Advertisement

Anthocyanins and Anthocyanin-Derived Compounds

  • María Monagas
  • Begona Bartolomé

Keywords

Pyruvic Acid Yeast Cell Wall Port Wine Wine Aging Caftaric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcalde-Eon, C., Escribano-Bailón, M.T., Santos-Buelga, C., & Rivas-Gonzalo, J.C. (2004). Separation of pyranoanthocyanins from red wine by column chromatography. Anal. Chim. Acta 513, 305–318.CrossRefGoogle Scholar
  2. Alcalde-Eon, C., Escribano-Bailón, M.T., Santos-Buelga, C., & Rivas-Gonzalo, J.C. (2006). Changes in the detailed pigment composition of red wine during maturity and ageing. A comprehensive study. Anal. Chim. Acta 563, 238–254.CrossRefGoogle Scholar
  3. Alcalde-Eon, C., Escribano-Bailón, M.T., Santos-Buelga, C., & Rivas-Gonzalo, J.C. (2007). Identification of dimeric anthocyanins and new oligomeric pigments in red wine by jeans of HPLC-DAD-ESI-MS $n$. J. Mass Spect., 42, 735–748.CrossRefGoogle Scholar
  4. Almela, L., Javaloy, S., Fernández-López, J.A., & López-Roca, J.M. (1996). Varietal classification of young red wines in terms of chemical and colour parameters. J. Sci. Food Agric., 70, 173–180.CrossRefGoogle Scholar
  5. Arozarena, I., Casp, A., Marín, R., & Navarro, M. (2000). Multivariate differentiation of Spanish red wines according to region and variety. J. Sci. Food Agric. 70, 1909–1917.CrossRefGoogle Scholar
  6. Asenstorfer, R.E., Hayasaka, Y., & Jones, G.P. (2001). Isolation and structures of oligomeric wine pigments by bisulfite-mediated ion-exchange chromatography. J. Agric. Food Chem. 4, 5957–5963.CrossRefGoogle Scholar
  7. Asenstorfer, R.E., Markides, A.J., Iland, P.G., & Jones, G.P. (2003). Formation of vitisin A during red wine vinification and maturation. Aus. J. Grape Wine Res. 9, 40–46.CrossRefGoogle Scholar
  8. Atanasova, V., Fulcrand, H., Cheynier, V., & Moutounet, M. (2002a). Effect of oxygenation on polyphenol changes occuring in the course of wine-making. Anal. Chim. Acta 458, 15–27.Google Scholar
  9. Atanasova, V., Fulcrand, H., Le Guerneve, C., Cheynier, V., & Moutounet, M. (2002b). Structure of new dimeric acetaldehyde malvidin-3-glucoside condensation product. Tetrahedron Lett. 43, 6151–6153.CrossRefGoogle Scholar
  10. Bakker, J., & Timberlake, C.F. (1997). Isolation, identification and characterization of new color-stable anthocyanins occuring in some red wines. J. Agric. Food Chem. 45, 35–43.CrossRefGoogle Scholar
  11. Bakker, J., Picinelli, A., & Bridle, P. (1993). Model wine solutions: colour and composition changes during ageing. Vitis, 32, 111–118.Google Scholar
  12. Bakker, J., Bridle, P., Honda, T., Kuwano, H., Saito, N., Terahara, N., & Timberlake, C. (1997). Identification of an anthocyanin occuring in some red wines. Phytochemistry 44, 1375–1382.CrossRefGoogle Scholar
  13. Baldi, A., Romani, A., Mulinacci, N., & Vincieri, F.F. (1993). Composés phenoliques dans les cépages de Toscane de Vitis vinifera L. J. Int. Sci. Vigne Vin 27, 201–215.Google Scholar
  14. Baldi, A., Romani, A., Mulinacci, N., Vincieri, F., & Caseta, B. (1995). HPLC/MS application to anthocyanins of Vitis vinifera L. J. Agric. Food Chem., 43, 2104–2109.CrossRefGoogle Scholar
  15. Baranowski, E.S., & Nagel, C.W. (1983). Kinetics of malvidin-3-glucoside condensation in wine model systems. J. Food Sci., 48, 419–429.CrossRefGoogle Scholar
