Advertisement

Wine Spoilage by Fungal Metabolites

  • Manuel Malfeito-Ferreira
  • André Barata
  • Virgilio Loureiro

Keywords

Lactic Acid Bacterium Hydroxycinnamic Acid Grape Juice White Wine Fungal Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angioni, A., Caboni, P., Garau, A., Farris, A., Orro, D., Budroni, M., & Cabras, P. (2007). In Vitro Interaction Ochratoxin A and Different Strains of Saccharomyces cerevisiae and Kloeckera apiculata. J. Agric. Food Chem., 55, 2043–2048.CrossRefGoogle Scholar
  2. Astoreca, A., Magnoli, C., Barberis, C., Chiacchiera, S.M., Combina, M., & Dalcero, A. (2007). Ochratoxin A production in relation to ecophysiological factors by Aspergillus section Nigri strains isolated from different in Argentina. Sci. Total Environm., 388,16–23.CrossRefGoogle Scholar
  3. Atoui, A., Mitchell, D., Mathieu, F., Magan, N., & Lebrihi, A. (2007). Partitioning of ochratoxin A in mycelium and conidia of Aspergillus carbonarius and the impact on toxin contamination of grapes and wine. J. Appl. Microbiol., 103, 961–968.CrossRefGoogle Scholar
  4. Bakker, M., & Pieters, M. (2002). Risk assessment of Occhratoxin A in the Netherlands. RIVM rport 388802025/2002.Google Scholar
  5. Barata, A., Correia, P., Nobre, A., Malfeito-Ferreira, M., & Loureiro, V. (2006). Growth and\break 4-ethylphenol production by the yeast Pichia guilliermondiiin grape juices. Am. J. Enol. Vitic., 57, 133–138.Google Scholar
  6. Bellí, N., Marín, S., Coronas, I., Sanchis, V., & Ramos, A.J. (2007). Skin damage, high temperature and relative humidity as detrimental factors for Aspergillus carbonarius infection and ochratoxin A production in grapes. Food Control, 18, 1343–1349.CrossRefGoogle Scholar
  7. Bennett, J.W., & Klich, M. (2003). Mycotoxins. Clinic. Microbiol. Rev., 16, 497–516.CrossRefGoogle Scholar
  8. Blesa, J., Soriano, J., Molto, J., & Mañes, J. (2006). Factors affecting the presence of ochratoxin A in Wines. Crit. Rev. Food Sci. Nutr., 46, 473–478.Google Scholar
  9. Boselli, E., Minardi, M., Giomo, A., & Frega, N. (2006). Phenolic composition and quality of white D.O.C. wines from Marche (Italy). Anal. Chim. Acta, 563, 93–100.CrossRefGoogle Scholar
  10. Burdaspal, P., & Legarda, T. (2007). Occurrence of ochratoxin A in sweet wines produced in Spain and other countries. Food Add. Contam., 24, 976–986.CrossRefGoogle Scholar
  11. Caboni, P., Sarais, G., Cabras, M., & Angioni, A. (2007). Determination of 4-Ethylphenol and 4-Ethylguaiacol in Wines by LC-MS-MS and HPLC-DAD-Fluorescence. J. Agric. Food Chem., 55, 7288–7293.CrossRefGoogle Scholar
  12. Cabrita, M.J., Torres, M., Palma, V., Alves, E., Patão, R., & Freitas, A.M.C. (2007). Impact of malolactic fermentation on low molecular weight phenolic compounds. Talanta, doi: 10.1016/j.talanta.2007.08.045.Google Scholar
  13. Cameira-dos-Santos, P., Fulcrand, H., Sarni-Manchado, P., Cheynier, V., & Favre-Bonvin, J. (1996). Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perkin Trans., 1, 735–739Google Scholar
  14. Carrillo, J.D., & Tena, M.T. (2007). Determination of ethylphenols in wine by in situ derivatisation and headspace solid-phase microextraction–gas chromatography–mass spectrometry. Anal. Bioanal. Chem., Doi: 10.1007/s00216-006-1086-x.Google Scholar
