Advertisement

Health-Promoting Effects of Wine Phenolics

  • Alberto Dávalos
  • Miguel A. Lasunción

Keywords

NADPH Oxidase Caloric Restriction High Density Lipoprotein Grape Juice Microsomal Triglyceride Transfer Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Amsha Caccetta, R., Burke, V., Mori, T. A., Beilin, L. J., Puddey, I. B., & Croft, K. D. (2001). Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Rad. Biol. Med., 30, 636–642.CrossRefGoogle Scholar
  2. Ader, P., Block, M., Pietzsch, S., & Wolffram, S. (2001). Interaction of quercetin glucosides with the intestinal sodium/glucose co-transporter (SGLT-1). Cancer Lett., 162, 175–180.CrossRefGoogle Scholar
  3. Al-Awwadi, N. A., Araiz, C., Bornet, A., Delbosc, S., Cristol, J. P., Linck, N., Azay, J., Teissedre, P. L., & Cros, G. (2005). Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats. J. Agric. Food Chem., 53, 151–157.CrossRefGoogle Scholar
  4. Allister, E. M., Borradaile, N. M., Edwards, J. Y., & Huff, M. W. (2005). Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes, 54, 1676–1683.CrossRefGoogle Scholar
  5. Anter, E., Thomas, S. R., Schulz, E., Shapira, O. M., Vita, J. A., & Keaney, J. F. Jr. (2004). Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols. J. Biol. Chem., 279, 46637–46643.CrossRefGoogle Scholar
  6. Arts, I. C., & Hollman, P. C. (2005). Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 81, 317S–325S.Google Scholar
  7. Avellone, G., Di Garbo, V., Campisi, D., De Simone, R., Raneli, G., Scaglione, R., & Licata, G. (2006). Effects of moderate Sicilian red wine consumption on inflammatory biomarkers of atherosclerosis. Eur. J. Clin. Nutr., 60, 41–47.CrossRefGoogle Scholar
  8. Aviram, M., & Fuhrman, B. (1998). Polyphenolic flavonoids inhibit macrophage-mediated oxidation of LDL and attenuate atherogenesis. Atherosclerosis, 137, S45–S50.CrossRefGoogle Scholar
  9. Azumi, H., Inoue, N., Ohashi, Y., Terashima, M., Mori, T., Fujita, H., Awano, K., Kobayashi, K., Maeda, K., Hata, K., Shinke, T., Kobayashi, S., Hirata, K., Kawashima, S., Itabe, H., Hayashi, Y., Imajoh-Ohmi, S., Itoh, H., & Yokoyama, M. (2002). Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NAD(P)H oxidase. Arterioscler. Thromb. Vasc. Biol., 22, 1838–1844.CrossRefGoogle Scholar
  10. Baba, S., Natsume, M., Yasuda, A., Nakamura, Y., Tamura, T., Osakabe, N., Kanegae, M., & Kondo, K. (2007a). Plasma LDL and HDL cholesterol and oxidized LDL concentrations are altered in normo- and hypercholesterolemic humans after intake of different levels of cocoa powder. J. Nutr., 137, 1436–1441.Google Scholar
  11. Baba, S., Osakabe, N., Kato, Y., Natsume, M., Yasuda, A., Kido, T., Fukuda, K., Muto, Y., & Kondo, K. (2007b). Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am. J. Clin. Nutr., 85, 709–717.Google Scholar
  12. Baron-Menguy, C., Bocquet, A., Guihot, A. L., Chappard, D., Amiot, M. J., Andriantsitohaina, R., Loufrani, L., & Henrion, D. (2007). Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J., 13, 3511–3521.CrossRefGoogle Scholar
  13. Basak, S., Kim, H., Kearns, J. D., Tergaonkar, V., O’Dea, E., Werner, S. L., Benedict, C. A., Ware, C. F., Ghosh, G., Verma, I. M., & Hoffmann, A. (2007). A fourth IkappaB protein within the NF-kappaB signaling module. Cell, 128, 369–381.CrossRefGoogle Scholar
  14. Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R., & Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444, 337–342.CrossRefGoogle Scholar
  15. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 87, 245–313.CrossRefGoogle Scholar
  16. Bell, J. R., Donovan, J. L., Wong, R., Waterhouse, A. L., German, J. B., Walzem, R. L., & Kasim-Karakas, S. E. (2000). (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am. J. Clin. Nutr., 71, 103–108.Google Scholar
  17. Berge, K. E., Tian, H., Graf, G. A., Yu, L., Grishin, N. V., Schultz, J., Kwiterovich, P., Shan, B., Barnes, R., & Hobbs, H. H. (2000). Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science, 290, 1771–1775.CrossRefGoogle Scholar
  18. Bitsch, R., Netzel, M., Frank, T., Strass, G., & Bitsch, I. (2004). Bioavailability and Biokinetics of Anthocyanins From Red Grape Juice and Red Wine. J. Biomed. Biotechnol., 5, 293–298.CrossRefGoogle Scholar
  19. Blanco-Colio, L. M., Valderrama, M., Alvarez-Sala, L. A., Bustos, C., Ortego, M., Hernandez-Presa, M. A., Cancelas, P., Gomez-Gerique, J., Millan, J., & Egido, J. (2000). Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation, 102, 1020–1026.Google Scholar
