Biochemical Transformations Produced by Malolactic Fermentation

  • Antonella Costantini
  • Emilia García-Moruno
  • M. Victoria Moreno-Arribas


Lactic Acid Bacterium Malic Acid Biogenic Amine Lactobacillus Plantarum Malolactic Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcaide-Hidalgo, J., Moreno-Arribas, M.V., Polo, M.C., & Pueyo, E. (2008). Partial characterization of peptides from red wines. Changes during malolactic fermentation and aging with lees. Food Chem., 107, 622–630.CrossRefGoogle Scholar
  2. Alexandre, H., Costello, P.J., Remize, F., Guzzo, J., & Guilloux-Benatier, M. (2004). Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Int. J. Food. Microbiol., 93, 141–154.CrossRefGoogle Scholar
  3. Ampe, F., ben Omar, N., Moizan, C., Wacher, C., & Guyot, J.P. (1999). Polyphasic study of the spatial distribution of microrganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol., 65, 5464–5473.Google Scholar
  4. Arbeit, R.D., Arthur, M., Dunn, R., Kim, C., Selander, R.K., & Goldstein, R. (1990). Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed-field electrophoresis to molecular epidemiology. J. Infect. Dis., 161, 230–235.Google Scholar
  5. Atanasova, V., Fulcrand, H., Cheynier, V., & Moutounet, M. (2002). Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta, 458, 15–27.Google Scholar
  6. Bartkowsky, E.J., & Henschke, P.A. (1999). Use of polymerase chain reaction for specific detection of the MLF bacterium Oenococcus oeni (formerly Leuconostoc oenos) in grape juice and wine samples. Aus. J. Grape Wine Res., 5, 39–44.CrossRefGoogle Scholar
  7. Battermann, G, & Radler, F. (1991). A comparative study of malolactic enzyme and malic enzyme of different lactic acid bacteria. Can. J. Microbiol., 37, 211–217.CrossRefGoogle Scholar
  8. Bauer, R., Chikindas, M.L., & Dicks, L.M.T. (2005). Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bactericin produced by Pediococcus damnosus NCFB 1832. Int. J. Food Microbiol., 101, 17–27.CrossRefGoogle Scholar
  9. Beneduce, L., Spano, G., Vernile, A., Tarantino, D., & Massa, S. (2004). Molecular characterization of lactic acid populations associated with wine spoilage. J Basic Microbiol., 44, 10–16.CrossRefGoogle Scholar
  10. Botina, S.G., Tsygankov, Yu.D, & Sukhodolets, V.V. (2006). Identification of industrial strains of lactic acid bacteria by methods of molecular genetic typing. Russian Journal of Genetics, 42, 1367–1379.CrossRefGoogle Scholar
  11. Bover-Cid, S., & Holzapfel, W.H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol., 53, 33–34.CrossRefGoogle Scholar
  12. Carre, E. (1982). Recherches sur la croissance des bacteries lactiques en vinification. Désacidification biologique des vins. Ph.D. thesis. Université de Bordeaux II, Bordeaux, France.Google Scholar
  13. Cavin, J.-F., &ioc, V., Etievant, P. X., & Diviès, C. (1993). Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids. Am. J. Enol. Vitic., 44, 76–80.Google Scholar
  14. Challinor, S.W., & Rose, A.H. (1954). Interrelationships between a yeast and a bacterium when growing together in defined medium. Nature, 174, 877–878.CrossRefGoogle Scholar
  15. Chatonnet, P., Dubourdieu, D., & Boidron, J. N. (1995). The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wine. Am. J. Enol. Vitic., 46, 463–468Google Scholar
  16. Claisse, O., & Lonvaud-Funel, A. (2000). Assimilation of glycerol by a strain of Lactobacillus collinoides isolated from cider. Food Microbiol., 17, 513–519.CrossRefGoogle Scholar
  17. Cocconcelli, P.S., Porro, D., Galandini, S., & Senini, L. (1995). Development of RAPD protocols for typing of strains of lactic acid bacteria and enterococci. Lett. Appl. Microbiol., 21, 1–4.CrossRefGoogle Scholar
  18. Cocolin, L., Manzano, M., Cantoni, C., & Comi, G. (2000). Development of a rapid method for the identification of Lactobacillus spp. isolated from fermented Italian sausages using a polymerase chain reaction-temperature gradient gel electrophoresis. Lett. Appl. Microbiol., 30, 126–129.CrossRefGoogle Scholar