  15. CAST (2003). Mycotoxins: Risks in Plant, Animal and Human Systems. Ames, IA, USA: Council for Agricultural Science and Tecnology Task Force report ° 139.Google Scholar
  16. Cavin, J., Andioc, P., Etievant, P., & Divies, C. (1993). Ability of wine lactic bacteria to metabolize phenol carboxylic acids. Am. J. Enol. Vitic., 1, 76–80.Google Scholar
  17. Chassagne, D., Guilloux-Benatier, M., Alexandre, H., & Voilley, A. (2005). Sorption of wine volatile phenols by yeast lees. Food Chem., 91 39–44.CrossRefGoogle Scholar
  18. Chatonnet, P., Dubourdieu, D., & Boidron, J.N. (1989). Incidence de certains facteurs sur la de´carboxylation des acides phe´nols par la levure. Conn. Vigne Vin, 23, 59–62.Google Scholar
  19. Chatonnet, P., Dubourdieu, D., Boidron, J.N., & Pons, M. (1992). The origin of ethylphenols in wines. J. Sci. Food Agric., 60, 165–178.CrossRefGoogle Scholar
  20. Chatonnet, P., Boidron, J., & Dubourdieu, D. (1993). Influence des conditions d’élevage et de sulfitage des vins rouges en barriques sur le teneur enácide acétique et en ethyl-phenols. J. Int. Vigne Vin, 27, 277–298.Google Scholar
  21. Chatonnet, P., Dubourdieu, D., & Boidron, J.N. (1995). The influence of Brettanomyces/ Dekkerasp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am. J. Enol. Vitic., 46, 463–468.Google Scholar
  22. Chatonnet, P., Viala, C., & Dubourdieu, D. (1997). Influence of polyphenolic components of red wines on the microbial synthesis of volatile phenols. Am. J. Enol. Vitic., 48, 443–448.Google Scholar
  23. Cigič, I.K., Strlič, M., Schreiber, A., Kocjančič, M., & Pihlar, B. (2006). Ochratoxin A in wine: Its determination and photostability. Anal. Lett., 39, 1475–1488.CrossRefGoogle Scholar
  24. Coghe, S., Benoot, K., Delvaux, F., Vanderhaegen, B., & Delvaux, F.R. (2004). Ferulic acid Release and 4-Vinylguaiacol formation during brewing and fermentation: Indications for feruloyl esterase activity in Saccharomyces cerevisiae. J. Agric. Food Chem., 52, 602–608.CrossRefGoogle Scholar
  25. Colagrande, O., Mazzoleni, V., & Silva, A. (1988). Genesi degli odori e sapori anomali dei vini. Vignevini, 7–8, 23–30.Google Scholar
  26. Commission Regulation (EC) (2006). Laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. No 401/2006 of 23\break February 2006. Assessed at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L: 2006: 070:0012:01:EN:HTML.Google Scholar
  27. CONTAM (2006). Mechanism of ochratoxin A induced carcinogenicity as a basis for an improved risk assessment. Ochratoxin A – Risk assessment Project No. QLK-2001-01614. Assessed at: http://www.uni.wuerzburg.de/toxikologie/EU-OTA /ochratoxinA. htmlGoogle Scholar
  28. Costello, P., & Henschke, P. (2002). Mousy off-flavor of wine: Precursors and biosynthesis of the causative N-Heterocycles 2-ethyltetrahydropyridine, 2-acetyltetrahydropyridine, and 2-acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176.J. Agric. Food Chem., 50, 7079–7087.CrossRefGoogle Scholar