  16. Benabdeljalil, C., Cheynier, V., Fulcrand, H., Hakiki, A., Mosaddak, M., & Moutounet, M. (2000). Mise en évidence de nouveaux pigments formés par réaction des anthocyanes avec des métabolites de levure. Sci. Aliment. 20, 203–220.CrossRefGoogle Scholar
  17. Berke, B., Chèze, C., Vercauteren, J., & Deffieux, G. (1998). Bisulfite addition to anthocyanins : revisited structures of colourless adducts. Tetrahedron Lett. 39, 5771–5774.CrossRefGoogle Scholar
  18. Bishop, P.D., & Nagel, C.W. (1984). Characterization of the condensation product of malvidin 3,5-diglucoside and catechin. J. Agric. Food Chem., 32, 1022–1026.CrossRefGoogle Scholar
  19. Boido, E., Alcalde-Eon, C., Carrau, F., Dellacassa, E., & Rivas-Gonzalo, J.C. (2006). Aging effect on the pigment composition and color of Vitis vinifera L. cv Tannat wines. Contribution of the main pigment families to wine color. J. Agric. Food Chem. 54, 6692–6704.CrossRefGoogle Scholar
  20. Brouillard, R. (1982). Chemical structure of anthocyanins. In P. Markakis (Ed.), Anthocyanins as Food Colors (pp. 1–38). New York: Academic Press.Google Scholar
  21. Cameira dos Santos, P.J., Briollouet, J.Y., Cheynier, V., & Moutounet, M. (1996). Detection and partial characterization of new anthocyanin derived pigments in wines. J. Sci. Food Agric. 70, 204–208.CrossRefGoogle Scholar
  22. Chatonnet, P., Dubourdieu, D., Boidron, J.-N., & Lavigne, V. (1993). Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J. Sci. Food Agric. 62, 191–202.CrossRefGoogle Scholar
  23. Cheminat, A., & Brouillard, R. (1986). NMR investigation of 3-O(β-D-glucosyl)malvidin structural transformation in aqueous solutions. Tetrahedron Lett. 27, 4457.CrossRefGoogle Scholar
  24. Cheynier, V., Trousdale, E.K., Singleton, V.L., Salgues, M.J., & Wylde, R. (1986). Characterization of 2-S-glutathionylcaftaric acid and its hydrolysis in relation to grape wines . J. Agric. Food Chem. 34, 217–221.CrossRefGoogle Scholar
  25. Cheynier, V., Souquet, J.M., Kontek, A., & Moutounet, M. (1997). Estimation of the oxidative changes in phenolic compounds of Carignane during winemaking. Am. J. Enol. Vitic., 48, 225–228.Google Scholar
  26. Clark, A.C., & Scollary, G.R. (2002). Copper(II)-mediated oxidation of (+)-catechin in a model white wine system. Au. J. Grape Wine Res. 8, 186–195.CrossRefGoogle Scholar
  27. Dallas, C., Ricardo da Silva, J.M., & Laureano, O. (1996a). Interactions of oligomeric procyanidins in model wine solutions containing malvidin-3-glucoside and acetaldehyde. J. Sci. Food Agric. 70, 493–500.CrossRefGoogle Scholar
  28. Dallas, C., Ricardo da Silva, J.M., & Laureano, O. (1996b). Products formed in model wine solutions involving anthocyanins, procyanidin B2 and acetaldehyde. J. Sci. Food Agric., 44, 2402–2407.CrossRefGoogle Scholar
  29. Dueñas, M., Fulcrand, H., & Cheynier, V. (2006). Formation of anthocyanin-flavanol adducts in model solutions. Anal. Chim. Acta, 563, 15–25.CrossRefGoogle Scholar
  30. Escribano-Bailón, T., Dangles, O., & Brouillard, R. (1996). Coupling reactions between flavylium ions and catechin. Phytochemistry 41, 1583–1592.CrossRefGoogle Scholar
  31. Es-Safi, N., Fulcrand, H., Cheynier, V., & Moutounet, M. (1999). Studies on the acetaldehyde-induced condensation of (-)-epicatechin and malvidin 3-O-glucoside in a model solution system.J. Agric. Food Chem. 47, 2096–2102.Google Scholar
  32. Es-Safi, N.E., Cheynier, V., & Moutounet, M. (2000). Study of the reactions between (+)-catechin and furfural derivaties in the presence or absence of anthocyanins and their implication in food color change. J. Agric. Food Chem., 48, 5946.CrossRefGoogle Scholar