  19. Collado, C.M., & Hernandez, M. (2007). Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiol. Res., 162, 86–92.CrossRefGoogle Scholar
  20. Comitini, F., Ferretti, R., Clementi, F., Mannazzu, I., & Ciani, M. (2005). Interactions between Saccharomyces cerevisiae and malolactic bacteria: preliminary characterization of a yeast proteinaceous compound(s) active against Oenococcus oeni. J. Appl. Microbiol., 99,105–111.CrossRefGoogle Scholar
  21. Costantini, A., Cersosimo, M., Del Prete, V., & Garcia-Moruno, E. (2006). Production of biogenic amines by lactic acid bacteria: screening by PCR, TLC and HPLC of strains isolated from wine and must. J. Food Prot., 69, 391–396.Google Scholar
  22. Costello, P.J., Morrison, G.J., Lee, T.H., & Fleet, G.H. (1983). Numbers and species of lactic acid bacteria in wines during vinification. Food Technol. Aust., 35, 14–18.Google Scholar
  23. Coton, E., Rollan, G.C., & Lonvaud-Funel, A. (1998). Histidine carboxylase of Leuconostoc oenos 9204: purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J. Appl. Microbiol., 84, 143–151.CrossRefGoogle Scholar
  24. Couto, J.A., Campos, F.M., Figueiredo, A.R., & Hogg, T.A. (2006). Ability of lactic acid bacteria to produce volatile phenols. Am. J. Enol. Vitic., 57, 166–171.Google Scholar
  25. D’Incecco, N., Bartowsky, E,J., Kassara, S., Lante, A., Spettoli, P. & Henschke, P.A. (2004). Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation. Food Microbiol., 21, 257–265.CrossRefGoogle Scholar
  26. Davis, C.R., Wibowo D.J., Lee, T.H., & Fleet, G.H. (1986). Growth and Metabolism of Lactic Acid Bacteria during and after MLF of Wines at Different pH. Appl. Environ. Microbiol., 51, 539–545.Google Scholar
  27. De las Rivas, B., Marcobal, A., & Munoz, R. (2003). Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl. Environ. Microbiol., 70, 7210–7219.CrossRefGoogle Scholar
  28. De Oliva Neto, P., Ferreira, M.A., & Yokoya, F. (2004). Screening for yeast with antibacterial properties from an ethanol distillery. Bioresour Technol., 92, 1–6.CrossRefGoogle Scholar
  29. Delaquis, P., Cliff, M., King, M., Girare, B., Hall, J., & Reynolds, A. (2000). Effect of two commercial malolactic cultures on the chemical and sensory properties of Chancellor wines vinified with different yeasts and fermentation temperatures. Am. J. Enol. Vitic., 51, 42–48.Google Scholar
  30. Dicks, L.M., Dell’aglio, F., & Collins, M.D. (1995). Proposal to reclassify Leuconostoc oenos as Oenococcus oeni. Int. J. System Bacteriol., 45, 395–397.Google Scholar
  31. Dols-Lafalgue, M., Gindreau, E., Le Marrec, C., Chambat, G., Heyraud, A., & Lonvaud-Funel, A. (2007). Changes in red wine polysaccharide composition induced by malolactic fermentation. J. Agric. Food Chem., 55, 9592–9599.CrossRefGoogle Scholar
  32. Douglas, H.C., & Cruess, W.V. (1936). A Lactobacillus from California wine: Lactobacillus hilgardii. Food Res., 1, 113–119.Google Scholar
  33. Du Plessis, E.M., & Dicks, L.M.T. (1995). Evaluation of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus amylovorans, Lactobacillus gallinarum, Lactobacillus gasseri, and Lactobacillus johnsonii. Curr. Microbiol., 31, 114–118.CrossRefGoogle Scholar
  34. Du Plessis, H.W., Dicks, L.M., Pretorius, I.S., Lambrechts, M.G., & du Toit, M. (2004). Identification of lactic acid bacteria isolated from South African brandy base wines. Int. J. Food Microbiol., 91, 19–29.CrossRefGoogle Scholar
  35. Du Toit, M., & Pretorius, I.S. (2000). Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal – A review. S. Afr. J. Enol. Vitic., 21, 74–96.Google Scholar
  36. Du Toit, M., du Toit, C., Krieling, S.J., & Pretorius, I.S. (2002). Biopreservation of wine with antimicrobial peptides. Bull OIV, (855–856), 284–302.Google Scholar
  37. Edwards, C.G., & Jensen, K.A. (1992). Occurrence and characterization of lactic acid bacteria from Washington state wine: Pediococcus spp. Am. J. Vitic. Enol., 43, 233–238.Google Scholar
  38. Edwards, C.G., Collins, M.D., Lawson, P.A., & Rodriguez, A.V. (2000). Lactobacillus nagelii sp. nov., an organism isolated from a partially fermented wine. Int. J. Syst. Evol. Microbiol., 50, 699–702.Google Scholar