  29. Coulter, A., Robinson, E., Cowey, G., Francis, I.L., Lattey, K., Capone, D., Gishen, M., & Godden, P. (2003). Dekkera/Brettanomycesyeast: An overview of recent AWRI investigations and some recommendations for its control. In: Bell, S.M., de Garis, K.A., Dundon, C.G., Hamilton, R.P., Partridge, S.J. & Wall, G.S. (eds.), Grapegrowing at the edge; Managing the wine business; Impacts on wine flavour: proceedings of a seminar; 10–11 July 2003, Barossa Convention Centre, Tanunda, S.A. Adelaide, S.A: Australian Society of Viticulture and Oenology, 41–50.Google Scholar
  30. Couto, J., Campos, F., Figueiredo, A., & Hogg, T. (2006). Ability of lactic bactéria to produce volatile phenols. Am. J. Enol. Vitic., 57, 166–171.Google Scholar
  31. Dias, L., Dias, S., Sancho, T., Stender, H., Querol, A., Malfeito-Ferreira, M., & Loureiro, V. (2003a). Identification of yeasts isolated from wine related environments and capable of producing 4-ethylphenol. Food Microbiol., 20:567–574.CrossRefGoogle Scholar
  32. Dias, L., Pereira-da-Silva, S., Tavares, M., Malfeito-Ferreira, M., & Loureiro, V. (2003b). Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiol., 20, 377–384.CrossRefGoogle Scholar
  33. Déez, J., Domínguez, C., Guillén, D.A., Veas, R., & Barroso, C.G. (2004). Optimisation of stir bar sorptive extraction for the analysis of volatile phenols in wines. J. Chromatogr. A, 1025, 263–267.CrossRefGoogle Scholar
  34. Domínguez, C., Guillén, D. A., & Barroso, C.G. (2002). Determination of volatile phenols in fino sherry wines. Anal. Chim. Acta, 458, 95–102.CrossRefGoogle Scholar
  35. Dubois, P., & Brulé, G. (1970). Etude des phénols volatiles des vins rouges. C.R. Acad. Sci. Paris, 271, 1597–1598.Google Scholar
  36. Dugelay, I., Gunata, Z., Sapis, J.C., Baumes, R., & Bayonove, C. (1993). Role of cinnamoyl esterase activities from enzyme preparations on the formation of volatile phenols during winemaking. J. Agric. Food Chem., 41, 2092–2096.CrossRefGoogle Scholar
  37. Edlin, D., Narbad, A., Dickinson, J., & Lloyd, D. (1995). The biotransformation of phenolic compounds by Brettanomyces anomalus. FEMS Microbiol. Lett., 5, 311–315.CrossRefGoogle Scholar
  38. European Commission (1997). SCOOP. Task 3.2.2. Assessment of dietary intake of ochratoxin A by the population of EU Member States, Reports on tasks for scientific cooperation. Report EUR 17523.Google Scholar
  39. European Commission (2002). SCOOP Task 3.2.7. Assessment of dietary intake of ochratoxin A by the population in EU Member States. European Commission, January 2002.Google Scholar
  40. Fariña, L., Boido, E., Carrau, F., & Delacassa, E. (2007). Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection. J. Chromatogr. A, 1157, 46–50.CrossRefGoogle Scholar
  41. Fernandes, A., Venâncio, A., Moura, J., Garrido, J., & Cerdeira, A. (2003). Fate of ochratoxin A during a vinification trial. Aspects Appl. Biol., 68, 73–80.Google Scholar
  42. Fernandes, A., Ratola, N., Cerdeira, A., Alves, A., & Venâncio, A. (2007). Changes in ochratoxin A concentration during winemaking. Am. J. Enol. Vitic., 58, 92–96.Google Scholar
  43. Frisvad, J.C., & Samson, R.A. (2000). Neopetromyces gen. nov. and an overview of teleomorphs of Aspergillus subgenus Circundati. Stu. Mycol., 45, 201–207.Google Scholar
  44. Frisvad, J., Frank, J., Houbraken, J., Kuijpers, A., & Samson, R. (2004). New ochratoxin A producing species of Aspergillussection Circumdati. Stud. Mycol., 50, 23–43.Google Scholar
