle Scholar
  17. Herranz, A., Serna, P., Barro, C., & Martín-Álvarez, P.J. (1990). Multivariate statistical methods applied to the differentiation of rum brands. J. Sci. Food Agric., 51, 555–560.CrossRefGoogle Scholar
  18. Hidalgo, P., Pueyo, E., Pozo-Bayón, M.A., Martínez-Rodríguez, A.J., Martín-Álvarez, P.J., & Polo, M.C. (2004). Sensory and analytical study of rosé sparkling wines manufactured by second fermentation in the bottle. J Agric. Food Chem., 52, 6640–6645.CrossRefGoogle Scholar
  19. Jobson J.D. (1991). Applied Multivariate Data Analysis. Volume I: Regression and Experiemtnal Design. Springer-Verlag. New York, Inc.Google Scholar
  20. Krzanowski, W.J. (1988). Principles of multivariate analysis. A User’s Perspective. Oxford University Press Inc., New York.Google Scholar
  21. Marcobal, A., Polo, M.C., Martín-Álvarez, P.J., & Moreno-Arribas, M.V. (2005). Biogenic amine content of red Spanish wines: Comparison of a direct ELISA and an HPLC method for the determination of histamine in wines. Food Res. Int., 38, 387–394.CrossRefGoogle Scholar
  22. Marcobal, A., Martín-Álvarez, P.J., Moreno-Arribas M.V., & Muñoz, R. (2006a). A multifactorial design for studying factors influencing growth and tyramine production of the lactic acid bacteria Lactobacillus brevis CECT 4669 and Enterococcus faecium BIFI-58. Res. Microbiol., 157, 417–424.CrossRefGoogle Scholar
  23. Marcobal, A., Martín-Álvarez, P.J., Polo, M.C., Muñoz, R., & Moreno-Arribas, M.V. (2006b). Formation of biogenic amines throughout the industrial manufacture of red wine. J. Food Protect., 69, 397–404.Google Scholar
  24. Martín-Álvarez, P.J. (2000). Quimiometría Alimentaria. Universidad Autónoma de Madrid, Madrid.Google Scholar
  25. Martín-Álvarez, P.J. (2006). PrÁcticas de tratamiento estadístico de datos con el programa SPSS para Windows. Aplicaciones en el Área de Ciencia y Tecnología de Alimentos. Ed. CSIC, Madrid.Google Scholar
  26. Martín-Álvarez, P.J., & Herranz, A. (1991). Application of multivariate statistical methods to the differentiation of gin brands. J. Sci. Food Agric., 57, 263–272.CrossRefGoogle Scholar
  27. Martín-Álvarez, P.J., Polo, M.C., Herráiz, M., Cáceres, I., GonzÁlez Raurich, M., HerrÁiz, T., Reglero, G., Cabezudo M.D., & Sanz, J. (1987). Application of chemometrics to the characterization of Spanish wines. In: Flavour Science and Technology, pp. 489–499. Ed. by M. Martens, G.A. Dalen & H. Russwurm Jr. John Wiley & Sons Ltd., Oslo, Norway.Google Scholar
  28. Martín-Álvarez, P.J., Cabezudo M.D., Sanz, J., Herranz, A., de la Serna. P., & Barro, C. (1988). Application of several statistical classification techniques to the differentiation of whisky brands. J. Sci. Food Agric., 45, 347–358.CrossRefGoogle Scholar
  29. Martín-Álvarez, P.J., Marcobal, A., Polo, C., & Moreno-Arribas, M.V. (2006). Influence of technological practices on biogenic amine contents in red wines. Eur. Food Res. Technol., 222, 420–424.CrossRefGoogle Scholar
  30. Martínez-Rodríguez, A.J., Carrascosa, A.V., Martín-Álvarez, P.J., Moreno-Arribas, M.V., & Polo, M.C. (2002). Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method. J. Ind. Microbiol. Biotecht., 29, 314–322.CrossRefGoogle Scholar
  31. Massart, D.L., Vandeginste, B.G.M., Deming, S.N., Michotte, Y., & Kaufman, L. (1990). Chemometrics: A textbook. Elsevier Science Publishing Company Inc., New York.Google Scholar
  32. Miller, J.C., & Miller, J.N. (2000). Statistics for analytical chemistry. Pearson Education Limited. Harlow, England.Google Scholar
  33. Molina, E., Ramos M., & Martín-Álvarez P. J. (1995). Prediction of the percentages of cows’, goats’, and ewes’ milk in Ibérico cheese by electrophoretic analysis of whey proteins. Z. Lebensm. Unters. Forsch., 201, 331–335.CrossRefGoogle Scholar
  34. Molina, E., Martín-Álvarez P. J., & Ramos M. (1999). Analysis of cows’, ewes’ and goats’ milk mixtures by capillary electrophoresis: Quantification by multivariate regression analysis. Int. Dairy J., 9, 99–105.CrossRefGoogle Scholar
  35. Monagas, M., HernÁndez-Ledesma, B., Garrido, I., Martín-Álvarez, P.J., Gómez-Cordovés, C., & Bartolomé, B. (2005). Quality assessment of commercial dietary antioxidant products from Vitis vinifera L. grape seeds. Nutr. Cancer, 53, 244–254.CrossRefGoogle Scholar