  39. Ercolini, D. (2004). PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J. Microbiol. Meth., 56, 297–314.CrossRefGoogle Scholar
  40. Fernandez, P.A., & Manca de Nadra, M.C. (2006). Growth response and modifications of organic nitrogen compounds in pure and mixed cultures of lactic acid bacteria from wine. Curr. Microbiol., 52, 86–91.CrossRefGoogle Scholar
  41. Fischer, U., & Noble, A.C. (1994). The effect of ethanol, catechin concentration, and ph on sourness and bitterness of wine. Am. J. Enol. Vitic., 45, 6–10.Google Scholar
  42. Fleet, G.H. (1990). Growth of yeasts during wine fermentations. J. Wine Res., 1, 211–223.CrossRefGoogle Scholar
  43. Fleet, G.H., Lafon-Lafourcade, S., & Ribereau-Gayon, P. (1984). Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol., 48, 1034–1038.Google Scholar
  44. Fleske, A., Wolterink, A., van Lis, R., & Akkermans, A.D.L. (1998). Phylogeny of the main bacterial 16S rRNA sequences in Drentse a grassland soils. Appl. Environ. Microbiol., 64,871–879.Google Scholar
  45. Fornachon, J.C.M. (1957). The occurrence of malo-lactic fermentation in Australian wines. Aust. J. Appl. Sci., 8, 120–129.Google Scholar
  46. Fugelsang, K.L. (1997) Wine microbiology, Chapman and Hall, London, pp. 117–42.Google Scholar
  47. García-Ruiz, A., Bartolomé, B., Martínez-Rodríguez, A., Pueyo, E., Martín-Álvarez, P.J., & Moreno-Arribas, M.V. (2008a). Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control, 19, 835–841.CrossRefGoogle Scholar
  48. García-Ruiz, A., López-Expósito, I., Díaz, S., Bartolomé, B., Pozo-Bayón, M.A., Martín-Álvarez, P.J., & Moreno-Arribas, M.V. (2008b). Evaluation of the dual antibacterial and antioxidant activities of wine polyphenols. Proceeding of the ‘WAC2008’ International conference. David Chassagne (Eds.) Oenoplurimedia, Francia, pp. 36–38.Google Scholar
  49. Garvie, E.I. (1967). Leuconostoc oenos sp. nov. J. Gen. Microbiol., 48, 431–438.Google Scholar
  50. Garvie, E.I. (1986). Genus Pediococcus Claussen 1903, 68AL. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe and J. G. Holt (Eds.), Bergey’s Manual of Systematic Bacteriology, vol. 2 (pp. 1075–1079). Williams and Wilkins, Baltimore.Google Scholar
  51. Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G., & van Elsas, J.D. (1999). Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods, 38, 1–15.CrossRefGoogle Scholar
  52. Germond, J-E, Lapierre, L., Delley, M., Mollet, B., Felis, G.E., & Dell’aglio, F. (2003). Evolution of the bacterial species lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol. Biol. Evol., 20, 93–104.CrossRefGoogle Scholar
  53. Giraffa, G., & Neviani, F. (2000). Molecular identification and characterization of food-associated lactobacilli. Ital. J. Food. Sci., 12, 403–423.Google Scholar
  54. Grimaldi, A., McLean, H., & Jiranek, V. (2000). Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacterium Oenococcus oeni. Am. J. Enol. Vitic., 51, 362–369.Google Scholar
  55. Guilloux-Benatier, M., Pageault, O., Man, A., & Feuillat, M. (2000). Lysis of yeast cells by Oenococcus oeni enzymes. J. Ind. Microbiol. Biotech., 25, 193–197.CrossRefGoogle Scholar
  56. Gury, J., Barthelmebs, L., Tran, N. P., Diviès, C., & Cavin, J.-F. (2004). Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum. Appl. Environ. Microbiol., 70, 2146–2153.CrossRefGoogle Scholar
  57. Halasz, A., Barath, A, Simon-Sarkadi, L., & Holzapfel, W.H. (1994). Biogenic amines and their production by microorganisms in foods. Trends Food Sci. Technol., 5, 42–49.CrossRefGoogle Scholar
  58. Henick-Kling, T. (1993). Malolactic fermentation. En: Wine Microbiology and Biotechnology, ed. Fleet, G. H. pp. 286–326. Berlin, Springer-Verlag.Google Scholar
  59. Henick-Kling, T., & Park, Y.H. (1994). Considerations fort he use of yeast and bacterial starter cultures: SO2 and timing of inoculation. Am. J. Enol. Vitic., 45, 464–469.Google Scholar