  45. Frisvad, J., Thrane, U., Samson, R., & Pitt, J. (2006). Important mycotoxins and the fungi which produce them. In: Hocking, A., Pitt, J., Samson, R., & Thrane, U. (eds.), Advances in Food Mycology (pp. 3–31). Springer, New York, USA.CrossRefGoogle Scholar
  46. Gato, O., Cota, M., Borbinha, S., & Laureano, P. (2001). Perception thresholds of 4-ethylphenol in Portuguese wines (in Portuguese). Proceedings of the 5th Vitiviniculture Symposium of Alentejo, 23–25th May, Évora, Portugal.Google Scholar
  47. Gerbaux, V., Vincent, B., & Bertrand, A. (2002). Influence of maceration temperature and enzymes on the content of volatile phenols in Pinot Noir wines. Am. J. Enol. Vitic., 53, 131–137.Google Scholar
  48. Gómez-Míguez, M., González-Miret, M.L., Hernanz, D., Fernández, M.A., Vicario, I.M., & Heredia, F.J. (2007). Effects of prefermentative skin contact conditions on colour and phenolic content of white wines. J. Food Eng., 78, 238–245.CrossRefGoogle Scholar
  49. Grando, M.S., Versini, G., Nicolini, G., & Mattivi, F. (1993). Selective use of wine yeast strains having different volatile phenols production. Vitis, 32, 43–50.Google Scholar
  50. Grbin, P.R., & Henschke, P.A. (2000). Mousy off-flavour production in grape juice and wine by Dekkera and Brettanomyces yeasts. Aust. J. Grape Wine Res., 6, 255–262.CrossRefGoogle Scholar
  51. Grbin, P.R., Herderich, M., Markides, A., Lee, T., & Henschke, P.A. (2007). The role of lysine amino nitrogen in the biosynthesis of mousy off-flavor compounds by Dekkera anomala.J. Agric. Food Chem., 55, 10872–10879.CrossRefGoogle Scholar
  52. Guilloux-Benatier, M., Chassagne, D., Alexandre, H., Charpentier, C., & Feuillat, M. (2001). Influence of yeast autolysis after alcoholic fermentation on the development of “Brettanomyces/Dekkera” in wine. J. Int. Sci. Vigne Vin., 35, 157–164.Google Scholar
  53. Heresztyn, T. (1986a). Metabolism of volatile phenolic compounds from hidroxycinnamic acids by Brettanomyces yeast. Arch. Microbiol., 146, 96–98.CrossRefGoogle Scholar
  54. Heresztyn, T. (1986b). Formation of substituted tetrahydropyridines by species of Brettanomyces and Lactobacillus isolated from mousy wines. Am. J. Enol. Vitic., 3, 127–132.Google Scholar
  55. Hernández, T., Estrella, I, Carlavilla, D., Martín-Álvarez, P.J., & Moreno-Arribas, M.V. (2006). Phenolic compounds in red wine subjected to industrial maloliactic fermentation and ageing on lees. Anal. Chim. Acta, 563, 116–125.CrossRefGoogle Scholar
  56. Hernández, T., Estrella, I., Pérez-Gordo, M., Alegría, E.G., Tenorio, C., Ruiz-Larrrea, F., & Moreno-Arribas, M.V. (2007). Contribution of malolactic fermentation by Oenococcus oeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. J. Agric. Food Chem., 55, 5260–5266.CrossRefGoogle Scholar
  57. Hesford, F., & Schneider, K. (2004). Die Entdeckung eines dritten Ethylphenols als Mitverursacher des Brettanomyces-Fehltons. Schweiz Z. Obst-Weinbau, 13, 11–13.Google Scholar
  58. Hocking, A., Leong, S., Kazi, B., Emmett, R., & Scott, E. (2007). Fungi and mycotoxins in vineyards and grape products. Int. J. Food Microbiol., 119, 84–88.CrossRefGoogle Scholar