  20. Blanco-Colio, L. M., Muñoz-García, B., Martín-Ventura, J. L., Alvarez-Sala, L. A., Castilla, M., Bustamante, A., Lamuela-Raventós, R. M., Gómez-Gerique, J., Fernández-Cruz, A., Millán, J., & Egido, J. (2007). Ethanol beverages containing polyphenols decrease nuclear factor kappa-B activation in mononuclear cells and circulating MCP-1 concentrations in healthy volunteers during a fat-enriched diet. Atherosclerosis, 192, 335–341.CrossRefGoogle Scholar
  21. Borges, G., Roowi, S., Rouanet, J. M., Duthie, G. G., Lean, M. E., & Crozier, A. (2007). The bioavailability and absorption of anthocyanins: towards a better understanding. Mol. Nutr. Food Res., 51, 702–713.CrossRefGoogle Scholar
  22. Borradaile, N. M., de Dreu, L. E., Barrett, P. H., Behrsin, C. D., & Huff, M. W. (2003). Hepatocyte apoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation. Biochemistry, 42, 1283–1291.Google Scholar
  23. Bourne, L., Paganga, G., Baxter, D., Hughes, P., & Rice-Evans, C. (2000). Absorption of ferulic acid from low-alcohol beer. Free Rad. Res., 32, 273–280.CrossRefGoogle Scholar
  24. Brown, M. S., Ye, J., Rawson, R. B., & Goldstein, J. L. (2000). Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell, 100, 391–398.CrossRefGoogle Scholar
  25. Bub, A., Watzl, B., Heeb, D., Rechkemmer, G., & Briviba, K. (2001). Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur. J. Nutr., 40, 113–120.CrossRefGoogle Scholar
  26. Bursill, C. A., & Roach, P. D. (2006). Modulation of cholesterol metabolism by the green tea polyphenol (-)-epigallocatechin gallate in cultured human liver (HepG2) cells. J. Agric. Food Chem., 54, 1621–1626.CrossRefGoogle Scholar
  27. Bursill, C. A., Abbey, M., & Roach, P. D. (2007). A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit. Atherosclerosis, 193, 86–93.Google Scholar
  28. Caccetta, R. A., Croft, K. D., Beilin, L. J., & Puddey, I. B. (2000). Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am. J. Clin. Nutr., 71, 67–74.Google Scholar
  29. Carnevale, R., Pignatelli, P., Lenti, L., Buchetti, B., Sanguigni, V., Di Santo, S., & Violi, F. (2007). LDL are oxidatively modified by platelets via GP91(phox) and accumulate in human monocytes. FASEB J., 21, 927–934.CrossRefGoogle Scholar
  30. Cartron, E., Fouret, G., Carbonneau, M. A., Lauret, C., Michel, F., Monnier, L., Descomps, B., & Leger, C. L. (2003). Red-wine beneficial long-term effect on lipids but not on antioxidant characteristics in plasma in a study comparing three types of wine–description of two O-methylated derivatives of gallic acid in humans. Free Rad. Res., 37, 1021–1035.CrossRefGoogle Scholar
  31. Casaschi, A., Wang, Q., Dang, K., Richards, A., & Theriault, A. (2002). Intestinal apolipoprotein B secretion is inhibited by the flavonoid quercetin: potential role of microsomal triglyceride transfer protein and diacylglycerol acyltransferase. Lipids, 37, 647–652.CrossRefGoogle Scholar
  32. Castilla, P., Echarri, R., Dávalos, A., Cerrato, F., Ortega, H., Teruel, J. L., Lucas, M. F., Gómez-Coronado, D., Ortuno, J., & Lasunción, M. A. (2006). Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am. J. Clin. Nutr., 84, 252–262.Google Scholar
  33. Cave, A. C., Brewer, A. C., Narayanapanicker, A., Ray, R., Grieve, D. J., Walker, S., & Shah, A. M. (2006). NADPH oxidases in cardiovascular health and disease. Antiox. Redox Signal., 8, 691–728.CrossRefGoogle Scholar
  34. Clee, S. M., Kastelein, J. J., van Dam, M., Marcil, M., Roomp, K., Zwarts, K. Y., Collins, J. A., Roelants, R., Tamasawa, N., Stulc, T., Suda, T., Ceska, R., Boucher, B., Rondeau, C., DeSouich, C., Brooks-Wilson, A., Molhuizen, H. O., Frohlich, J., Genest, J. Jr., & Hayden, M. R. (2000). Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J. Clin. Inves., 106, 1263–1270.CrossRefGoogle Scholar
  35. Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R., & Sinclair, D. A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 305, 390–392.CrossRefGoogle Scholar
  36. Corder, R., Douthwaite, J. A., Lees, D. M., Khan, N. Q., Viseu Dos Santos, A. C., Wood, E. G., & Carrier, M. J. (2001). Endothelin-1 synthesis reduced by red wine. Nature, 414, 863–864.CrossRefGoogle Scholar
  37. Corder, R., Mullen, W., Khan, N. Q., Marks, S. C., Wood, E. G., Carrier, M. J., & Crozier, A. (2006). Oenology: red wine procyanidins and vascular health. Nature, 444, 566.CrossRefGoogle Scholar
  38. Covas, M. I., Konstantinidou, V., Mysytaki, E., Fito, M., Weinbrenner, T., De La Torre, R., Farre-Albadalejo, M., & Lamuela-Raventos, R. (2003). Postprandial effects of wine consumption on lipids and oxidative stress biomarkers. Drugs Exp. Clin. Res., 29, 217–223.Google Scholar