  60. Hernández, T., Estrella, I., Carlavilla, D., Martín-Álvarez, P.J., & Moreno-Arribas, M.V. (2006). Phenolic compounds in red wine subjected to industrial malolactic fermentation and ageing on lees. Anal. Chim. Acta, 563, 116–125.CrossRefGoogle Scholar
  61. Hernández, T., Estrella, I., Pérez-Gordo, M., Alegria, E-G., Tenorio, C., Ruiz-Larrea, F., & Moreno-Arribas, M.V. (2007). Contribution of Oenococcus oeni and Lactobacillus plantarum to the non anthocyanin phenolic composición of red wine during malolactic fermentation. J. Agric. Food Chem., 55, 5260–5266.CrossRefGoogle Scholar
  62. Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E.M.H. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoresis in denaturing gradients. Appl. Environ. Microbiol., 63, 3233–3241.Google Scholar
  63. Jussier, D., Dubé Morneau, A., & Mira de Orduña, R. (2006). Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate chardonnay. App. Environ. Microbiol., 72, 221–227.CrossRefGoogle Scholar
  64. Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Anton. Leeuw, 49,209–224.CrossRefGoogle Scholar
  65. Kandler, O., & Weiss N. (1986). Regular, non-sporing Gram-positive rods. In P. H. A. Sneath, N. Mair, M. E. Sharpe, and J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology, vol. 2. (pp. 1208–1234). William and Wilkins, Baltimore.Google Scholar
  66. Kennes, C, Veiga, M.C., Dubourguier, H.C., Touzel, J.P., Albagnac, G., Naveau, H., & Nyns, E.J. (1991). Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate. Appl. Environ. Microbiol., 57, 1046–51.Google Scholar
  67. King, S.W., & Beelman, R.B. (1986). Metabolic interactions between Saccharomyces cerevisiae and Leuconostoc oenos in a model juice/wine system. Am. J. Enol. Vitic., 37, 53–60.Google Scholar
  68. Krieger, S.A., Hammes, W.P., & Henick-Kling, T. (1993). How to use malolactic starter cultures in the winery. Austral. New Zeal. Wine Indust. J., 8, 153–160.Google Scholar
  69. Labarre, C., Guzzo, J., Cervin, J. F., & Divies, C. (1996). Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl. Environ. Microbiol., 62, 1274–1282.Google Scholar
  70. Lafon-Lafourcade, S., Carre, E., & Ribereau-Gayon, P. (1983). Occurrence of Lactic Acid Bacteria During the Different Stages of Vinification and Conservation of Wines. Appl Environ Microbiol., 46, 874–880.Google Scholar
  71. Larsen, J.T., Nielsen, J.C., Kramp, B., Richelieu, M., Bjerring, P., Riisager, M.J., Arneborg, N., & Edwards, C.G. (2003). Impact of different strains of Saccharomyces cerevisiae on MLF by Oenococcus oeni. Am. J. Enol. Vitic., 54, 246–251.Google Scholar
  72. Laurent, M.H., Henick-Kling, T., & Acree, T.E. (1994). Changes in the aroma and odor of Chardonnay wine due to malolactic fermentation. Wein-Wissenschaft, 49, 3–10.Google Scholar
  73. Leitao, M.C., Teixeira, H.C., Barreto Crespo, M.T., & San Romao, N.V. (2000). Biogenic amine ocurrence in wine. Amino acid decarboxylase and proteolytic activities expression by Oenococcus oeni. J. Agric. Food Chem., 48, 2780–2784.CrossRefGoogle Scholar
  74. Lemaresquier, H. (1987). Inter-relationship between strains of Saccharomyces cerevisiae from Champagne area and lactic acid bacteria. Lett. App. Microbiol., 4, 91–94.CrossRefGoogle Scholar
  75. Liu, S.-Q., Pritchard, G.G., Hardman, M.J., & Pilone, G.J. (1994). Citrulline production and ethyl carbamate (urethane) precursor formation from arginine degradation by wine lactic acid bacteria Leuconostoc oenos and Lactobacillus buchneri. Am. J. Enol. Vitic., 45,235–242.Google Scholar
  76. Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. Anton. Leeuw, 76, 317–331.CrossRefGoogle Scholar
  77. Lonvaud-Funel, A., & Joyeux, A. (1993) Antagonism between lactic acid bacteria of wines: inhibition of Leuconostoc oenos by Lactobacillus plantarum and Pediococcus pentosaceus. Food Microbiol., 10, 411–419.CrossRefGoogle Scholar
  78. Lonvaud-Funel, A., & Strasser de Saad, A. M. (1982). Purification and properties of a malolactic enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl. Environ. Microbiol., 43, 357–361.Google Scholar