  59. Iamanaka, B., Taniwaki, M., Vicente, E., & Menzes, H. (2006). Fungi producing ochratoxin in dried fruits. In: Hocking, A., Pitt, J., Samson, R., & Thrane, U. (eds.), Advances in Food Mycology (pp. 181–188). Springer, New York, USA.CrossRefGoogle Scholar
  60. IARC (International Agency for Research on Cancer) (1993). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins (vol. 56). Lyon, France: World Health Organization.Google Scholar
  61. Ibern-Gómez, M., Andrés-Lacueva, C., Lamuela-Raventós, R.M., & Waterhouse, A.L. (2002). Rapid HPLC analysis of phenolic compounds in red wines. Am. J. Enol. Vitic., 53, 218–221.Google Scholar
  62. JECFA (Joint FAO/WHO Expert Committee of Food Additives) (2001). Ochratoxin A. In: Safety Evaluation of Certain Mycotoxins in Food. Prepared by the Fifty-sixth meeting of the JECFA. FAO Food and Nutrition Paper 74, Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  63. Jorgensen, K. (2005). Occurrence of ochratoxin A in commodities and processes food – A review of EU occurrence data. Food Add. Cont. Suppl., 1, 26–30.Google Scholar
  64. Kiessling, K.H., Pettersson, H., Sandholm, K., & Olsen, M. (1984). Metabolism of aflatoxin, ochratoxin, zearalenone, and three tricothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl. Environ. Microbiol., 47, 1070–1073.Google Scholar
  65. Larcher, R., Nicolini, G., Puecher, C., Bertoldi, D., Moser, S., & Favaro, G. (2007). Determination of volatile phenols in wine using high-performance liquid chromatography with a coulometric array detector. Anal. Chim. Acta, 582, 55–60.CrossRefGoogle Scholar
  66. Lay, H. (2004). Research on the development of the “Mousy taint” in wine and model solutions. Mitt. Klosterbeuburg Rebe Wein Obstb. Früchteverwert, 54, 243–250.Google Scholar
  67. Leong, L.S., Hocking, A.D., Pitt, J.I., Kazi, B.A., Emmett, R.W., & Scott, E.S. (2006a). Black AspergillusSpecies in Australian Vineyards: From Soil to Ochratoxin A in Wine. In: Hocking, A.D., Pitt, J.I., Samson, R.A., & Thrane, U. (eds), Adv. Exp. Med. Biol., 571, 153–171.Google Scholar
  68. Leong, L.S., Hocking, A.D., & Scott, E.S. (2006b). The effect of juice clarification, static or rotary fermentation and fining on ochratoxin A in wine. Aust. J. Grape Wine Res., 12, 245–252.CrossRefGoogle Scholar
  69. López, R., Aznar, M., Cacho, J., & Ferreira, V. (2002). Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A, 966, 167–177.CrossRefGoogle Scholar
  70. Loureiro, V., Malfeito-Ferreira, M. (2006). Spoilage activities of Dekkera/Brettanomycesspp. In: Blackburn, C. (ed.) Food spoilage microorganisms (pp. 354–398). Woodhead Pubs, Cambridge.Google Scholar
  71. Magan, N. (2006). Mycotoxin contamination of food in Europe: Early detection and prevention strategies. Mycopathologia, 162, 245–253.CrossRefGoogle Scholar
  72. Makris, D.P., Kallithraka, S., & Mamalos, A. (2006). Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta, 70, 1143–1152.CrossRefGoogle Scholar
  73. Malfeito-Ferreira, M., Rodrigues, N., & Loureiro, V. (2001). The influence of oxygen on the “horse sweat taint” in red wines. Italian Food Bev. Technol., 24, 34–38.Google Scholar
  74. Mateo, R., Medina, A., Mateo, E.M., Mateo, F., & Jiménez, M. (2007). An overview of ochratoxin A in beer and wine. Int. J. Food Microbiol., 119, 79–83.CrossRefGoogle Scholar