  39. Covas, M. I., Nyyssonen, K., Poulsen, H. E., Kaikkonen, J., Zunft, H. J., Kiesewetter, H., Gaddi, A., de la Torre, R., Mursu, J., Baumler, H., Nascetti, S., Salonen, J. T., Fito, M., Virtanen, J., Marrugat, J., & EUROLIVE Study Group. (2006). The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann. Intern. Med., 145, 333–341.Google Scholar
  40. Dávalos, A., Fernández-Hernando, C., Cerrato, F., Martínez-Botas, J., Gómez-Coronado, D., Gómez-Cordoves, C., & Lasunción. M. A. (2006). Red grape juice polyphenols alter cholesterol homeostasis and increase LDL-receptor activity in human cells in vitro. J. Nutr., 136, 1766–1773.Google Scholar
  41. Davis, J. N., Kucuk, O., Djuric, Z., & Sarkar, F. H. (2001). Soy isoflavone supplementation in healthy men prevents NF-kappa B activation by TNF-alpha in blood lymphocytes. Free Rad. Biol. Med., 30, 1293–1302.CrossRefGoogle Scholar
  42. Day, A. J., Canada, F. J., Diaz, J. C., Kroon, P. A., Mclauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R., & Williamson, G. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468, 166–170.CrossRefGoogle Scholar
  43. De Boer, V. C., de Goffau, M. C., Arts, I. C., Hollman, P. C., & Keijer, J. (2006). SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech. Ageing Dev., 127, 618–627.CrossRefGoogle Scholar
  44. De Graaf, M., van Veen, I. C., van der Meulen-Muileman, I. H., Gerritsen, W. R., Pinedo, H. M., & Haisma, H. J. (2001). Cloning and characterization of human liver cytosolic beta-glycosidase. Biochem. J., 356, 907–910.CrossRefGoogle Scholar
  45. De Vries, J. H., Hollman, P. C., van Amersfoort, I., Olthof, M. R., & Katan, M. B. (2001). Red wine is a poor source of bioavailable flavonols in men. J. Nutr., 131, 745–748.Google Scholar
  46. De Whalley, C. V., Rankin, S. M., Hoult, J. R., Jessup, W., & Leake, D. S. (1990). Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem. Pharmacol., 39, 1743–1750.CrossRefGoogle Scholar
  47. Deckert, V., Desrumaux, C., Athias, A., Duverneuil, L., Palleau, V., Gambert, P., Masson, D., & Lagrost, L. (2002). Prevention of LDL alpha-tocopherol consumption, cholesterol oxidation, and vascular endothelium dysfunction by polyphenolic compounds from red wine. Atherosclerosis, 165, 41–50.CrossRefGoogle Scholar
  48. Del Bas, J. M., Fernandez-Larrea, J., Blay, M., Ardevol, A., Salvado, M. J., Arola, L., & Blade, C. (2005). Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats. FASEB J., 19, 479–481.Google Scholar
  49. Di Bari, M., Zacchei, S., Kritchevsky, S. B., Anichini, M., Cesaretti, S., Chiarlone, M., Masotti, G., & Marchionni, N. (2003). Anti-oxidized LDL antibodies and wine consumption: a population-based epidemiological study in Dicomano, Italy. Ann. Epidemiol., 13, 189–195.CrossRefGoogle Scholar
  50. Donovan, J. L., Bell, J. R., Kasim-Karakas, S., German, J. B., Walzem, R. L., Hansen, R. J., & Waterhouse, A. L. (1999). Catechin is present as metabolites in human plasma after consumption of red wine. J. Nutr., 129, 1662–1668.Google Scholar
  51. El Bedoui, J., Oak, M. H., Anglard, P., & Schini-Kerth, V. B. (2005). Catechins prevent vascular smooth muscle cell invasion by inhibiting MT1-MMP activity and MMP-2 expression. Cardiovasc. Res., 67, 317–325.CrossRefGoogle Scholar
  52. Estruch, R., Sacanella, E., Badia, E., Antunez, E., Nicolas, J. M., Fernandez-Sola, J., Rotilio, D., de Gaetano, G., Rubin, E., & Urbano-Marquez, A. (2004). Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: a prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis, 175, 117–123.CrossRefGoogle Scholar
  53. Feng, B., Yao, P. M., Li, Y., Devlin, C. M., Zhang, D., Harding, H. P., Sweeney, M., Rong, J. X., Kuriakose, G., Fisher, E. A., Marks, A. R., Ron, D., & Tabas, I. (2003). The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol., 5, 781–792.CrossRefGoogle Scholar
  54. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239–247.CrossRefGoogle Scholar
  55. Fontana, L., & Klein, S. (2007). Aging, adiposity, and calorie restriction. JAMA, 297, 986–994.CrossRefGoogle Scholar
  56. Fortuño, A., Beloqui, O., San Jose, G., Moreno, M. U., Zalba, G., & Diez, J. (2005). Increased phagocytic nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production in patients with early chronic kidney disease. Kidney Inter. Suppl., 99, S71–S75.CrossRefGoogle Scholar
  57. Fortuño, A., San José, G., Moreno, M. U., Beloqui, O., Diez, J., & Zalba, G. (2006). Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes, 55, 209–215.CrossRefGoogle Scholar