  79. Lonvaud-Funel, A., Fremaux, C., & Biteau, N. (1989). Identification de L. oenos per l’utilisation de sondes d’AND. Sci Aliments, 8, 33–49.Google Scholar
  80. Lonvaud-Funel, A., Fremaux, C., Biteau, N., & Joyeux A. (1991a). Speciation of lactic acid bacteria from wines by hybridisation with DNA probes. Food Microbiol., 8, 215–222.CrossRefGoogle Scholar
  81. Lonvaud-Funel, A., Joyeux, A., & Ledoux, O. (1991b). Specific enumeration of lactic acid bacteria in fermenting grape must and wine by colony hybridization with non isotopic DNA probes. J. Appl. Bacteriol., 71, 501–508.Google Scholar
  82. Maicas, S., Gil, J.V., Pardo, I., & Ferrer, S. (1999). Improvement of volatile composition of wines by controlled addition of malolactic bacteria, Food Res. Internat., 32, 491–496.CrossRefGoogle Scholar
  83. Malacrinò, P., Zapparoli, G., Torrioni, S., & Dell’aglio, F. (2003). Adaptation in Amarone wine of indigenous Oenococcus oeni strains differentiated by pulsed-field gel electrophoresis. Ann. Microbiol., 53, 55–61.Google Scholar
  84. Manca de Nadra, M.C., Farías, M., Moreno-Arribas, M.V., Pueyo, E., & Polo, M.C. (1997). Proteolytic activity of Leuconostoc oenos: Effect on proteins and polypeptides from white wine. FEMS Microbiol. Lett., 150,135–139.CrossRefGoogle Scholar
  85. Manca de Nadra, M.C., Farias, M., Moreno-Arribas, M.V., Pueyo, E., & Polo, M.C. (1999). A proteolytic effect of Oenococcus oeni on the nitrogenous macromolecular fraction of red wine. FEMS Microbiol. Lett., 174, 41–47.CrossRefGoogle Scholar
  86. Marcobal, A., De las Rivas, B., Moreno-Arribas, V., & Munoz, R. (2004). Identification of the ornithine decarboxylase gene in the putrescine producer Oenococcus oeniBIFI-83. FEMS Microbiol. Lett., 239, 213–220.CrossRefGoogle Scholar
  87. Martineau, B., & Henick-Kling, T. (1995). Performance and diacetyl production of commercial strains of malolactic bacteria in win. J Appl. Bacteriol., 78, 526–536.Google Scholar
  88. Martínez-Murcia, A.J., Harland, N.M., & Collins, M.D. (1993). Phylogenetic analysis of some leuconostocs and related organism as determined from the large -subunit rRNA gene sequences: assessment of congruence of small- and large- subunit r RNA derived trees. J. Appl. Microbiol., 12, 48–55.Google Scholar
  89. Maslow, J. N., Mulligan, M. E., & Arbeit, R. D. (1993). Molecular epidemiology: application of contemporary techniques to the typing of microrganisms. Clin. Infect. Dis., 17,153–162.Google Scholar
  90. McMahon, H., Zoecklein, B.W., Fugelsang, K., & Jasinski, Y. (1999). Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. J. Ind. Microbiol. Biotechnol., 23, 198–203.CrossRefGoogle Scholar
  91. Mine, Y., & Zhang, J.W. (2002). Comparative studies on antogenity and allergenity of native and denatured egg white proteins. J. Agric. Food Chem., 50, 2679–2683.CrossRefGoogle Scholar
  92. Mira de Orduña, R., Patchett, M.L., Liu, S.-Q., & Pilone, G.J. (2001). Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations. Appl. Environ. Microbiol., 67, 1657–1662.CrossRefGoogle Scholar
  93. Miyoshi, A., Rochat, R., Gratadoux, J-J., Le Loir, Y., Costa Oliveira, S., Langella, P., & Azevedo, V. (2003). Oxidative stress in Lactococcus lactis. Genet. Mol. Res., 2, 348–359.Google Scholar
  94. Moreno-Arribas, M.V., & Polo, C. (2005). Winemaking microbiology and biochemistry: current knowledge and future trends. Crit. Rev. Food Sci Nutr., 45, 265–286.CrossRefGoogle Scholar
  95. Moreno-Arribas, M.V., & Polo, C. (2008). Occurrence of lactic acid bacteria and biogenic amines in biologically aged wines. Food Microbiol., 25, 875–881.CrossRefGoogle Scholar
  96. Moreno-Arribas, V., Torlois, S., Joyeux, A., Bertrand, A., & Lonvaud-Funel, A. (2000). Isolation, properties and behaviour of tyramine–producing lactic acid bacteria from wine. J. Appl. Microbiol., 88, 584–593.CrossRefGoogle Scholar
  97. Moreno-Arribas, V., Polo, M.C., Jorganes, F., & Muñoz, R. (2003). Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol., 84, 117–123.Google Scholar