  75. Medina, A., Mateo, R., Valle-Algarra, F., Mateo, E., & Jiménez, M. (2007). Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonariusisolated from grapes. Int. J. Food Microbiol., 119, 230–235.CrossRefGoogle Scholar
  76. Mejías, R.C., Marín, R.N., Moreno, M.V.G., & Barroso, C.G. (2003). Optimisation of headspace solid-phase microextraction for the analysis of volatile phenols in wine. J. Chromatogr. A, 995, 11–20.CrossRefGoogle Scholar
  77. Mínguez, S., Cantus, J.M., Pons, A., Margot, P., Cabanes, F.X., Masque, C., Accensi, F., Elorduy, X., Giralt, L.L., Vilavella, M., Rico, S., Domingo, C., Blasco, M., & Capdevila, J. (2004). Influence of the fungus control strategy in the vineyard on the presence of ochrotoxin A in the wine. Bull l’OIV, 885–886, 821–831.Google Scholar
  78. Monagas., M., Bartolomé., B., & Gómez-Cordovés, C. (2005). Updated knowledge about the presence of phenolic compounds in wine. Critic. Rev. Food Sci. Nutr., 45, 85–118.CrossRefGoogle Scholar
  79. Murphy, P.A., Hendrich, S., Landgren, C., & Bryant, C.M. (2006). Food Mycotoxins: An Update. J. Food Sci., 71, R51–R65.CrossRefGoogle Scholar
  80. Natali, N., Chinnici, F., & Riponi, C. (2006). Characterization of volatiles in extracts from oak chips obtained by accelerated solvent extraction (ASE). J. Agric. Food Chem., 54, 8190–8198.CrossRefGoogle Scholar
  81. Ng, W., Mankotia, M., Pantazopoulos, P., Neil, R.J., & Scott, P.M. (2004). Ochratoxin A in wine and grape juice sold in Canada. Food Addit. Contam., 21, 971–981.CrossRefGoogle Scholar
  82. Nicolini, G., Larcher, R., Bertoldi, D., Puecher, C., & Magno, F. (2007). Rapid quantification of 4-ethylphenol in wine using high-performance liquid chromatography with a fluorimetric detector. Vitis, 46, 202–206.Google Scholar
  83. OIV (2005). Code of sound vitivinicultural practices in order to mimise levels of Ochratoxin A in vine-based products. Resolution Viti-Oeno 1/2005. Assessed at http://news.reseau-concept.net/images/oiv_uk/Client/VITI-OENO_1-2005_EN.pdf.Google Scholar
  84. Oliveira, J., Freitas, V., Silva, A.M.S., & Mateus, N. (2007). Reaction between hydroxycinnamic acids and anthocyanin-pyruvic acid adducts yielding new portisins. J. Agric. Food Chem., 55, 6349–6356.CrossRefGoogle Scholar
  85. Otteneder, H., & Majerus, P. (2000). Occurrence of ochratoxin A (OTA) in wines: Influence of the type of wine and its geographical origin. Food Addit. Contam., 17, 793–798.CrossRefGoogle Scholar
  86. Pérez-Magariño, S., & González-San José, M.L. (2005). Effect of ripening stage of grapes on the low molecular weight phenolic compounds of red wines. Eur. Food Res. Technol., 220, 597–606.CrossRefGoogle Scholar
  87. Perrone, G., Mulè, G., Susca, A., Battilani, P., Pietri, A., & Logrieco, A. (2006a). Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger strains isolated from grapes in Italy. Appl. Environm. Microbiol., 72, 680–685.CrossRefGoogle Scholar
  88. Perrone, G., Susca, A., Epifani, F., & Mulè, G. (2006b). AFLP characterization of Southern Europe population of Aspergillussection Nigri from grapes. Int. J. Food Microbiol., 111, S22–S27.CrossRefGoogle Scholar