  58. Frank, J., Budek, A., Lundh, T., Parker, R. S., Swanson, J. E., Lourenco, C. F., Gago, B., Laranjinha, J., Vessby, B., & Kamal-Eldin, A. (2006). Dietary flavonoids with a catechol structure increase alpha-tocopherol in rats and protect the vitamin from oxidation in vitro. J. Lipid Res., 47, 2718–2725.CrossRefGoogle Scholar
  59. Frank, T., Netzel, M., Strass, G., Bitsch, R., & Bitsch, I. (2003). Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can. J. Physiol. Pharmacol., 81, 423–435.CrossRefGoogle Scholar
  60. Frankel, E. N., Kanner, J., German, J. B., Parks, E., & Kinsella, J. E. (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, 341, 454–457.Google Scholar
  61. Fuhrman, B., & Aviram, M. (2002). Preservation of paraoxonase activity by wine flavonoids: possible role in protection of LDL from lipid peroxidation. Ann. N.Y. Acad. Sci., 957, 321–324.Google Scholar
  62. Fuhrman, B., Lavy, A., & Aviram, M. (1995). Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am. J. Clin. Nutr., 61, 549–554.Google Scholar
  63. Garvin, S., Ollinger, K., & Dabrosin, C. (2006). Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett., 231, 113–122.CrossRefGoogle Scholar
  64. Gauss, K. A., Nelson-Overton, L. K., Siemsen, D. W., Gao, Y., Deleo, F. R., & Quinn, M. T. (2007). Role of NF-{kappa}B in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-{alpha}. J. Leukocite Biol., 82, 729–741.CrossRefGoogle Scholar
  65. Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25, 6680–6684.CrossRefGoogle Scholar
  66. Goldberg, D. M., Yan, J., & Soleas, G. J. (2003). Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem., 36, 79–87.CrossRefGoogle Scholar
  67. Goldstein, J. L., DeBose-Boyd, R. A., & Brown, M. S. (2006). Protein sensors for membrane sterols. Cell, 124, 35–46.CrossRefGoogle Scholar
  68. Gouedard, C., Barouki, R., & Morel, Y. (2004). Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Mol. Cell. Biol., 24, 5209–5222.Google Scholar
  69. Guarente, L. (1999). Diverse and dynamic functions of the Sir silencing complex. Nat. Genet., 23, 281–285.CrossRefGoogle Scholar
  70. Guzik, T. J., West, N. E., Black, E., McDonald, D., Ratnatunga, C., Pillai, R., & Channon, K. M. (2000). Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ. Res., 86, E85–E90.Google Scholar
  71. Guzik, T. J., Sadowski, J., Guzik, B., Jopek, A., Kapelak, B., Przybylowski, P., Wierzbicki, K., Korbut, R., Harrison, D. G., & Channon, K. M. (2006). Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 26, 333–339.CrossRefGoogle Scholar
  72. Hayek, T., Fuhrman, B., Vaya, J., Rosenblat, M., Belinky, P., Coleman, R., Elis, A., & Aviram, M. (1997). Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler. Thromb. Vasc. Biol., 17, 2744–2752.Google Scholar
  73. Henning, S. M., Aronson, W., Niu, Y., Conde, F., Lee, N. H., Seeram, N. P., Lee, R. P., Lu, J., Harris, D. M., Moro, A., Hong, J., Pak-Shan, L., Barnard, R. J., Ziaee, H. G., Csathy, G., Go, V. L., Wang, H., & Heber, D. (2006). Tea polyphenols and theaflavins are present in prostate tissue of humans and mice after green and black tea consumption. J. Nutr., 136, 1839–1843.Google Scholar
  74. Henry-Vitrac, C., Desmouliére, A., Girard, D., Mérillon, J. M., & Krisa, S. (2006). Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells. Eur. J. Nutr., 45, 376–382.CrossRefGoogle Scholar
  75. Hoffmann, A., Natoli, G., & Ghosh, G. (2006). Transcriptional regulation via the NF-kappaB signaling module. Oncogene, 25, 6706–6716.CrossRefGoogle Scholar
  76. Hou, D. X., Masuzaki, S., Hashimoto, F., Uto, T., Tanigawa, S., Fujii, M., & Sakata, Y. (2007). Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated mouse macrophages: molecular mechanisms and structure-activity relationship. Arch. Biochem. Biophys., 460, 67–74.CrossRefGoogle Scholar
  77. Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer, B., & Sinclair, D. A. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196.CrossRefGoogle Scholar
  78. Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. J. Cell Sci., 117, 4619–4628.CrossRefGoogle Scholar
  79. Iijima, K., Yoshizumi, M., Hashimoto, M., Akishita, M., Kozaki, K., Ako, J., Watanabe, T., Ohike, Y., Son, B., Yu, J., Nakahara, K., & Ouchi, Y. (2002). Red wine polyphenols inhibit vascular smooth muscle cell migration through two distinct signaling pathways. Circulation, 105, 2404–2410.CrossRefGoogle Scholar
  80. Imai, S., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403, 795–800.CrossRefGoogle Scholar
  81. Infanger, D. W., Sharma, R. V., & Davisson, R. L. (2006). NADPH oxidases of the brain: distribution, regulation, and function. Antiox. Redox Signal., 8, 1583–1596.CrossRefGoogle Scholar