  98. Moreno-Arribas, M.V., Gómez-Cordovés, C., & Martín-Álvarez, P.J. (2008a). Evolution of red wine anthocyanins during malolactic fermentation, postfermentative treatments and ageing with lees. Food Chem., 109, 149–158.CrossRefGoogle Scholar
  99. Moreno-Arribas, M.V., Ferrer, S., & Pardo, I. (2008b). Técnicas moleculares para la identificación y caracterización de bacterias lácticas de interés enológico. Bull. OIV. (in press)Google Scholar
  100. Naouri, P., Chagnaud, P., Arnaud, A., & Galzy, P. (1990). Purification and properties of a malolactic enzyme from Leuconostoc oenos ATCC 23278. J. Basic Microbiol., 30, 577–585.CrossRefGoogle Scholar
  101. Navarro, L., Zarazaga, M., Sáenz, J., Ruiz-Larrea, F., & Torres, C. (2000). Bacteriocin production by lactic acid bacteria isolated from Rioja red wines. J. Appl. Microbiol., 88, 41–51.CrossRefGoogle Scholar
  102. Nielsen, J.C., & Richelieu, M. (1999). Control of flavor development in wine during and after MLF. Appl. Environ. Microbiol., 65, 740–745.Google Scholar
  103. Nielsen, J.C., Prahl, C., & Lonvaud-Funel, A. (1996). MLF in wine by direct inoculation with freeze-dried Leuconostoc oenos cultures. Am. J. Enol. Vitic., 47, 42–48.Google Scholar
  104. Nigatu, A, Ahrné, S, & Molin, G. (2001). Randomly amplified polymorphic DNA (RAPD) profiles for the distinction of Lactobacillus species}. Anton. Leeuw., 79}, 1–6.CrossRefGoogle Scholar
  105. Noble, A.C. (1994). Bitterness in wine. Physiol. Behav., 56, 1251–1255.CrossRefGoogle Scholar
  106. Osborne, J.P., & Edwards, C.G. (2007). Inhibition of MLF by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol., 118, 27–24.CrossRefGoogle Scholar
  107. Osborne, J.P., Mira de Orduna, R., Pilone, G.J., & Liu, S.Q. (2000). Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiol. Lett., 191, 51–55.CrossRefGoogle Scholar
  108. Patynowski, R.J., Jiranek, V., & Markides, A.J. (2002). Yeast viability during fermentation and sur lie ageing of a defined medium and subsequent growth of Oenococcus oeni. Aust J Grape Wine Res., 8, 62–69.CrossRefGoogle Scholar
  109. Pinzani, P., Bonciani, L., Pazzagli, M., Orlando, C., Guerrini, S., & Granchi, L. (2004). Rapid detection of Oenococcus oeni in wine by real-time quantitative PCR. Lett. Appl. Microbiol., 38, 118–124.CrossRefGoogle Scholar
  110. Poblet-Icart, M., Bordons, A., & Lonvaud-Funel, A. (1998). Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Curr. Microbiol., 36,365–369.CrossRefGoogle Scholar
  111. Pozo-Bayón, M.A., Alegría E.G., Polo, M.C., Tenorio, C., Martín-Álvarez, P.J., Calvo de la Banda, M.T., Ruiz-Larrrea, F., & Moreno-Arribas, M.V. (2005). Wine volatile and amino acid composición after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J. Agric. Food Chem., 53, 8729–8735.Google Scholar
  112. Pretorius, I. S. (2001). Gene technology in winemaking: New approaches to an ancient art. Agric. Conspec. Sci., 66, 27–47.Google Scholar
  113. Pripis-Nicolau, L., de Revel, G., Bertrand, A., & Lonvaud-Funel, A. (2004). Methionine catabolism and production of volatile sulphur compounds by Oenococcus oeni. J. Appl. Microbiol., 96, 1176–1184.CrossRefGoogle Scholar
  114. Radler, F. (1990a). Possible use of nisin in winemaking. I. Action of nisin against lactic acid bacteria and wine yeasts in solid and liquid media. Am. J. Enol. Vitic., 41, 1–6.Google Scholar
  115. Radler, F. (1990b). Possible use of nisin in winemaking. II. Experiments to control lactic acid bacteria in the production of wine. Am. J. Enol. Vitic., 41, 7–11.Google Scholar
  116. Radler, F., & Yannissis, C. (1972). Weins“aureabbau bei Milchs”aurebakterien. Arch. Mikrobiol., 82, 219–239.CrossRefGoogle Scholar
  117. Reguant, C., & Bordons, A. (2003). Typification of Oenococcus oeni strains by multiplex RAPD-PCR and study of population dynamics during MLF. J. Appl. Microbiol., 95,344–353.CrossRefGoogle Scholar
  118. Reguant, C., Bordons, A., Arola, L., & Rozès, N. (2000). Influence of phenolic compounds on the physiology of Oenococcus oeni from wine. J. Appl. Microbiol., 88, 1065–1071.CrossRefGoogle Scholar