  89. Perrone, G., Nicoletti, I., Pascale, M., De Rossi, A., De Girolamo, A., & Visconti, A. (2007). Positive correlation between high levels of ochratoxin A and resveratrol-related compounds in red wines. J. Agric. Food Chem., 55, 6807–6812.CrossRefGoogle Scholar
  90. Pizarro, C., Pérez-del-Notario, N., & González-Sáiz, J.M. (2007). Determination of Brett character responsible compounds in wines by using multiple headspace solid-phase microextraction. J. Chromatogr. A, 1143, 176–181.CrossRefGoogle Scholar
  91. Porret, N.A., Schneider, K., Hesford, F., & Gafner, J. (2004). Früherkennung unerwünschter Mikroorganismen im wein: Brettanomyces bruxellensis. Schweiz. Z. Obst-Weinbau, 6, 13–15.Google Scholar
  92. Rapp, A. (1998). Volatile ?avour of wine: correlation between instrumental analysis and sensory perception. Nahrung, 42, 351–363.CrossRefGoogle Scholar
  93. Rayne, S., & Eggers, N.J. (2007a). Quantitative determination of 4-ethylphenol and 4-ethyl-2-methoxyphenol in wines by a stable isotope dilution assay. J. Chromatogr. A, 1167, 195–201.CrossRefGoogle Scholar
  94. Rayne, S., & Eggers, N.J. (2007b). 4-Ethylphenol and 4-ethylguaiacol in wines: estimating non-microbial sourced contributions and toxicological considerations. J. Environm. Sci. Health. Part B, 42, 887–897.CrossRefGoogle Scholar
  95. Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., & Lonvaud, A. (2006). Handbook of Enology (vols. 1 and 2). The Microbiology of Wine and Vinification. John Wiley and Sons, Ltd, Chichester, UK.Google Scholar
  96. Richard, J.L. (2007). Some major mycotoxins and their mycotoxicoses – An overview. Int. J. Food Microbiol., 119, 3–10.Google Scholar
  97. Ringot, D., Chango, A., Schneider, Y.J., & Larondelle, Y. (2006). Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem. Biol., 159, 18–46.CrossRefGoogle Scholar
  98. Rodrigues, N., Gonçalves, G., Pereira-da-Silva, S., Malfeito-Ferreira, M., & Loureiro, V. (2001). Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces spp. J. Appl. Microbiol., 90, 588–599.CrossRefGoogle Scholar
  99. Romano, A., Perello, M.C., De Revel, G., & Lonvaud-Funel, A. (2007). Growth and Volatile Compound production by Brettanomyces/Dekkara bruxellensis in red wine. J. Appl. Microbiol., 104, 1577–1585.CrossRefGoogle Scholar
  100. Romero, C., & Bakker, J. (2000). Effect of storage temperature and pyruvate on kinetics of anthocyanin degradation, vitisin A derivattive formation, and color characteristics of model solutions. J. Agric. Food Chem., 48, 2135–2141.CrossRefGoogle Scholar
  101. Salameh, D., Brandam, C., Medawar, W., Lteif, R., & Strehaiano, P. (2007). Highlight on the problems generated by p-coumaric acid analysis in wine fermentations. Food Chem., (2007) doi: 10.1016/j.foodchem.2007.09.052.Google Scholar
  102. Samson, R.A., Houbraken, J.A., Kuijpers, A.F., Frank, J.M., & Frisvad, J.C. (2004). New ochratoxin A or sclerotium producing species in Aspergillussection Nigri. Stud. Mycol., 50, 45–61.Google Scholar
  103. Schwarz, M., Wabnitz, T.C., & Winterhalter, P. (2003). Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. J. Agric. Food Chem., 51, 3682–3687.CrossRefGoogle Scholar
  104. Serra, R., Cabañes, J.F., Perrone, G., Castellá, G., Venâncio, A., Mulè, G., & Kozakiewicz, Z. (2006). Aspergillus ibericus: A new species of section Nigri isolated from grapes. Mycologia, 98, 295–306.CrossRefGoogle Scholar