  33. Es-Safi, N.E., Cheynier, V., & Moutounet, M. (2003). Implication of phenolic reactions in food organoleptic properties. J. Food Comp. Anal. 16, 535–553.CrossRefGoogle Scholar
  34. Etiévant, P.X. (1981). Volatil phenols determination in wines. J. Agric. Food Chem. 29, 65–67.CrossRefGoogle Scholar
  35. Etiévant, P., & Schilich, P. (1988). Varietal and geographic classification of french red wines in terms of pigments and flavanoid compounds. J. Sci. Food Agric. 42, 39–54.CrossRefGoogle Scholar
  36. Favretto, D., & Flamini, R. (2000). Application of electrospray ionization mass spectrometry to the study of grape anthocyanins. Am. J. Enol. Vitic. 51, 55–64.Google Scholar
  37. Francia-Aricha, E.M., Guerra, M.T., Rivas-Gonzalo, J.C., & Santos-Buelga, V. (1997). New anthocyanin pigments formed after condensation with flavanols. J. Agric. Food Chem., 45, 2262–2266.CrossRefGoogle Scholar
  38. Fulcrand, H., Cameira Dos Santos, P.J., Sarni-Manchado, P., Cheynier, V., & FabreBonvin, J. (1996). Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perkin Trans., 1, 735–739.CrossRefGoogle Scholar
  39. Fulcrand, H., Benabdeljalil, C, Rigaud, J., Cheynier, V., & Moutounet, M. (1998). A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 47, 1401–1407.CrossRefGoogle Scholar
  40. García-Viguera, C., Bridle, P., & Bakker, J. (1994). The effect of pH on the formation of coloured compounds in model solutions containing anthocyanins, catechin and acetaldehyde. Vitis, 33, 37–40.Google Scholar
  41. Giusti, M.M., Rodríguez-Saona, L.E., Griffin, D., & Wrolstad, R.E. (1999). Electrospray and tandem mass spectrometry as tools for anthocyanin characterization. J. Agric. Food Chem. 47, 4657–4664.CrossRefGoogle Scholar
  42. González-San José, M., Santa María, G., & Diez, C. (1990). Anthocyanins as parameters for differentiating wines by grape variety, wine-growing region and wine-making methods. J. Food Comp. Anal., 3, 54–66.CrossRefGoogle Scholar
  43. Haslam, E. (1980). In Vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochemistry, 16, 1625–1670.CrossRefGoogle Scholar
  44. Hayasaka, Y., & Asenstorfer, R.E. (2002). Screening for potencial pigments derived from anthocyanins in red wine using nanoelectrospray tandem mass spectrometry. J. Agric. Food Chem. 50, 756–761.CrossRefGoogle Scholar
  45. Hayasaka, Y., & Kennedy, J.A. (2003). Mass spectrometric evidence for the formation of pigmented polymers in red wine. Aus. J. Grape Wine Res. 9, 210–220.CrossRefGoogle Scholar
  46. He, J., Santos-Buelga, C., Silva A.M.S., Mateus N., & De Freitas, V. (2006a). Isolation and quatification of oligomeric pyranoanthocyanin-flavanol pigments from red wines by combination of column chromatographic techniques. J. Chromatog. A 1134, 215–225.CrossRefGoogle Scholar
  47. He, J., Santos-Buelga, C., Silva A.M.S., Mateus N., & De Freitas, V. (2006b). Isolation and structural characterization of new anthocyanin-derived yellow pigments in aged red wines. J. Agric. Food Chem. 54, 9598–9603.CrossRefGoogle Scholar
  48. Heier, A., Blaas, W., Droβ, A., & Wittkowski, R. (2002). Anthocyanin analysis by HPLC/ESI-MS. Am. J. Enol. Vitic. 53, 78–86.Google Scholar
  49. Jurd, L., & Somers, T.C. (1970). The formation of xanthylium salts from proanthocyanidins. Phytochemistry, 9, 419–427.CrossRefGoogle Scholar