  119. Renouf, V., Claisse, O., & Lonvaud-Funel, A. (2005). Numeration, identification and understanding of microbial biofilm on grape berry surface. Aust J Grape Wine Res., 11, 316–327.CrossRefGoogle Scholar
  120. Renouf, V., Claisse, O., Miot-Sertier, C, & Lonvaud-Funel, A. (2006). LAB evolution during winemaking: use of the rpoB gene as target for PCR-DGGE analysis. Food Microbiol., 23, 136–145.CrossRefGoogle Scholar
  121. Renouf, V., Claisse, O., & Lonvaud-Funel, A. (2007). Inventory and monitoring of wine microbial consortia. Appl. Microbiol. Biotechnol., 75, 149–164.CrossRefGoogle Scholar
  122. Ritt, J.F., Guilloux-Benatier, M., Guzzo, J., Alexandre, H., & Remize, F. (2008). Oligopeptides assimilation and transport by Oenococcus oeni. J. Appl. Microbiol., 104, 573–580.Google Scholar
  123. Rodas A.M., Ferrer, S., & Pardo, I. (2003). 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol., 26, 412–422.CrossRefGoogle Scholar
  124. Rodas A.M., Ferrer, S., & Pardo, I. (2005). Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int. J. Sys. Evol. Microbiol., 55, 197–207.CrossRefGoogle Scholar
  125. Rojo-Bezares, B., Sáez, Y., Zarazaga, M., Torres, C., & Ruiz-Larrea, F. (2007). Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int. J. Food Microbiol., 116, 32–36.CrossRefGoogle Scholar
  126. Romero, C., & Bakker, J. (2000). Effect of acetaldehyde and several acids on the formation of vitisin A in model wine anthocyanin and colour evolution. Int. J. Food Sci. Technol., 35, 129–140.CrossRefGoogle Scholar
  127. Rosi I., Fia, G., & Canuti, V. (2003). Influence of different pH values and inoculation time on the growth and malolactic activity of a strain of Oenococcus oeni. Aust. J. Grape Wine Res., 9, 194–199.CrossRefGoogle Scholar
  128. Rossetti, L., & Giraffa, G. (2005). Rapid identification of diary lactic acid bacteria by M-13 generated RAPD-PCR fingerprint database. J. Microbiol. Methods, 63, 135–144.CrossRefGoogle Scholar
  129. Saucier C., Little, D., & Glories, Y. (1997). First evidence of acetaldehyde-flavanol condensation products in red wine. Am. J. Enol. Vitic., 48, 370–372.Google Scholar
  130. Sauvageot, F., & Vivier, P. (1997). Effects of malolactic fermentation on sensory properties of four Burgundy wines. Am. J. Enol. Vitic., 48, 187–192.Google Scholar
  131. Schleifer, K.H., & Kilpper-Balz, R. (1987). Molecular and Chemotaxonomic Approaches to the Classification of Streptococci, Enterococci and Lactococci: A Review. Syst. Appl. Microbiol., 10, 1–19.Google Scholar
  132. Schutz, H., & Radler, F. (1984a). Anaerobic reduction of glycerol to propanediol-1,3 by Lactobacillus brevis and Lactobacillus buchneri. Syst. Appl. Microbiol., 5, 169–178.Google Scholar
  133. Schutz, H., & Radler, F. (1984b). Propanediol-1,2-dehydratase and metabolism of glycerol of Lactobacillus brevis. Arch. Microbiol., 139, 366–370.CrossRefGoogle Scholar
  134. Sch“utz, M., & Radler, F. (1974). Das vorkommen von malatenzym und malolactat-enzym bei verschiedenen milchsa”urenbakterien. Arch. Mikrobiol., 96, 329–339.Google Scholar
  135. Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Res. Int., 26, 675–690.CrossRefGoogle Scholar
  136. Sieiro, C., Cansado, J., Agrelo, D., Velázquez, J.B., & Villa, T.G. (1990). Isolation and enological characterization of malolactic bacteria from the vineyards of North-western Spain. Appl. Environ. Microbiol., 56, 2936–2938.Google Scholar
  137. Silla, M. H. (1996). Biogenic amines: their importance in foods. Int. J. Food Microbiol., 29,213–231.CrossRefGoogle Scholar
  138. Singleton, V. L. (1995). Maturation of wines and spirits: comparisons, facts, and hypotheses. Am. J. Enol. Vitic., 46, 98–115.Google Scholar
  139. Sohier, D., Coulon, J., & Lonvaud-Funel, A. (1999). Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis. Int. J. Syst. Bacteriol.,49,1075–1081.Google Scholar
  140. Sozzi, T., Gnaegi, F., D’Amico, N., & Hose, H. (1982). Difficultes de fermentation malolactique du vin dues a des bacteriophages de Leuconostoc oenos. Revue Suisse Vitic. Arboric. Hortic., 14, 17–23.Google Scholar
  141. Spano, G., Lonvaud Funel A., Claisse, O., & Massa, S. (2007). In vivo PCR-DGGE analysis of Lactobacillus plantarum and Oenococcus oeni populations in red wine. Curr. Microbiol., 54, 9–13.CrossRefGoogle Scholar
  142. Strasser de Saad, A.M., & Manca de Nadra, M.C. (1993). Characterization of bacteriocin produced by Pediococcus pentosaceus in wine. J. Appl. Bacteriol., 74, 406–410.Google Scholar
  143. Straub, B. W., Kicherer, M., Schilcher, S.M., & Hammes W.P. (1995). The formation of biogenic amines by fermentation organisms. Z. Lebensm.-Unters. -Forsch., 201, 79–82.CrossRefGoogle Scholar
  144. Suárez-Lepe, J.A., & Íñigo-Leal, B. (2003). Desacidificación a cargo de bacterias. La fermentación maloláctica. En: Microbiología enológica. Fundamentos de vinificación. 3^a versión. Mundi-Prensa ed., Madrid, pp. 357–379.Google Scholar
  145. Tenske, A, Sigalevich, P, Cohen, Y, & Muyzer, G. (1996). Molecular identification of bacteria from co-culture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool of isolation in pure cultures. Appl. Environ. Microbiol., 62, 4210–4215.Google Scholar
  146. Ugliano, M., & Moio, L. (2006). The influence of malolactic fermentation and Oenococcus oeni strain on glycosidic aroma precursors and related volatile compounds of red wine. J. Sci. Food Agric., 86, 2468–2476.CrossRefGoogle Scholar
  147. Ugliano M., Genovese, A., & Moio, L. (2003). Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem., 51, 5073–5078.CrossRefGoogle Scholar
  148. Veiga-da-Cunha, M., & Foster, M.A. (1992). Sugar-glycerol cofermentations in lactobacilli: The fate of lactate. J. Bacteriaol., 174, 1013–1019.Google Scholar
  149. Veiga-da-Cunha, M., Santos, H., & van Schaftingen, E. (1993). Pathway and regulation of erythritol formation in Leuconostoc oenos. J. Bacteriol., 175, 3941–3948.Google Scholar
  150. Ventura, M., Casas, I.A., Morelli, L., & Callegari, M.L. (2000). Rapid amplified ribosomal DNA restriction analysis (ARDRA) identification of Lactobacillus spp. isolated from faecal and vaginal samples. Syst. Appl. Microbiol., 23, 504–509.Google Scholar
  151. Vivas, N., Lonvaud-Funel, A., & Glories, Y. (1997). Effect of phenolic acids and anthocyanins on growth, viability and malolactic activity of a lactic acid bacterium. Food Microbiol., 14, 291–300.CrossRefGoogle Scholar
  152. Wayne, L.G., Brenner, D.J, Colwell, R.R, Grimont, P.A., Kandler, O., Krichevsky, M.I., & Truper, H.G. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int. J. Syst. Bacteriol., 37, 463–464.CrossRefGoogle Scholar
  153. Weeks, C. (1969). Production of sulfur dioxide-binding compounds and of sulfur dioxide by two Saccharomyces yeasts. Am. J. Enol. Vitic., 20, 32–39.Google Scholar
  154. Whiley, R.A., Duke, B., Hardie, J.M., & Hall L.M. (1995). Heterogeneity among 16S-23S rRNA intergenic spacers of species within the Streptococcus milleri group. Microbiology, 141,1461–1467.CrossRefGoogle Scholar
  155. Wibowo, D., Eschenbruch, R., Davis, C.R., Fleet, G.H., & Lee, T.H. (1985). Occurrence and growth of lactic acid bacteria in wine: a review. Am. J. Enol. Vitic., 4, 302–313.Google Scholar
  156. Zapparoli, G., Reguant, C., Bordons A., Torrioni, S., & Dellaglio, F. (2000). Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field electrophoresis and randomly amplified polymorphic DNA-PCR. Current Microbiol., 40, 351–355.CrossRefGoogle Scholar
  157. Zavaleta, A.I., Martinez-Murcia, A.J., & Rodriguez-Valera, F. (1997). Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses. Appl. Environ. Microbiol., 63, 1261–1267.Google Scholar
  158. Zimmerli, B., & Schlatter, J. (1991). Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. Mutat. Res., 259, 325–350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Antonella Costantini
  • Emilia García-Moruno
    • 1
  • M. Victoria Moreno-Arribas
    • 2
  1. 1.CRA-Centro di Ricerca per l’EnologiaItaly
  2. 2.Instituto de Fermentaciones Industriales (CSIC)Juan de la CiervaSpain

Personalised recommendations