  82. Ivanov, V., Carr, A. C., & Frei, B. (2001). Red wine antioxidants bind to human lipoproteins and protect them from metal ion-dependent and -independent oxidation. J. Agric. Food Chem., 49, 4442–4449.CrossRefGoogle Scholar
  83. Jimenez, R., Lopez-Sepulveda, R., Kadmiri, M., Romero, M., Vera, R., Sanchez, M., Vargas, F., O’Valle, F., Zarzuelo, A., Duenas, M., Santos-Buelga, C., & Duarte, J. (2007). Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase. Free Rad. Biol. Med., 43, 462–473.CrossRefGoogle Scholar
  84. Jung, U. J., Kim, H. J., Lee, J. S., Lee, M. K., Kim, H. O., Park, E. J., Kim, H. K., Jeong, T. S., & Choi, M. S. (2003). Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin. Nutr., 22, 561–568.CrossRefGoogle Scholar
  85. Kaminski, W. E., Piehler, A., & Wenzel, J. J. (2006). ABC A-subfamily transporters: structure, function and disease. Biochim. Biophis. Acta, 1762, 510–524.Google Scholar
  86. Karin, M., & Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Ann. Rev. Immunol., 18, 621–663.CrossRefGoogle Scholar
  87. Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol., 5, 749–759.CrossRefGoogle Scholar
  88. Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., Delalle, I., Baur, J. A., Sui, G., Armour, S. M., Puigserver, P., Sinclair, D. A., & Tsai, L. H. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J., 26, 3169–3179.CrossRefGoogle Scholar
  89. Kim, H. J., Oh, G. T., Park, Y. B., Lee, M. K., Seo, H. J., & Choi, M. S. (2004). Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sci., 74, 1621–1634.CrossRefGoogle Scholar
  90. Kuhn, D. J., Burns, A. C., Kazi, A., & Dou, Q. P. (2004). Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor. Biochim. Biophis. Acta, 1682, 1–10.Google Scholar
  91. Lafay, S., Morand, C., Manach, C., Besson, C., & Scalbert, A. (2006). Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. British J. Nutr., 96, 39–46.CrossRefGoogle Scholar
  92. Lamuela-Raventos, R. M., Covas, M. I., Fito, M., Marrugat, J., & de La Torre-Boronat, M. C. (1999). Detection of dietary antioxidant phenolic compounds in human LDL. Clin. Chem., 45, 1870–1872.Google Scholar
  93. Lee, S. O., Jeong, Y. J., Yu, M. H., Lee, J. W., Hwangbo, M. H., Kim, C. H., & Lee, I. S. (2006). Wogonin suppresses TNF-alpha-induced MMP-9 expression by blocking the NF-kappaB activation via MAPK signaling pathways in human aortic smooth muscle cells. Biochem. Biophys. Res. Comm., 351, 118–125.CrossRefGoogle Scholar
  94. Leikert, J. F., Rathel, T. R., Wohlfart, P., Cheynier, V., Vollmar, A. M., & Dirsch, V. M. (2002). Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation, 106, 1614–1617.CrossRefGoogle Scholar
  95. Lin, S. J., Defossez, P. A., & Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 289, 2126–2128.CrossRefGoogle Scholar
  96. Liu, J. C., Chen, J. J., Chan, P., Cheng, C. F., & Cheng, T. H. (2003). Inhibition of cyclic strain-induced endothelin-1 gene expression by resveratrol. Hypertension, 42, 1198–1205.CrossRefGoogle Scholar
  97. Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., & Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 107, 137–148.CrossRefGoogle Scholar
  98. Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 81, 230S–242S.Google Scholar
  99. Mantei, N., Villa, M., Enzler, T., Wacker, H., Boll, W., James, P., Hunziker, W., & Semenza, G. (1988). Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J., 7, 2705–2713.Google Scholar
  100. Masoro, E. J. (2000). Caloric restriction and aging: an update. Exp. Gerontol., 35, 299–305.CrossRefGoogle Scholar
  101. Maxwell, S., Cruickshank, A., & Thorpe, G. (1994). Red wine and antioxidant activity in serum. The Lancet, 344, 193–194.CrossRefGoogle Scholar
  102. McDougall, G, J., Fyffe, S., Dobson, P., & Stewart, D. (2005). Anthocyanins from red wine – their stability under simulated gastrointestinal digestion. Phytochemistry, 66, 2540–2548.CrossRefGoogle Scholar
  103. Mink, P. J., Scrafford, C. G., Barraj, L. M., Harnack, L., Hong, C. P., Nettleton, J. A., & Jacobs, D. R. Jr. (2007). Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am. J. Clin. Nutr., 85, 895–909.Google Scholar
  104. Moreno, M. U., San Jose, G., Orbe, J., Paramo, J. A., Beloqui, O., Diez, J., & Zalba, G. (2003). Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Letters, 542, 27–31.CrossRefGoogle Scholar
  105. Mukamal, K. J., Massaro, J. M., Ault, K. A., Mittleman, M. A., Sutherland, P. A., Lipinska, I., Levy, D., D’Agostino, R. B., & Tofler, G. H. (2005). Alcohol consumption and platelet activation and aggregation among women and men: the Framingham Offspring Study. Alcohol. Clin. Exp. Res., 29, 1906–1912.CrossRefGoogle Scholar
