Non-flavonoid Phenolic Compounds

  • Michael Rentzsch
  • Andrea Wilkens
  • Peter Winterhalter


Ferulic Acid Caffeic Acid Vanillic Acid Hydroxycinnamic Acid White Wine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres-Lacueva, C., Lamuela-Raventós, R. M., Buxadera, S., Torre-Bonat, M. C. (1996). Polyphenol content in sparkling wines (Cava) at different aging period. In J. Vercauteren, C. Chèze, M.C. Dumon, J.F. Weber (Eds.), Polyphenols communications 96/XVIIIth International Conference on Polyphenols (Vol. 2, pp. 305–306). Bordeaux: Secrétariat du Groupe Polyphénols.Google Scholar
  2. Baderschneider, B., & Winterhalter, P. (2000). Isolation and characterization of novel stilbene derivatives from Riesling wine. J. Agric. Food Chem., 48, 2681–2686.CrossRefGoogle Scholar
  3. Baderschneider, B., & Winterhalter, P. (2001). Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J. Agric. Food Chem., 49, 2788–2798.CrossRefGoogle Scholar
  4. Baldi, A., Romani, A., Mulinacci, N., & Vincieri, F. F. (1993). Composés phenoliques dans les cépages de Toscane de Vitis vinifera L. J. Int. Sci. Vigne Vin, 27, 201–215.Google Scholar
  5. Baranac, J. M., Petranovic, N. A., & Dimitric-Markovic, J. M. (1996). Spectrophotometric study of anthocyan copigmentation reactions. J. Agric. Food Chem., 44, 1333–1336.CrossRefGoogle Scholar
  6. Betés-Saura, C., Andrés-Lacueva, C., & Lamuela-Raventós, R. M. (1996). Phenolics in white free run juices and wines from Penedès by High-Performance Liquid Chromatography: Changes during vinification. J. Agric. Food Chem., 44, 3040–3046.CrossRefGoogle Scholar
  7. Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic., 52, 67–87.Google Scholar
  8. Boursiquot, J. M., Sapis, J. C., & Macheix, J. J. (1986). Les esters hydroxycinnamiques chez le genre Vitis. Essais d’application taxonomique premiers résultats. C.R. Acad. Sci. Serie Iii- Life Sciences, 302, 177–180.Google Scholar
  9. Buiarelli, F., Coccioli, F., Jasionowska, R., Merolle, M., & Terracciano, A. (2007). Analysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometry. Rap. Commun. Mass Spectrom., 21, 2955–2964.CrossRefGoogle Scholar
  10. Burns, J., Yokota, T., Ashihara, H., Lean, M. E. J., & Crozier, A. (2002). Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 50, 3337–3340.CrossRefGoogle Scholar
  11. Cantos, E., Espín, J. C., Fernandez, M. J., Oliva, J., & Tomas-Barberan, F. A. (2003). Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J. Agric. Food Chem., 51, 1208–1214.CrossRefGoogle Scholar
  12. Careri, M., Corradini, C., Elviri, L., Nicoletti, I., & Zagnoni, I. (2004). Liquid Chromatography-Electrospray Tandem Mass Spectrometry of cis-resveratrol and trans-resveratrol: Development, validation, and application of the method to red wine, grape, and winemaking byproducts. J. Agric. Food Chem., 52, 6868–6874.CrossRefGoogle Scholar
  13. Chatonnet, P., Dubourdieu, D., & Boidron, J. N. (1989). Effects of certain factors on yeast phenolic acid decarboxylation. Conn. Vigne Vin., 23, 59–62.Google Scholar
  14. Chatonnet, P., Dubourdieu, D., Boidron, J.-N., & Lavigne, V. (1993). Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J. Sci. Food Agric., 62, 191–202.CrossRefGoogle Scholar