  105. Shinohara, T., Kubodera, S., & Yanagida, F. (2000). Distribution of phenolic yeasts and production of phenolic off-flavors in wine fermentation. J. Biosci. Bioeng., 90, 90–97.Google Scholar
  106. Snowdon, E.M., Bowyer, M.C., Grbin, C.B., & Owyer, P.K. (2006). Mousy Off-Flavor: A review. J. Agric. Food Chem., 54, 6465–6474.CrossRefGoogle Scholar
  107. Steinke, R.D., & Paulson, M.C. (1964). The production of steam-volatile phenols during the cooking and alcoholic fermentation of grain. J. Agric Food Chem., 12, 381–387.CrossRefGoogle Scholar
  108. Strauss, C.R., & Heresztyn, T. (1984). 2-Acetyltetrahydropyridines a cause of “mousy” taint in wine. Chem. Ind. (London) 1984, 109–110.Google Scholar
  109. Suárez, R., Suárez-Lepe, J.A., Morata, A., & Calderón, F. (2007). The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. Food Chem., 102, 10–21.CrossRefGoogle Scholar
  110. Taniwaki, M. (2006). An update on ochratoxigenic fungi and ochratoxin A in coffee. In: Hocking, A., Pitt, J., Samson, R., & Thrane, U. (eds.), Advances in Food Mycology (pp. 189–202). Springer, New York, USA.CrossRefGoogle Scholar
  111. Tat, L., Comuzzo, P., Battitutta, F., & Zironi, R. (2007). Sweet-like off-flavor in Aglianico del Vulture wine: Ethyl phenylacetate as the mainly involved compound. J. Agric. Food Chem., 55, 5205–5212.CrossRefGoogle Scholar
  112. Tucknott, O.G. (1977). Taints in fermented juice products: mousy taint in cider. Long Ashton Research Station Annual Report 129–130.Google Scholar
  113. Valero, A., Marín, S., Ramos, A.J., & Sanchis, V. (2007a). Effect of preharvest fungicides and interacting fungi on Aspergillus carbonarius growth and ochratoxin A synthesis in dehydrating grapes. Lett. App. Microbiol., 45, 194–199.CrossRefGoogle Scholar
  114. Valero, A., Marín, S., Ramos, A.J., & Sanchis, V. (2007b). Survey: Ochratoxin A in European speciality wines. Food Chem., doi: 10.1016/j.foodchem.2007.11.040.Google Scholar
  115. Van der Merwe, K.J., Steyn, P.S., Fourie, L., Scott, D.B., & Theron, J.J. (1965). Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature, 205, 1112–1113.CrossRefGoogle Scholar
  116. Van Egmond, H.P., & Schothorst, R. (2007). Regulations relating to mycotoxins in food. Anal. Bioanal. Chem., 389, 147–157CrossRefGoogle Scholar
  117. Vanbeneden, N., Delvaux, F., Delvaux, F.R. (2006). Determination of hydroxycinnamic acids volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection. J. Chromatogr. A, 1136, 237–242.CrossRefGoogle Scholar
  118. Varga, J., & Kozakiewicz, Z. (2006). Ochratoxin A in grapes and grape-derived products. Trends Food Sci. Technol., 17, 72–81.CrossRefGoogle Scholar
  119. Yokotsuka, K., & Singleton, V. (2001). Effects of seed tannins on enzymatic decolorization of wine pigments in the presence of oxidizable phenols. Am. J. Enol. Vitic., 52, 93–100.Google Scholar
  120. Zimmerli, B., & Dick, R. (1996). Ochratoxin A in table wine and grape-juice: Occurrence and risk assessment. Food Add. Contam., 13, 665–668.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Manuel Malfeito-Ferreira
  • André Barata
  • Virgilio Loureiro
    • 1
  1. 1.Tapada da AjudaPortugal

Personalised recommendations