  106. Mullen, E., Brown, R. M., Osborne, T. F., & Shay, N. F. (2004). Soy isoflavones affect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J. Nutr., 134, 2942–2947.Google Scholar
  107. Mursu, J., Voutilainen, S., Nurmi, T., Rissanen, T. H., Virtanen, J. K., Kaikkonen, J., Nyyssönen, K., & Salonen, J. T. (2004). Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Rad. Biol. Med., 37, 1351–1359.CrossRefGoogle Scholar
  108. Nam, N. H. (2006). Naturally occurring NF-kappaB inhibitors. Mini Reviews in Medicinal Chemistry, 6, 945–951.CrossRefGoogle Scholar
  109. Nardini, M., Cirillo, E., Natella, F., & Scaccini, C. (2002). Absorption of phenolic acids in humans after coffee consumption. J. Agric. Food Chem., 50, 5735–5741.CrossRefGoogle Scholar
  110. Natella, F., Nardini, M., Belelli, F., & Scaccini, C. (2007). Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am. J. Clin. Nutr., 86, 604–609.Google Scholar
  111. Ndiaye, M., Chataigneau, M., Lobysheva, I., Chataigneau, T., & Schini-Kerth, V. B. (2005). Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J., 19, 455–457.Google Scholar
  112. Nemeth, K., Plumb, G. W., Berrin, J. G., Juge, N., Jacob, R., Naim, H. Y., Williamson, G., Swallow, D. M., & Kroon, P. A. (2003). Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr., 42, 29–42.CrossRefGoogle Scholar
  113. Nigdikar, S. V., Williams, N. R., Griffin, B. A., & Howard, A. N. (1998). Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am. J. Clin. Nutr., 68, 258–265.Google Scholar
  114. Oak, M. H., Chataigneau, M., Keravis, T., Chataigneau, T., Beretz, A., Andriantsitohaina, R., Stoclet, J. C., Chang, S. J., & Schini-Kerth, V. B. (2003). Red wine polyphenolic compounds inhibit vascular endothelial growth factor expression in vascular smooth muscle cells by preventing the activation of the p38 mitogen-activated protein kinase pathway. Arterioscler. Thromb. Vasc. Biol., 23, 1001–1007.CrossRefGoogle Scholar
  115. Oak, M. H., El Bedoui, J., Anglard, P., & Schini-Kerth, V. B. (2004). Red wine polyphenolic compounds strongly inhibit pro-matrix metalloproteinase-2 expression and its activation in response to thrombin via direct inhibition of membrane type 1-matrix metalloproteinase in vascular smooth muscle cells. Circulation, 110, 1861–1867.CrossRefGoogle Scholar
  116. O’Byrne, D. J., Devaraj, S., Grundy, S. M., & Jialal, I. (2002). Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. Am. J. Clin. Nutr., 76, 1367–1374.Google Scholar
  117. Olthof, M. R., Hollman, P. C., Buijsman, M. N., van Amelsvoort, J. M., & Katan, M. B. (2003). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J. Nutr., 133, 1806–1814.Google Scholar
  118. Oram, J. F., & Vaughan, A. M. (2006). ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ. Res., 99, 1031–1043.CrossRefGoogle Scholar
  119. Pal, S., Ho, N., Santos, C., Dubois, P., Mamo, J., Croft, K., & Allister, E. (2003). Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J. Nutr., 133, 700–706.Google Scholar
  120. Pal, S., Ho, S. S., & Takechi, R. (2005). Red wine polyphenolics suppress the secretion of ApoB48 from human intestinal CaCo-2 cells. J. Agric. Food Chem., 53, 2767–2772.CrossRefGoogle Scholar
  121. Pignatelli, P., Di Santo, S., Buchetti, B., Sanguigni, V., Brunelli, A., & Violi, F. (2006a). Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J., 20, 1082–1089.CrossRefGoogle Scholar
  122. Pignatelli, P., Ghiselli, A., Buchetti, B., Carnevale, R., Natella, F., Germano, G., Fimognari, F., Di Santo, S., Lenti, L., & Violi, F. (2006b). Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis, 188, 77–83.CrossRefGoogle Scholar
  123. Pitsavos, C., Makrilakis, K., Panagiotakos, D. B., Chrysohoou, C., Ioannidis, I., Dimosthenopoulos, C., Stefanadis, C., & Katsilambros, N. (2005). The J-shape effect of alcohol intake on the risk of developing acute coronary syndromes in diabetic subjects: the CARDIO2000 II Study. Diabet. Med., 22, 243–248.CrossRefGoogle Scholar
  124. Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339, 1523–1526.CrossRefGoogle Scholar
  125. Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434, 113–138.CrossRefGoogle Scholar
  126. Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 68, 320–344.CrossRefGoogle Scholar
  127. Sanchez, M., Lodi, F., Vera, R., Villar, I. C., Cogolludo, A., Jimenez, R., Moreno, L., Romero, M., Tamargo, J., Perez-Vizcaino, F., & Duarte, J. (2007). Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II in rat aorta. J. Nutr., 137, 910–915.Google Scholar