  50. Labarbe, B. (2000). Le potentiel phénolique de la grappe de Vitis vinifera var. Gamay noir et son devenir en vinification beaujolaise (Doctoral dissertation ENSA-M, UMI, UMII. Montpellier, France, 2000).Google Scholar
  51. Lee, D.F., Swinny, E.E., & Jones, G.P. (2004). NMR identification of ethyl-linked anthocyanin-flavanol pigments formed in model wine ferments. Tetrahedron Lett., 45, 1671–1674.CrossRefGoogle Scholar
  52. Liao, H., Cai, Y., & Haslam, E. (1992). Polyphenols interactions. Anthocyanins: copigmentation and colour changes in young red wines. J. Sci. Food Agric. 59, 299–305.CrossRefGoogle Scholar
  53. Lu, Y., & Foo, Y. (2001). Unusual anthocyanin reaction with acetone leading to pyranoanthocyanin formation. Tetrahedron Lett. 42, 1371–1373.Google Scholar
  54. Malien-Aubert, C., Dangles, O., & Amito, M.J. (2002). Influence of procyanidins on the color stability of eonin solutions. J. Agric. Food Chem. 50, 3299–3305.CrossRefGoogle Scholar
  55. Manzanares, P., Rojas, V., Genovés, S., & Vallés, S. (2000). A preliminary search for anthocyanin-β-D-glucosidase activity in non-Saccharomyces wine yeast. Int. J. Food Sci. Technol. 35, 95–103.CrossRefGoogle Scholar
  56. Marx, R., Holbach, B., & Otteneder, H. 2000. Determination of nine characteristic Anthocyanins in wine by HPLC. F.V. OIV No. 1104.Google Scholar
  57. Mateus, N., & De Freitas, V. (2001). Evolution and stability of anthocyanin-derived pigments during port wine aging. J. Agric. Food Chem. 49, 5217–5222.CrossRefGoogle Scholar
  58. Mateus, N., Silva M.S., A., Vercauteren, J., & De Freitas, V. (2001). Occurrence of anthocyanin-derived pigments in red wines. J. Agric. Food Chem., 49, 4836–4840.CrossRefGoogle Scholar
  59. Mateus, N., De Pascual-Teresa, S., Rivas-Gonzalo, J.C., Santos-Buelga, C., & De Freitas, V. (2002a). Structural diversity of anthocyanin-derived pigments in port wines. Food Chem. 76, 335–342.CrossRefGoogle Scholar
  60. Mateus, N., Silva M.S., A., Santos-Buelga, C., Rivas-Gonzalo, J.C., & De Freitas, V. (2002b). Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J. Agric. Food Chem. 50, 2110–2116.CrossRefGoogle Scholar
  61. Mateus, N., Carvalho, E., Carvalho, A.R.F., Melo, A., González-Paramás, A.M., Santos-Buelga, C., Silva, A.M.S., & De Freitas, V. (2003a). Isolation and structural characterization of new acylated anthocyanin-vinyl-flavanol pigments occuring in aging red wines. J. Agric. Food Chem., 51, 277–282. 51, 1919–1923.CrossRefGoogle Scholar
  62. Mateus, N., Oliveira, J., Santos-Buelga, C., Silva, A.M.S., & De Freitas, V. (2004). NMR structural characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett., 45, 3455–3457.CrossRefGoogle Scholar
  63. Mateus, N., Oliveira, J., González-Paramás, A.M., Santos-Buelga, C., & De Freitas, V. (2005). Screening of portisins (vinylpyranoanthocyanin pigments) in port wine by LC/DAD-MS. Food Sci. Technol. Inter. 5, 353–358.CrossRefGoogle Scholar
  64. Mateus, N., Oliveira, J., Pisarra, J., González-Paramás, A.M., Rivas-Gonzalo, J.C., Santos-Buelga, C., Silva, A.M.S., & De Freitas, V. (2006). A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chem. 97, 689–695.CrossRefGoogle Scholar
  65. Mattivi, F., Guzzon, R., Vrhovsek, U., Stefanini, M., & Velasco, R. (2006). Metabolite profiling of grape: flavonols and anthocyanins. J. Agric. Food Chem., 54, 7692–7702.CrossRefGoogle Scholar