  36. Monagas, M., Martín-Álvarez, P.J., Bartolomé, B., & Gómez-Cordovés, C. (2006a). Statistical interpretation of the color parameters of red wines in function of their phenolic composition during aging in bottle. Eur. Food Res. Technol., 222, 702–709.CrossRefGoogle Scholar
  37. Monagas, M., Martín-Álvarez, P.J., Gómez-Cordovés, C., & Bartolomé, B. (2006b). Time course of the colour of young red wines from Vitis vinifera L. during ageing in bottle. Int. J. Food Sci. Technol., 41, 892–899.CrossRefGoogle Scholar
  38. Monagas, M., Martín-Álvarez, P.J., Gómez-Cordovés, C., & Bartolomé, B. (2007). Effect of the modifier (Graciano vs. Cabernet sauvignon) on blends of Tempranillo wine during ageing in the bottle. II. Colour and overall appreciation. LWT-Food Sci. Technol., 40, 107–115.CrossRefGoogle Scholar
  39. Moreno-Arribas, M.V., Pueyo, E., Polo, M.C., & Martín-Álvarez, P.J. (1998). Changes in the amino acid composition of the different nitrogenous fractions during the aging of wine with yeasts. J. Agric. Food Chem., 46, 4042–4051.CrossRefGoogle Scholar
  40. Moreno-Arribas, M.V., Cabello, F., Polo, M.C., Martín-Álvarez, P.J., & Pueyo, E. (1999). Assessment of the native electrophoretic analysis of total grape must proteins for the characterization of Vitis viniferaL. cultivars. J. Agric. Food Chem., 47, 114–120.CrossRefGoogle Scholar
  41. Moreno-Arribas, V., Pueyo, E., Nieto, F.J., Martín-Álvarez, P.J., & Polo, M.C. (2000). Influence of the polysaccharides and the nitrogen compounds on foaming properties of sparkling wines. Food Chem., 70, 309–317. CrossRefGoogle Scholar
  42. O’Mahony, M. (1986). Sensory evaluation of food. Statistical methods and procedures, Marcel Dekker, Inc., New York.Google Scholar
  43. Pérez-Coello, M.S., Martín-Álvarez, P.J., & Cabezudo M.D. (1999). Prediction of the storage time in bottles of Spanish white wines using multivariate statistical analysis. Z. Lebensm. Unters. Forsch. A, 208, 408–412.CrossRefGoogle Scholar
  44. Poveda, J.M., García, A., Martín-Álvarez P.J., & Cabezas L. (2004). Application of partial least squares (PLS) regression to predict the ripening time of Manchego cheese. Food Chem., 84, 29–33.CrossRefGoogle Scholar
  45. Pozo-Bayón, M.A., Pueyo, E., Martín-Álvarez, P.J., & Polo, M.C. (2001). Polydimethylsiloxane solid-phase microextraction–gas chromatography method for the analysis of volatile compounds in wines. Its application to the characterization of varietal wines. J. Chromatogr. A, 922, 267–275.CrossRefGoogle Scholar
  46. Pozo-Bayón, M.A., Hernández, M.T., Martín-Álvarez, P.J., & Polo, C. (2003a). Study of low molecular weight phenolic compounds during the aging of sparkling wines manufactured with red and white grape varieties. J. Agric. Food Chem., 51, 2089–2095.CrossRefGoogle Scholar
  47. Pozo-Bayón, M.A., Pueyo, E., Martín-Álvarez, P.J., Martinez-Rodriguez, A.J., & Polo, M.C. (2003b). Influence of yeast strain, bentonite addition, and aging time on volatile compounds of sparkling wines. Am. J. Enol. Viticult., 54, 273–278.Google Scholar
  48. Pozo-Bayón, M.A., Polo, M.C., Martín-Álvarez, P.J., & Pueyo, E. (2004). Effect of vineyard yield on the composition of sparkling wines produced from the grape cultivar Parellada. Food Chem., 86, 413–419.CrossRefGoogle Scholar
  49. Pozo-Bayón, M.A., García-Alegría, E., Polo, M.C., Tenorio, C., Martín-Álvarez, P.J., Calvo de la Banda, M.T., Ruiz-Larrea, F., & Moreno-Arribas, M.V. (2005). Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J. Agric. Food Chem., 53, 8729–8735.Google Scholar
  50. Pueyo, E. Martín-Álvarez, P.J., & Polo, M.C. (1995). Relationship between foam characteristics and chemical composition in wines and cavas (sparkling wines). Am. J. Enol. Viticult., 46, 518–524.Google Scholar
  51. Recio, I., García-Risco, M.R., Amigo, L., Molina, E., Ramos, M., & Martín-Álvarez, P. J. (2004). Detection of milk mixtures in Halloumi cheese. J. Dairy Sci., 87, 1595–1600.CrossRefGoogle Scholar
  52. Sharaf, M.A., Illman, D.L., & Kowalski, B.R. (1986). Chemometrics. John Wiley & Sons, Inc., New York.Google Scholar
  53. Simó, C., Martín-Álvarez, P.J., Barbas, C., & Cifuentes, A. (2004). Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids. Electrophoresis, 25, 2885–2891.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pedro J. Martín-Álvarez
    • 1
  1. 1.Instituto de Fermentaciones IndustrialesConsejo Superior de Investigaciones Científicas (CSIC)Spain

Personalised recommendations