  128. Sarr, M., Chataigneau, M., Martins, S., Schott, C., El Bedoui, J., Oak, M. H., Muller, B., Chataigneau, T., & Schini-Kerth, V. B. (2006). Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc. Res., 71, 794–802.CrossRefGoogle Scholar
  129. Sasaki, S. (2000). Alcohol and its relation to all-cause and cardiovascular mortality. Acta Cardiol., 55, 151–156.CrossRefGoogle Scholar
  130. Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. J. Nutr., 130, 2073S–2085S.Google Scholar
  131. Schubert, S. Y., Neeman, I., & Resnick, N. (2002). A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J., 16, 1931–1933.Google Scholar
  132. Sembries, S., Dongowski, G., Mehrlander, K., Will, F., & Dietrich, H. (2006). Physiological effects of extraction juices from apple, grape, and red beet pomaces in rats. J. Agric. Food Chem., 54, 10269–10280.CrossRefGoogle Scholar
  133. Serafini, M., Maiani, G., & Ferro-Luzzi, A. (1998). Alcohol-free red wine enhances plasma antioxidant capacity in humans. J. Nutr., 128, 1003–1007.Google Scholar
  134. Sesso, H. D. (2001). Alcohol and cardiovascular health: recent findings. Am. J. Cardiovasc. Drug.: drugs, devices, and other interventions, 1, 167–172.Google Scholar
  135. Sesso, H. D., Gaziano, J. M., Liu, S., & Buring, J. E. (2003). Flavonoid intake and the risk of cardiovascular disease in women. Am. J. Clin. Nutr., 77, 1400–1408.Google Scholar
  136. Sevov, M., Elfineh, L., & Cavelier, L. B. (2006). Resveratrol regulates the expression of LXR-alpha in human macrophages. Biochem. Biophys. Res. Comm., 348, 1047–1054.CrossRefGoogle Scholar
  137. Shahidi, F., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 32, 67–103.CrossRefGoogle Scholar
  138. Shimizu, M., Kobayashi, Y., Suzuki, M., Satsu, H., & Miyamoto, Y. (2000). Regulation of intestinal glucose transport by tea catechins. Biofactors, 13, 61–65.Google Scholar
  139. Silberberg, M., Morand, C., Mathevon, T., Besson, C., Manach, C., Scalbert, A., & Remesy, C. (2006). The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur. J. Nutr., 45, 88–96.CrossRefGoogle Scholar
  140. Simonetti, P., Gardana, C., & Pietta, P. (2001). Plasma levels of caffeic acid and antioxidant status after red wine intake. J. Agric. Food Chem., 49, 5964–5968.CrossRefGoogle Scholar
  141. Sohal, R. S., & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273, 59–63.CrossRefGoogle Scholar
  142. Sorescu, D., Weiss, D., Lassegue, B., Clempus, R. E., Szocs, K., Sorescu, G. P., Valppu, L., Quinn, M. T., Lambeth, J. D., Vega, J. D., Taylor, W. R., & Griendling, K. K. (2002). Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation, 105, 1429–1435.CrossRefGoogle Scholar
  143. St Leger, A. S., Cochrane, A. L., & Moore, F. (1979). Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. The Lancet, 1, 1017–1020.CrossRefGoogle Scholar
  144. Stein, J. H., Keevil, J. G., Wiebe, D. A., Aeschlimann, S., & Folts, J. D. (1999). Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation, 100, 1050–1055.Google Scholar
  145. Stoclet, J. C., Chataigneau, T., Ndiaye, M., Oak, M. H., El Bedoui, J., & Chataigneau, M., (2004). Schini-Kerth, V. B. Vascular protection by dietary polyphenols. Eur. J. Pharmacol., 500, 299–313.Google Scholar
  146. Su, H. C., Hung, L. M., & Chen, J. K. (2006). Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab., 290, E1339–E1346.CrossRefGoogle Scholar
  147. Takechi, R., Hiramatsu, N., Mamo, J. C., & Pal, S. (2004). Red wine polyphenolics suppress the secretion and the synthesis of Apo B48 from human intestinal CaCo-2 cells. Biofactors, 22, 181–183.Google Scholar
  148. Terra, X., Valls, J., Vitrac, X., Merrillon, J. M., Arola, L., Ardevol, A., Blade, C., Fernandez-Larrea, J., Pujadas, G., Salvado, J., & Blay, M. (2007). Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J. Agric. Food Chem., 55, 4357–4365.CrossRefGoogle Scholar
  149. Tissenbaum, H. A., & Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 410, 227–230.CrossRefGoogle Scholar
  150. Tontonoz, P., & Mangelsdorf, D. J. (2003). Liver X receptor signaling pathways in cardiovascular disease. Mol. Endocrinol., 17, 985–993.CrossRefGoogle Scholar
  151. Ukil, A., Maity, S., & Das, P. K. (2006). Protection from experimental colitis by theaflavin-3,3’-digallate correlates with inhibition of IKK and NF-kappaB activation. Br. J. Pharmacol., 149, 121–131.CrossRefGoogle Scholar
  152. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39, 44–84.CrossRefGoogle Scholar
  153. Vayalil, P. K., Mittal, A., & Katiyar, S. K. (2004). Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis, 25, 987–995.CrossRefGoogle Scholar
  154. Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., & Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107, 149–159.CrossRefGoogle Scholar