  66. Mazauric, J.P., & Salmon, J.M. (2005). Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. J. Agric. Food Chem. 53, 5647–5653.CrossRefGoogle Scholar
  67. Mazauric, J.P., & Salmon, J.M. (2006). Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of desorbed polyphenol compounds from yeast lees. J. Agric. Food Chem. 54, 3876–3881.CrossRefGoogle Scholar
  68. Mazza, G., & Miniati, E. (1993). Anthocyanins in Fruits, Vegetables and Grains. USA: CRC Press.Google Scholar
  69. Medina, K., Boido, E., Dellacassa, E., & Carrau, F. (2005). Yeast interaction with anthocyanins during red wine fermentation. Am. J. Enol. Vitic. 56, 104–109.Google Scholar
  70. Monagas, M., Núñez, V., Bartolomé, B., & Gómez-Cordoves, C. (2003). Anthocyanin-derived pigments in Graciano, Tempranillo and Cabernet Sauvignon wines produced in Spain. Am. J. Enol. Vitic. 54, 163–169.Google Scholar
  71. Morata, A., Gómez-Cordovés, M.C., Colomo, B., & Suárez, J.A. (2003a). Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae with vitisin A and B formation in red wines. J. Agric. Food Chem. 51, 7402–7409.CrossRefGoogle Scholar
  72. Morata, A., Gómez-Cordovés, M.C., Suberviola, J., Bartolomé, B., Colomo, B., & Suárez, J.A. (2003b). Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. J. Agric. Food Chem., 51, 4084–4088.CrossRefGoogle Scholar
  73. Morata, A., Gómez-Cordovés, M.C., Colomo, B., & Suárez, J.A. (2005). Cell wall anthocyanin adsorption by different Saccharomyces strains during the fermentation of Vitis vinifera L. cv Graciano grapes. Eur. Food Res. Technol., 220, 341–346.CrossRefGoogle Scholar
  74. Núñez, V., Monagas, M., Gómez-Cordovés, C., & Bartolomé, B. (2004). Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile. Postharvest Biol. Technol. 31, 69–79.CrossRefGoogle Scholar
  75. Oliveira, J., De Freitas, V., Silva, A.M.S., & Mateus N. (2007). Reaction between hydroxycinnamic acids and anthocyanin-pyruvic adducts yielding new portisins. J. Agric. Food Chem. 55, 6349–6359.CrossRefGoogle Scholar
  76. Ortega Meder, M.D., Rivas Gonzalo, J.C., Vicente, J.L., & SantosBuelga, C. (1994). Differentiation of grapes according to the skin anthocyanin composition. RECTA 34, 409–426.Google Scholar
  77. Oszmianski, J., Cheynier, V., & Moutounet, M. (1996). Iron-catalized oxidation of (+)-catechin in model systems. J. Agric. Food Chem., 44, 1712–1715.CrossRefGoogle Scholar
  78. Palmeri, R., & Spagna, G. (2007). Beta-glucosidase in cellular and acellular form for winemaking application. Enz. Microbial Technol., 30, 382–389.CrossRefGoogle Scholar
  79. Peng, C.Y., & Markakis, P. (1963). Effect of phenolase on anthocyanins. Nature 199, 596–597.CrossRefGoogle Scholar
  80. Pérez-Magariño, S., & González-San José, M.L. (2004). Evolution of flavanols, anthocyanins and their derivatives during the aging of red wines elaborated from grapes harvested at different stages of ripening. J. Agric. Food Chem. 52, 1181–1189.CrossRefGoogle Scholar
  81. Pifferi, P.G., & Cultrera, R. (1974). Enzymatic degradation of anthocyanins: the role of sweet cherry polyphenoloxidase. J Food Sci. 39, 786–791.CrossRefGoogle Scholar
  82. Pissarra, J., Mateus, N., Rivas-Gonzalo, J., Santos-Buelga, C., & De Freitas, V. (2003). Reaction between malvidin-3-glucoside and (+)-catechin in model solutions containing different aldehydes. J. Food Sci. 68, 476–481.CrossRefGoogle Scholar
  83. Pissarra, J., Lourenςo, S., González-Paramás, A.M., Mateus, N., Santos-Buelga, C., Silva, A.M.S., & De Freitas, V. (2004). Structural characterization of new malvidin-3-glucoside-catechin aryl/alkyl pigments. J. Agric. Food Chem. 52, 5519–5526.CrossRefGoogle Scholar
  84. Pissarra, J., Lourenςo, S., González-Paramás, A.M., Mateus, N., Santos-Buelga, C., Silva, A.M.S., & De Freitas, V. (2005a). Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food Chem. 90, 81–87.CrossRefGoogle Scholar
  85. Pissarra, J., Sandra, L., Machado J.M., Mateus, N., Guimaraens, D., & De Freitas, V. (2005b). Contribution and importance of wine spirit to the port wine final quality- initial approach. J. Sci. Food Agric. 85, 1091–1097.CrossRefGoogle Scholar
  86. Pozo-Bayón, M.A., Monagas, M., Polo, M.C., & Gómez-Cordovés, C. (2004). Occurrence of pyranoanthocyanins in sparkling wines manufactured with red grape varieties. J. Agric. Food Chem. 52, 1300–1006.CrossRefGoogle Scholar
  87. Remy, S., Fulcrand, H., Labarbe. B., Cheynier, V., & Moutounet, M. (2000). First confirmation in red wine of products resulting from direct anthocyanin-tannin reactions. J. Sci. Food Agric. 80, 745–751.CrossRefGoogle Scholar
  88. Remy-Tanneau, S., Le Guernevé, C., Meudec, E., & Cheynier, V. (2003). Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometry. J. Agric. Food Chem. 51, 3592–3597.CrossRefGoogle Scholar
  89. Rentzsch, M., Schwarz, M., Winterhalter, P., & Hermosín-Guitiérrez, I. (2007). Formation of hydroxyphenyl-pyranoanthocyanins in Grenache wines: precursor levels and evolution during aging. J. Agric. Food Chem. 55, 4883–4888.CrossRefGoogle Scholar
  90. Revilla, I., & González-San José, M.L. (2001). Evolution during the storage of red wines treated with pectolytic enzymes: New anthocyanin pigment formation. J. Wine Res. 12, 183–197.CrossRefGoogle Scholar
  91. Revilla, I., Pérez-Magariño, S., González-San José, M.L., & Beltrán, S. (1999). Identification of anthocyanin derivaties in grape skin extracts and red wines by liquid chromatography with diode array and mass spectrometric detection. J. Chromatog. A 847, 83–90.CrossRefGoogle Scholar
  92. Ribéreau-Gayón, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000). Hanbook of Enology. Vol. 2. The Chemistry of Wine Stabilization and Treatments. England: John Wiley andSons, Inc.Google Scholar
  93. Rivas-Gonzalo, J.C., Bravo-Haro, S., & Santos-Buelga, C. (1995). Detection of compounds formed through the reaction of malvidin 3-monoglucoside and catechin in the presence of acetaldehyde. J. Agric. Food Chem., 43, 1444–1449.CrossRefGoogle Scholar
  94. Roggero, J.P., Coen, S., & Larice, J.L. (1986a). Etude comparative de la composition anthocyanique des cépages. Essai de classification. Bull. Liaison Groupe Polyphénols 13, 380–388.Google Scholar
  95. Roggero, J.P., Coen, S., & Ragonet, B. (1986b). High performance liquid chromatography survey on changes in pigment content in repening grapes of Syrah. An approach to anthocyanin metabolism. Am. J. Enol. Vitic. 37, 77–83.Google Scholar
  96. Roggero, J.P., Coen, S., Archier, O., & Rocheville-Divorne, C. (1987). Etude par C.L.H.P. de la réaction glucoside de malvidine.acétaldéhyde-composé phénolique. Conn. Vigne Vin 21, 163–168.Google Scholar
  97. Roggero, J.P., Larice, J.L., Rocheville-Divore, C., Archier, P., & Coen, S., 1988. Composition anthocyanique des cépages. II. Essai de classificaton sur trois ans par analyse en composantes principales et par analyse factorielle discriminante. Rev. Française d’Oenologie 112, 41–48.Google Scholar
  98. Romero, C., & Bakker, J. (1999a). Interactions between grape anthocyanins and pyruvic acid, with effect of pH and acid concentration on anthocyanin composition and color in model solutions. J. Agric. Food Chem., 47, 3130–3139.CrossRefGoogle Scholar
  99. Romero, C., & Bakker, J. (1999b). Effect of storage temperature and pyruvate on kinetics of anthocyanin degradation, vitisin A derivative formation and color characteristics of model solutions. J. Agric. Food Chem., 48, 2135–2141.CrossRefGoogle Scholar
  100. Romero, C., & Bakker, J. (2000a). Effect of acetaldehyde and several acids on the formation of vitisin A in model wine anthocyanin and colour evolution. Int. J. Food Sci. Technol., 35, 129–140.CrossRefGoogle Scholar
  101. Romero, C., & Bakker, J. (2000b). Anthocyanin and colour evolution during maturation of four port wines: effect of pyruvic acid addition. J. Sci. Food Agric., 81, 252–260.CrossRefGoogle Scholar
  102. Salas, E., Fulcrand, H., Meude, E., & Cheynier, V. (2003). Reaction of anthocyanin and tannins in model solutions. J. Agric. Food Chem. 51, 7951–7961.CrossRefGoogle Scholar
  103. Salas, E., Atanasova, V., Poncet-Legrand, C., Meudec, E., Mazauric, J.P., & Cheynier, V. (2004a). Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Anal. Chim. Acta 513, 325–332.CrossRefGoogle Scholar
  104. Salas, E., Le Guernevé, C., Fulcrand, H., Poncet-Legrand, C., & Cheynier, V. (2004b). Structure determination and colour properties of a new directly linked flavanol-anthocyanin dimer. Tetrahedron Lett. 45, 8725–8729.CrossRefGoogle Scholar
  105. Salas, E., Dueñas, M., Schwarz, M., Winterhalter, P., Cheynier, V., & Fulcrand, H. (2005a). Characterization of pigmets from different high speed countercurrent chromatography wine fractions. J. Agric. Food Chem. 53, 4536–4546.CrossRefGoogle Scholar
  106. Salas, E., Fulcrand, H., Poncet-LeGrand, C., Meudec, E., Köhler, N., Winterhalter, P., & Cheynier, V. (2005b). Isolation of flavanol-anthocyanin adducts by countercurrent chromatography. J. Chromatog. Sci. 43, 488–493.Google Scholar
  107. Sánchez-Torres, P., González-Candelas, L., & Ramo, D. (1998). Heterologous expresión of a Candida molischiana anthocyanin-β-glucosidase in a wine yeast strain. J. Agric. Food Chem. 46, 354–360.CrossRefGoogle Scholar
  108. Santos-Buelga, C., Francia-Aricha, E.M., De Pascual-Teresa, S., & Rivas-Gonzalo, J.C. (1999). Contribution to the identification of the pigments responsible for the browning of anthocyanin-flavanol solutions. Eur. Food Res. Technol. 209, 411–415.CrossRefGoogle Scholar
  109. Sarni-Manchado, P., Fulcrand, H., Souillol, V., Souquet, J.M., & Cheynier, V. (1995). Mechanisms of anthocyanin degradation in grape must-like model solutions. J. Sci. Food Agric., 69, 385–391.CrossRefGoogle Scholar
  110. Sarni-Manchado, P., Cheynier, V., & Moutounet, M. (1997). Reaction of enzimatically generated quinones with malvidin-3-glucoside. Phytochemistry 45, 1365.CrossRefGoogle Scholar
  111. Saucier, C., Guerra, C., Pianet, I., Laguerres, M., & Glories, Y. (1997). (+)-Catechin-acetaldehyde condensation products in relation to wine-ageing. Phytochemistry 46, 229–234.CrossRefGoogle Scholar
  112. Schwarz, M., Jerz, G., & Winterhalter, P. (2003a). Isolation and structure of Pinotin A, a new anthocyanin derivative from Pinotage wine. Vitis 42, 105–106.Google Scholar
  113. Schwarz, M., Wabnitz, T.C., & Winterhalter, P. (2003b). Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. J. Agric. Food Chem. 51, 3682–3687.CrossRefGoogle Scholar
  114. Schwarz, M., Hofmann, G., & Winterhalter, P. (2004). Investigations on anthocyanins in wines from Vitis vinifera cv. pinotage: Factors influencing the formation of pinotin a and its correlation with wine age. J. Agric. Food Chem., 44, 498–504.CrossRefGoogle Scholar
  115. Singleton, V.L., Salgues, M., Zaya, J., & Trousdale, E. (1985). Caftaric acid dissapearence and conversion to products of enzymatic oxidation in grape must and wines.Am. J. Enol. Vitic., 36, 50–56.Google Scholar
  116. Somers, T.C. (1971). The phenolic nature of wine pigments. Phytochemistry, 10, 2175–2186.CrossRefGoogle Scholar
  117. Sousa, C., Mateus, N., Silva, A.M.S., González-Paramás, A.M., Santos-Buelga, C., & De Freitas, V. (2007). Structural and chromatic characterization of a new malvidin-3-glucoside-vanillyl-catechin pigment. Food Chem. 102, 1344–1351.CrossRefGoogle Scholar
  118. Timberlake, C.F., & Bridle, P. (1976). Interactions between anthocyanins, phenolic compounds and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 27, 97–105.Google Scholar
  119. Vasserot, Y., Caillet, S., & Maujean, A. (1997). Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. Am. J. Enol. Vitic. 48, 433–437.Google Scholar
  120. Vidal, S., Meudec, E., Cheynier, V., Skouroumounis, G., & Hayasaka, Y. (2004). Mass spectrometric evidence for the existence of oligomeric anthocyanins in grape skins. J. Agric. Food Chem. 52, 7144–7151.CrossRefGoogle Scholar
  121. Vivar-Quintana, A.M., Santos-Buelga, C., Francia-Aricha, E., & Rivas-Gonzalo, J.C. (1999). Formation of anthocyanin-derived pigments in experimental red wines. Food Sci. Technol. Inter. 5, 347–352.CrossRefGoogle Scholar
  122. Vivar-Quintana, A.M., Santos-Buelga, C., & Rivas-Gonzalo, J.C. (2002). Anthocyanin-derived pigments and colour of red wines. Anal. Chim. Acta 458, 147–155.CrossRefGoogle Scholar
  123. Vivas, N.G., Nonier, M.-F., Guerra, C., & Vivas, N. (2001). Anthocyanin in grape skins during maturation of Vitis vinifera L. cv. Caberent Sauvignon and Merlot Noir from different bordeaux terroirs. J. Int. Sci. Vigne Vin 35, 149–156.Google Scholar
  124. Walker, G. (1998). Yeast physiology and biotechnology. UK: Wiley.Google Scholar
  125. Wang, J., & Sporns, P. (1999). Analysis of anthocyanins in red wine and fruit juice using MALDI-MS. J. Agric. Food Chem., 47, 2009–2015.CrossRefGoogle Scholar
  126. Wang, H., Race, E.J., & Shrikhande, A.J. (2003a). Anthocyanin transformation in Cabernet Sauvignon wine during aging. J. Agric. Food Chem. 51, 7989–7994.CrossRefGoogle Scholar
  127. Wang, H., Race, E.J., & Shrikhande, A.J. (2003b). Characterization of anthocyanins in grape juices by ion trap liquid chromatography-mass spectrometry. J. Agric. Food Chem. 51, 1836–1844.Google Scholar
  128. Wesche-Ebeling, P, & Montgomery, M.W. (1990). Strawberry polyphenoloxidase: its role in anthocyanin degradation. J. Food Sci., 55, 731–734, 745.CrossRefGoogle Scholar
  129. Wildenradt, H.L., & Singleton V.L. (1974). Production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. J. Agric. Food Chem. 25, 119–126.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • María Monagas
  • Begona Bartolomé
    • 1
  1. 1.Letter Instituto de Fermentaciones Industriales, CSICSpain

Personalised recommendations