  15. Cheynier, V. F., Trousdale, E. K., Singleton, V. L., Salgues, M. J., & Wylde, R. (1986). Characterization of 2-S-glutathionylcaftaric acid and its hydrolysis in relation to grape wines. J. Agric. Food Chem., 34, 217–221.CrossRefGoogle Scholar
  16. Cheynier, V., Rigaud, J., Souquet, J. M., Barillere, J. M., & Moutounet, M. (1989). Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines. Am. J. Enol. Vitic., 40, 36–42.Google Scholar
  17. Cheynier, V., Rigaud, J., Souquet, J. M., Duprat, F., & Moutounet, M. (1990). Must Browning in relation to the behavior of phenolic compounds during oxidation. Am. J. Enol. Vitic., 41, 346–349.Google Scholar
  18. Cilliers, J. J. L., & Singleton, V. L. (1990). Caffeic Acid Autoxidation and the Effects of Thiols. J. Agric. Food Chem., 38, 1789–1796.CrossRefGoogle Scholar
  19. Cooper, H. J., & Marshall, A. G. (2001). Electrospray Ionization Fourier Transform Mass Spectrometric Analysis of Wine. J. Agric. Food Chem., 49, 5710–5718.CrossRefGoogle Scholar
  20. Dallas, C., Ricardo-da-Silva, J. M., & Laureano, O. (1996a). Interactions of oligomeric procyanidins in model wine solutions containing malvidin-3-glucoside and acetaldehyde. J. Sci. Food Agric., 70, 493–500.CrossRefGoogle Scholar
  21. Dallas, C., Ricardo-da-Silva, J. M., & Laureano, O. (1996b). Products formed in model wine solutions involving anthocyanins, procyanidin B2, and acetaldehyde. J. Agric. Food Chem., 44, 2402–2407.CrossRefGoogle Scholar
  22. Darias-Martín, J., Martín-Luis, B., Carrillo-López, M., Lamuela-Raventós, R., Díaz-Romero, C., & Boulton, R. (2002). Effect of caffeic acid on the color of red wine. J. Agric. Food Chem., 50, 2062–2067.CrossRefGoogle Scholar
  23. Dimitric Markovic, J. M. D., Petranovic, N. A., & Baranac, J. M. (2000). A Spectrophotometric study of the copigmentation of malvin with caffeic and ferulic acids. J. Agric. Food Chem., 48, 5530–5536.CrossRefGoogle Scholar
  24. Dimitric Markovic, J. M. D., Petranovic, N. A., & Baranac, J. M. (2005). The copigmentation effect of sinapic acid on malvin: A spectroscopic investigation on colour enhancement. J. Photochem. Photobiol. B: Biol., 78, 223–228.CrossRefGoogle Scholar
  25. Drawert, F., Schreier, P., & Scherer, W. (1974). Gaschromatographisch-massenspektrometrische Untersuchung flüchtiger Inhaltsstoffe des Weines III. Söuren des Weinaromas. Z. Lebensm. Unters. Forsch., 155, 342–347.CrossRefGoogle Scholar
  26. Es-Safi, N.-E., Fulcrand, H., Cheynier, V., & Moutounet, M. (1999). Studies on acetaldehyde-induced condensation of (-)-epicatechin and malvidin 3-O-glucoside in a model solution system. J. Agric. Food Chem., 47, 2096–2102.CrossRefGoogle Scholar
  27. Fernandéz de Simon, B., Pérez-Ilzarbe, J., Hernández, T., Gómez-Cordovés, C., & Estrella, I. (1992). Importance of phenolic compounds for the characterization of fruit juices. J. Agric. Food Chem., 40, 1531–1535.CrossRefGoogle Scholar
  28. Figueiredo, P., George, F., Tatsuzawa, F., Toki, K., Saito, N., & Brouillard, R. (1999). New features of intramolecular copigmentation by acylated anthocyanins. Phytochemistry, 51, 125–132.CrossRefGoogle Scholar
  29. Fulcrand, H., Cameira dos Santos, P.-J., Sarni-Manchado, P., Cheynier, V., & Favre-Bonvin, J. (1996a). Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perkin Trans. 1: Organic and Bio-Organic Chemistry, 735–739.Google Scholar
  30. Fulcrand, H., Doco, T., Es-Safi, N.-E., Cheynier, V., & Moutounet, M. (1996b). Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography-ion spray mass spectrometry. J. Chromatogr. A, 752, 85–91.CrossRefGoogle Scholar
  31. Gambuti, A., Strollo, D., Ugliano, M., Lecce, L., & Moio, L. (2004). trans-Resveratrol, quercetin, (+)-catechin, and (-)-epicatechin content in south italian monovarietal wines: Relationship with maceration time and marc pressing during winemaking. J. Agric. Food Chem., 52, 5747–5751.CrossRefGoogle Scholar
  32. Garcia-Viguera, C., & Bridle, P. (1995). Analysis of non-coloured phenolic compounds in red wines. A comparison of High-Performance Liquid Chromatography and Capillary Zone Electrophoresis. Food Chem., 54, 349–352.CrossRefGoogle Scholar
  33. Goldberg, D. M., Yan, J., Ng, E., Diamandis, E. P., Karumanchiri, A., Soleas, G., & Waterhouse, A. L. (1995). A global survey of trans-resveratrol concentrations in commercial wines. Am. J. Enol. Vitic., 46, 159–165.Google Scholar
  34. Goldberg, D. M., Tsang, E., Karumanchiri, A., Diamandis, E. P., Soleas, G., & Ng, E. (1996a). Method to assay the concentrations of phenolic constituents of biological interest in wines. Anal. Chem., 68, 1688–1694.CrossRefGoogle Scholar
  35. Goldberg, D. M., Ng, E., Karumanchiri, A., Diamandis, E. P., & Soleas, G. J. (1996b). Resveratrol glucosides are important components of commercial wines. Am. J. Enol. Vitic., 47, 415–420.Google Scholar
  36. Gorham, J. (1995). The Biochemistry of the Stilbenoids. London: Chapman & Hall.Google Scholar
  37. Guebailia, H. A., Chira, K., Richard, T., Mabrouk, T., Furiga, A., Vitrac, X., Monti, J. P., Delaunay, J. C., & Mérillon, J. M. (2006). Hopeaphenol: The first resveratrol tetramer in wines from North Africa. J. Agric. Food Chem., 54, 9559–9564.CrossRefGoogle Scholar
  38. Güntert, M., Rapp, A., Takeoka, G. R., & Jennings, W. (1986). HRGC and HRGC-MS Applied to wine constituents of lower volatility. Z. Lebens. Unter. Forsch., 182, 200–204.CrossRefGoogle Scholar
  39. Håkansson, A. E., Pardon, K., Hayasaka, Y., de Sa, M., & Herderich, M. (2003). Structures and colour properties of new red wine pigments. Tetrahedron Lett., 44, 4887–4891.CrossRefGoogle Scholar
  40. Hayasaka, Y., & Asenstorfer, R. E. (2002). Screening for potential pigments derived from anthocyanins in red wine using nanoelectrospray tandem mass spectrometry. J. Agric. Food Chem., 50, 756–761.CrossRefGoogle Scholar
  41. Hernández, T., Estrella, I., Pérez-Gordo, M., Alegría, E. G., Tenorio, C., Ruiz-Larrrea, F., & Moreno-Arribas, M. V. (2007). Contribution of malolactic fermentation by Oenococcus oeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. J. Agric. Food Chem., 55, 5260–5266.CrossRefGoogle Scholar
  42. Herrick, I. W., & Nagel, C. W. (1985). The caffeoyl tartrate content of white Riesling wines from California, Washington, and Alsace. Am. J. Enol. Vitic., 36, 95–97.Google Scholar
  43. Herrmann, K. (1989). Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr., 28, 315–347.Google Scholar
  44. Holbach, B., Marx, R., & Zimmer, M. (2001). Bedeutung der Shikimisöure und des Anthocyanspektrums für die Charakterisierung von Rebsorten. Lebensmittelchemie, 55, 32–34.Google Scholar
  45. Ito, T., Akao, Y., Yi, H., Ohguchi, K., Matsumoto, K., Tanaka, T., Iinuma, M., & Nozawa, Y. (2003). Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanism of apoptosis induced by vaticanol C. Carcinogesis, 24,1489–1497.CrossRefGoogle Scholar
  46. Jean-Denis, J. B., Pezet, R., & Tabacchi, R. (2006). Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by Liquid Chromatography-Atmospheric Pressure Photoionisation Mass Spectrometry. J. Chromatogr. A, 1112, 263–268.CrossRefGoogle Scholar
  47. Jeandet, P., Bessis, R., Sbaghi, M., & Meunier, P. (1994). Occurrence of a resveratrol b-D-glucoside in wine: Preliminary studies. Vitis, 33, 183–184.Google Scholar
  48. Jeandet, P., Bessis, R., Sbaghi, M., Meunier, P., & Trollat, P. (1995). Resveratrol content of wines of different ages: Relationship with fungal disease pressure in the vineyard. Am. J. Enol. Vitic., 46, 1–4.Google Scholar
  49. Jeandet, P., Breuil, A. C., Adrian, M., Weston, L. A., Debord, S., Meunier, P., Maume, G., & Bessis, R. (1997). HPLC analysis of grapevine phytoalexins coupling Photodiode Array Detection and Fluorometry. Anal. Chem., 69, 5172–5177.CrossRefGoogle Scholar
  50. Kammerer, D., Claus, A., Carle, R., & Schieber, A. (2004). Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem., 52, 4360–4367.CrossRefGoogle Scholar
  51. Lamuela-Raventós, R. M., Romero-Pérez, A. I., Waterhouse, A. L., & de la Torre-Boronat, M. C. (1995). Direct HPLC analysis of cis- and trans-resveratrol and piceid isomers in Spanish red Vitis vinifera wines. J. Agric. Food Chem., 43, 281–283.CrossRefGoogle Scholar
  52. Landrault, N., Larronde, F., Delaunay, J.-C., Castagnino, C., Vercauteren, J., Mérillon, J.-M., Gasc, F., Cros, G., & Teissédre, P.-L. (2002). Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during Noble Rot development. J. Agric. Food Chem., 50, 2046–2052.CrossRefGoogle Scholar
  53. Lao, C., López-Tamames, E., Lamuela-Raventós, R. M., Buxaderas, S., Torre-Bonat, M. C. (1996). Effect of grape pectic enzyme treatment on phenolics of white musts and wines. In J. Vercauteren, C. Chèze, M. C. Dumon, J. F. Weber (Eds.), Polyphenols communications 96/XVIIIth International Conference on Polyphenols (Vol. 2, pp. 303–304). Bordeaux: Secrétariat du Groupe Polyphénols.Google Scholar
  54. Lee, C. Y., Jaworski, A. (1989). Major phenolic compounds in ripening white grapes. Am. J. Enol. Vitic., 40, 43–46.Google Scholar
  55. Marinos, V. A., Tate, M. E., Williams, P. J. (1992). Lignan and phenylpropanoid glycerol glucosides in wine. Phytochemistry, 31, 4307–4312.CrossRefGoogle Scholar
  56. Mark, L., Nikfardjam, M. S. P., Avar, P., & Ohmacht, R. (2005). A validated HPLC method for the quantitative analysis of trans-resveratrol and trans-piceid in Hungarian wines. J. Chromatogr. Sci., 43, 445–449.Google Scholar
  57. Mazza, G., Miniati, E. (1993). Anthocyanins in fruits, vegetables, and grains. Boca Raton:CRC Press.Google Scholar
  58. Miniati, E., Damiani, P., & Mazza, G. (1992). Copigmentation and self-association of anthocyanins in food model systems. It. J. Food Sci., 4, 109–116.Google Scholar
  59. Monagas, M., Bartolomé, B., & Gómez-Cordovés, C. (2005a). Updated knowledge about the presence of phenolic compounds in wine. Cr. Rev. Food Sci. Nutr., 45, 85–118.CrossRefGoogle Scholar
  60. Monagas, M., Suárez, R., Gómez-Cordovés, C., & Bartolomé, B. (2005b). Simultaneous determination of nonanthocyanin phenolic compounds in red wines by HPLC-DAD/ESI-MS. Am. J. Enol. Vitic., 56, 139–147.Google Scholar
  61. Naugler, C., McCallum, J. L., Klassen, G., & Strommer, J. (2007). Concentrations of trans-resveratrol and related stilbenes in Nova Scotia wines. Am. J. Enol. Vitic., 58, 117–119.Google Scholar
  62. Nurmi, T., Heinonen, S., Mazur, W., Deyama, T., Nishibe, S., & Adlercreutz, H. (2003). Lignans in selected wines. Food Chem., 83, 303–309.CrossRefGoogle Scholar
  63. Okamura, S., & Watanabe, M. (1981). Determination of phenolic cinnamates in white wine and their effect on wine quality. Agric. Biol. Chem., 45, 2063–2070.Google Scholar
  64. Ong, B. Y., & Nagel, C. W. (1978). High-Pressure Liquid-Chromatographic analysis of hydroxycinnamic acid - tartaric acid esters and their glucose esters in Vitis vinifera. J. Chromatogr., 157, 345–355.CrossRefGoogle Scholar
  65. Otteneder, H., Holbach, B., Marx, R., & Zimmer, M. (2002). Rebsortenbestimmung in Rotwein anhand der Anthocyanspektren. Mitt. Klosterneuburg, 52, 187–194.Google Scholar
  66. Peña-Neira, A., Hernández, T., García-Vallejo, C., Estrella, I., & Suarez, J. A. (2000). A Survey of phenolic compounds in Spanish wines of different geographical origin. Eur. Food Res. Technol., 210, 445–448.CrossRefGoogle Scholar
  67. Perrone, G., Nicoletti, I., Pascale, M., De Rossi, A., De Girolamo, A., & Visconti, A. (2007). Positive correlation between high levels of ochratoxin A and resveratrol-related compounds in red wines. J. Agric. Food Chem., 55, 6807–6812.CrossRefGoogle Scholar
  68. Poussier, M., Guilloux-Benatier, M., Torres, M., Heras, E., & Adrian, M. (2003). Influence of different maceration techniques and microbial enzymatic activities on wine stilbene content. Am. J. Enol. Vitic., 54, 261–266.Google Scholar
  69. Pozo-Bayón, M. A., Hernández, M. T., Martín-Álvarez, P. J., & Polo, M. C. (2003). Study of low molecular weight phenolic compounds during the aging of sparkling wines manufactured with red and white grape varieties. J. Agric. Food Chem., 51, 2089–2095.CrossRefGoogle Scholar
  70. Pryce, R. J., & Langcake, P. (1977). α-Viniferin: An antifungal resveratrol trimer from grapevines. Phytochemistry, 16, 1452–1454.CrossRefGoogle Scholar
  71. Puech, J. L., & Moutounet, M. (1988). Liquid chromatographic determination of scopoletin in hydroalcoholic extract of oak wood and in matured distilled alcoholic beverages. J. Assoc. Off. Anal. Chem., 71, 512–514.Google Scholar
  72. Püssa, T., Floren, J., Kuldepp, P., & Raal, A. (2006). Survey of grapevine Vitis vinifera stem polyphenols by Liquid Chromatography-Diode Array Detection-Tandem Mass Spectrometry. J. Agric. Food Chem., 54, 7488–7494.CrossRefGoogle Scholar
  73. Quideau, S., Jourdes, M., Saucier, C., Glories, Y., Pardon, P., & Baudry, C. (2003). DNATopoisomerase Inhibitor Acutissimin A and Other Flavano-Ellagitannins in Red Wine. Angew. Chem. Int. Ed., 42, 6012–6014.CrossRefGoogle Scholar
  74. Quideau, S., Jourdes, M., Lefeuvre, D., Montaudon, D., Saucier, C., Glories, Y., Pardon, P., & Pourquier, P. (2005). The chemistry of wine polyphenolic C-glycosidic ellagitannins targeting human topoisomerase II. Chem. Eur. J., 11, 6503–6513.CrossRefGoogle Scholar
  75. Rentzsch, M., Schwarz, M., Winterhalter, P., & Hermosin-Gutiérrez, I. (2007a). Formation of hydroxyphenyl-pyranoanthocyanins in Grenache wines: precursor levels and evolution during aging. J. Agric. Food Chem., 55, 4883–4888.CrossRefGoogle Scholar
  76. Rentzsch, M., Schwarz, M., & Winterhalter, P. (2007b). Pyranoanthocyanins – an overview on structures, occurrence, and pathways of formation. Trends Food Sci. Technol., 18, 526–534.CrossRefGoogle Scholar
  77. Ribeiro de Lima, M. T., Waffo-Téguo, P., Teissédre, P. L., Pujolas, A., Vercauteren, J., Cabanis, J. C., & Mérillon, J. M. (1999). Determination of stilbenes (trans-astringin, cis- and trans-piceid, and cis- and trans-resveratrol) in Portuguese wines. J. Agric. Food Chem., 47, 2666–2670.CrossRefGoogle Scholar
  78. Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000). Handbook of Enology. Volume 2: The chemistry of wine: stabilization and treatments. Chichester: WileyGoogle Scholar
  79. Ricardo-da-Silva, J. M., Cheynier, V., Samsom, A., & Bourzeix, M. (1993). Effect of pomace contact, carbonic maceration, and hyperoxidation on the procyanidin composition of Grenache Blanc wines. Am. J. Enol. Vitic., 44, 168–172.Google Scholar
  80. Rigaud, J., Cheynier, V., Souquet, J. M., & Moutounet, M. (1991). Influence of must composition on phenolic oxidation kinetics. J. Sci. Food Agric., 57, 55–63.CrossRefGoogle Scholar
  81. Rivas-Gonzalo, J. C., Bravo-Haro, S., & Santos-Buelga, C. (1995). Detection of compounds formed through the reaction of malvidin 3-monoglucoside and catechin in the presence of acetaldehyde. J. Agric. Food Chem., 43, 1444–1449.CrossRefGoogle Scholar
  82. Romero-Pérez, A. I., Lamuela-Raventós, R. M., Waterhouse, A. L., & de la Torre-Boronat, M. C. (1996). Levels of cis- and trans-resveratrol and their glucosides in white and rosé Vitis vinifera wines from Spain. J. Agric. Food Chem., 44, 2124–2128.CrossRefGoogle Scholar
  83. Salagoïty-Auguste, M. H., & Bertrand, A. (1984). Wine phenolics - analysis of low molecular weight components by High-Performance Liquid-Chromatography. J. Sci. Food Agric., 35, 1241–1247.CrossRefGoogle Scholar
  84. Santos-Buelga, C., Bravo-Haro, S., & Rivas-Gonzalo, J. C. (1995). Interactions between catechin and malvidin-3-monoglucoside in model solutions. Z. Lebens. Unters. Forsch., 201, 269–274.CrossRefGoogle Scholar
  85. Sarni-Manchado, P., Fulcrand, H., Souquet, J.-M., Cheynier, V., & Moutounet, M. (1996). Stability and color of unreported wine anthocyanin-derived pigments. J. Food Sci., 61, 938–941.CrossRefGoogle Scholar
  86. Sato, M., Suzuki, Y., Okuda, T., & Yokotsuka, K. (1997). Contents of resveratrol, piceid, and their isomers in commercially available wines made from grapes cultivated in Japan. Biosci. Biotechnol. Biochem., 61, 1800–1805.CrossRefGoogle Scholar
  87. Saucier, C., Jourdes, M., Glories, Y., & Quideau, S. (2006). Extraction, detection, and quantification of flavano-ellagtannins and ethylvescalagin in a Bordeaux red wine aged in oak barrels. J. Agric. Food Chem., 54, 7349–7354.CrossRefGoogle Scholar
  88. Schwarz, M., Wabnitz, T. C., & Winterhalter, P. (2003). Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. J. Agric. Food Chem., 51, 3682–3687.CrossRefGoogle Scholar
  89. Schwarz, M., Hofmann, G., & Winterhalter, P. (2004). Investigations on anthocyanins in wines from Vitis vinifera cv. Pinotage: Factors influencing the formation of pinotin A and its correlation with wine age. J. Agric. Food Chem., 52, 498–504.CrossRefGoogle Scholar
  90. Siemann, E. H., & Creasy, L. L. (1992). Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic., 43, 49–52.Google Scholar
  91. Singleton, V. L. (1987). Oxygen with phenols and related reactions in musts, wines, and model systems: observations and practical implications. Am. J. Enol. Vitic., 38, 69–77.Google Scholar
  92. Singleton, V. L., Timberlake, C. F., & Lea, A. G. H. (1978). The phenolic cinnamates of white grapes and wine. J. Sci. Food Agric., 29, 403–410.CrossRefGoogle Scholar
  93. Singleton, V. L., Zaya, J., & Trousdale, E. K. (1986). Caftaric and coutaric acids in fruit of Vitis. Phytochemistry, 25, 2127–2133.CrossRefGoogle Scholar
  94. Sladkovský, R., Solich, P., & Urbánek, M. (2004). High-Performance Liquid Chromatography determination of phenolic components in wine using off-line Isotachophoretic pretreatment. J. Chromatogr., A, 1040, 179–184.CrossRefGoogle Scholar
  95. Somers, T., Vérette, E., & Pocock, K. (1987). Hydroxycinnamate esters of Vitis vinifera: Changes during white vinification, and effects of exogenous enzymic hydrolysis. J. Sci. Food Agric., 40, 67–78.CrossRefGoogle Scholar
  96. Stecher, G., Huck, C. W., Popp, M., & Bonn, G. K. (2001). Determination of flavonoids and stilbenes in red wine and related biological products by HPLC and HPLC-ESI-MS-MS. Fresenius J. Anal. Chem., 371, 73–80.CrossRefGoogle Scholar
  97. Sun, B., Ribes, A. M., Leandro, M. C., Belchior, A. P., & Spranger, M. I. (2006). Stilbenes: Quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal. Chim. Acta, 563, 382–390.CrossRefGoogle Scholar
  98. Timberlake, C. F., & Bridle, P. (1976). Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic., 27, 97–105.Google Scholar
  99. Tricard, C., Salagoity, M. H., & Sudraud, P. (1987). Scopoletin: A marker of storage in oak barrels. Conn. Vigne Vin, 21, 33–41.Google Scholar
  100. Vanhoenacker, G., De Villiers, A., Lazou, K., De Keukeleire, D., & Sandra, P. (2001). Comparison of High-Performance Liquid Chromatography – Mass Spectroscopy and Capillary Electrophoresis – Mass Spectroscopy for the analysis of phenolic compounds in diethyl ether extracts of red wines. Chromatographia, 54, 309–315.CrossRefGoogle Scholar
  101. Vitrac, X., Castagnino, C., Waffo-Téguo, P., Delaunay, J.-C., Vercauteren, J., Monti, J.-P., Deffieux, G., & Mérillon, J.-M. (2001). Polyphenols newly extracted in red wine from Southwestern France by centrifugal partition chromatography. J. Agric. Food Chem., 49, 5934–5938.CrossRefGoogle Scholar
  102. Vitrac, X., Monti, J.-P., Vercauteren, J., Deffieux, G., & Mérillon, J.-M. (2002). Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. Anal. Chim. Acta, 458, 103–110.CrossRefGoogle Scholar
  103. Vitrac, X., Bornet, A., Vanderlinde, R., Valls, J., Richard, T., Delaunay, J.-C., Mérillon, J.-M., & Teissédre, P.-L. (2005). Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, ε-viniferin) in Brazilian wines. J. Agric. Food Chem., 53, 5664–5669.CrossRefGoogle Scholar
  104. Wildenradt, H. L., & Singleton, V. L. (1974). The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Vitic.,25, 119–126.Google Scholar
  105. Würdig, G., & Woller, R. (1989). Chemie des Weines. Stuttgart: Eugen UlmerGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael Rentzsch
  • Andrea Wilkens
  • Peter Winterhalter
    • 1
  1. 1.Institut für Lebensmittelchemie, TU BraunschweigD-38106 Braunschweig

Personalised recommendations