  155. Vidal, R., Hernandez-Vallejo, S., Pauquai, T., Texier, O., Rousset, M., Chambaz, J., Demignot, S., & Lacorte, J. M. (2005). Apple procyanidins decrease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes. J. Lipid Res., 46, 258–268.CrossRefGoogle Scholar
  156. Vita, J. A. (2005). Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am. J. Clin. Nutr., 81, 292S–297S.Google Scholar
  157. Vitaglione, P., Sforza, S., Galaverna, G., Ghidini, C., Caporaso, N., Vescovi, P. P., Fogliano, V., & Marchelli, R. (2005). Bioavailability of trans-resveratrol from red wine in humans. Mol. Nutr. Food Res., 49, 495–504.CrossRefGoogle Scholar
  158. Wallerath, T., Deckert, G., Ternes, T., Anderson, H., Li, H., Witte, K., & Forstermann, U. (2002). Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation, 106, 1652–1658.CrossRefGoogle Scholar
  159. Wheeler, D. S., Catravas, J. D., Odoms, K., Denenberg, A., Malhotra, V., & Wong, H. R. (2004). Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1 beta-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J. Nutr., 134, 1039–1044.Google Scholar
  160. Whitehead, T. P., Robinson, D., Allaway, S., Syms, J., & Hale, A. (1995). Effect of red wine ingestion on the antioxidant capacity of serum. Clin. Chem., 41, 32–35.Google Scholar
  161. Wilcox, L. J., Borradaile, N. M., de Dreu, L. E., & Huff, M. W. (2001). Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J. Lipid Res., 42, 725–734.Google Scholar
  162. Witztum, J. L., & Steinberg, D. (1991). Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Inves., 88, 1785–1792.CrossRefGoogle Scholar
  163. Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M., & Sinclair, D. A. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 430, 686–689.Google Scholar
  164. World Health Organisation. (1989). World health statistics annual. Geneve, World Health Organisation.Google Scholar
  165. Xia, M., Hou, M., Zhu, H., Ma, J., Tang, Z., Wang, Q., Li, Y., Chi, D., Yu, X., Zhao, T., Han, P., Xia, X., & Ling, W. (2005). Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor {gamma}-liver X receptor {alpha}-ABCA1 pathway. J. Biol. Chem., 280, 36792–36801.CrossRefGoogle Scholar
  166. Xia, M., Ling, W., Zhu, H., Wang, Q., Ma, J., Hou, M., Tang, Z., Li, L., & Ye, Q. (2007). Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution. Arterioscler. Thromb. Vasc. Biol., 27, 519–524.CrossRefGoogle Scholar
  167. Xu, J. W., Ikeda, K., & Yamori, Y. (2004). Genistein inhibits expressions of NADPH oxidase p22phox and angiotensin II type 1 receptor in aortic endothelial cells from stroke-prone spontaneously hypertensive rats. Hypertens. Res., 27, 675–683.CrossRefGoogle Scholar
  168. Yang, F., Oz, H. S., Barve, S., de Villiers, W. J., McClain, C. J., & Varilek, G. W. (2001). The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Molecular Pharmacology, 60, 528–533.Google Scholar
  169. Yang, H., Baur, J. A., Chen, A., Miller, C., Adams, J. K., Kisielewski, A., Howitz, K. T., Zipkin, R. E., & Sinclair, D. A. (2007). Design and synthesis of compounds that extend yeast replicative lifespan. Aging Cell, 6, 35–43.CrossRefGoogle Scholar
  170. Yang, T. T., & Koo, M. W. (2000). Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci.s, 66, 411–423.Google Scholar
  171. Ying, C. J., Xu, J. W., Ikeda, K., Takahashi, K., Nara, Y., & Yamori, Y. (2003). Tea polyphenols regulate nicotinamide adenine dinucleotide phosphate oxidase subunit expression and ameliorate angiotensin II-induced hyperpermeability in endothelial cells. Hypertens. Res., 26, 823–828.CrossRefGoogle Scholar
  172. Zalba, G., Fortuño, A., Orbe, J., San Jose, G., Moreno, M. U., Belzunce, M., Rodriguez, J. A., Beloqui, O., Paramo, J. A., & Diez, J. (2007). Phagocytic NADPH oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: implications for human atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 27, 587–593.CrossRefGoogle Scholar
  173. Zern, T. L., Wood, R. J., Greene, C., West, K. L., Liu, Y., Aggarwal, D., Shachter, N. S., & Fernandez, M. L. (2005). Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr., 135, 1911–1917.Google Scholar
  174. Zhen, M. C., Huang, X. H., Wang, Q., Sun, K., Liu, Y. J., Li, W., Zhang, L. J., Cao, L. Q., & Chen, X. L. (2006). Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacol. Sin., 27, 1600–1607.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alberto Dávalos
    • 1
  • Miguel A. Lasunción
  1. 1.Servicio de Bioquímica-Investigación Hospital Ramón y CajalCtra. de Colmenar, km 9, E-28034, Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations