Interactions Between Wine Matrix Macro-Components and Aroma Compounds

  • María Ángeles Pozo-Bayón
  • Gary Reineccius


Aroma Compound Volatile Compound White Wine Isoamyl Acetate Ethyl Hexanoate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronson, J., & Ebeler, S. (2004). Effect of polyphenol compounds on the headspace volatility of flavors. Am. J. Enol. Vitic., 55, 13–21.Google Scholar
  2. Atanasova ,V., Fulcrand, H., Le Guernevé, C., Cheynier, V., & Moutonet, M. (2002). Structure of a new dimeric acetaldehyde malvidine-3-glucoside condensation product. Tetrahedron Lett., 43, 6151–6153.CrossRefGoogle Scholar
  3. Athes, V., Lillo, M.P.Y., Bernard, C., Perez-Correa, R., & Souchon I. (2004). Comparison of experimental methods for measuring infinite dilution volatilities of aroma compounds in water/ethanol mixtures J. Agric. Food Chem., 52, 2021–2027.CrossRefGoogle Scholar
  4. Aznar, M., Tsachaki, M., Linforth, R.S.T., Ferreira, V., & Taylor, A.J. (2004). Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS. Int. J. Mass Spectrom., 239, 17–25.CrossRefGoogle Scholar
  5. Bayonove, C., Baumes, R., Crouzet, J., & Günata, Z. (2000). In: Enología: Fundamentos Científicos y Tecnológicos, pp. 137–176. Coordinator: Claude Flanzy. AMV and Mundi-Prensa Editions, Madrid.Google Scholar
  6. Boido, E., Lloret, A., Medina, K., Carrau, F., & Dellacassa, E. (2002). Effect of ss-glycosidase activity of Oenococcus oeni on the glycosylated flavor precursors of Tannat wine during malolactic fermentation. J. Agric. Food Chem., 50, 2344–2349.CrossRefGoogle Scholar
  7. Chalier, P., Angot, B., Delteil, D., Doco, T., & Gunata, Z. (2007). Interactions between aroma compounds and whole mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chem., 100, 22–30.CrossRefGoogle Scholar
  8. Chasagne, D., Ramírez, G., Lubbers, S., Charpentier, C., Feuillat M., & Voilley, A. (2003). Sorption of aroma compounds to oak wood in wine ageing conditions. In: J.L. Le Quéré and P.X. Etiévant (Eds.) , Flavour research at the dawn of the twenty – first century pp. 63–66. Cachan, France: LavoisierGoogle Scholar
  9. Chassagne, D., Guilloux-Benatier, M., Alexandre, H., & Voilley, A. (2005). Sorption of wine volatile phenols by yeast lees. Food Chem., 91, 39–44.CrossRefGoogle Scholar
  10. Comuzzo, P., Tat, L., Tonizzo, A., & Battistutta, F. (2006). Yeast derivatives (extracts and autolysates) in winemaking: Release of volatile compounds and effects on wine aroma volatility. Food Chem., 99, 217–230.CrossRefGoogle Scholar
  11. Conner, J.M., Paterson, A, & Piggott, J.R. (1994). Agglomeration of ethyl-esters in model spirit solution and malt whiskeys. J. Sci. Food Agric., 66, 45–53.CrossRefGoogle Scholar
  12. Conner, J.M., Paterson, A., & Piggott, J.R. (1999). Release of distillate flavour compounds in Scotch malt whisky. J. Sci. Food Agric., 79, 1015–1020.CrossRefGoogle Scholar
  13. Dallas, C., Ricardo-da-Silva, J.M., & Laureano, O. (1996). Products formed in model wine solutions involving anthocyanins, procyanidin B-2, and acetaldehyde. J. Agric. Food Chem., 44, 2402–2407.CrossRefGoogle Scholar
  14. De La Ossa, E.M, & Galán M.A. (1986). Salt effect on the vapor/liquid equilibrium of wine Am. J. Enol. Vitic., 37, 254–258.Google Scholar
  15. Druaux, C., Lubbers, C., Lubbers, S., Charpentier, C., & Voilley, A. (1995). Effects of physicochemical parameters of a model wine on the binding of a model wine on the binding of gamma-decalactone on bovine serum-albumin. Food Chem., 53, 203–207.CrossRefGoogle Scholar
  16. Dufour, C., & Bayonove, C.L. (1999a). Influence of wine structurally different polysaccharides on the volatility of aroma substances in a model system. J. Agric. Food Chem., 47, 671–677.CrossRefGoogle Scholar
  17. Dufour, C., & Bayonove, C.L. (1999b). Interactions between wine polyphenols and aroma substances. An insight at the molecular level. J. Agric. Food Chem., 47, 678–684.CrossRefGoogle Scholar
  18. Dufour, C., & Sauvaitre I. (2000). Interactions between anthocyanins and aroma substances in a model system. Effect on the flavor of grape-derived beverages. J. Agric. Food Chem., 48, 1784–1788.CrossRefGoogle Scholar
  19. Escalona, H., Piggott, J.R., Conner, J.M., & Paterson, A. (1999). Effect of ethanol strength on the volatility of higher alcohols and aldehydes. Ital J. Food Sci., 11, 241–248.Google Scholar
  20. Escalona, H., Homman-Ludiye, H., Piggott, J.R., & Paterson, A. (2001). Effect of potassium bitartrate, (+)-catechin and wood extracts on the volatility of ethyl hexanaote and octanal in ethanol/water solutions. Food Sci. Tech., 34, 76–80.Google Scholar
  21. Escalona, H., Birkmyre, L., Piggott, J.R., & Paterson, A. (2002). Effect of maturation in small oak casks on the volatility of red wine aroma compounds Anal. Chim. Acta., 458, 45–54.CrossRefGoogle Scholar
  22. Escribano-Bailón, T., Dangles, O., & Brouillard, R. (1996). Coupling reactions between flavylium ions and catequin. Phytochemistry, 41, 1583–1592.CrossRefGoogle Scholar
  23. Es-Safi, N.E., Fulcrand, H., Cheynier, V., & Moutounet, M. (1999). Studies on the acetaldehyde-induced condensation of (–)-epicatechin and malvidin 3-O-glucoside in a model solution system. J. Agric. Food Chem., 47, 2096–2102.CrossRefGoogle Scholar
  24. Ettre, L.S., Welter, C., & Kolb, B. (1993). Determination of gas-liquid partition coefficients by automatic equilibrium headspace-gas chromatography utilizing the phase ratio variation method. Chromatographia, 35, 73–84.CrossRefGoogle Scholar
  25. Feuillat, M. (2003). Yeast Macromolecules: Origin, Composition and Enological Interest. Am. J. Enol. Vitic., 54, 211–213.Google Scholar
  26. Feuillat, M., Charpentier, C., & Mauhean, A, (2000) In: Enología : Fundamentos Científicos y Tecnológicos, pp. 97–130. Coordinator: Claude Flanzy. AMV and Mundi-Prensa Editions, Madrid.Google Scholar
  27. Fulcrand, H., Doco, T., EsSafi, N.E., Cheynier, V., & Moutounet M. (1996). Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography ion spray mass spectrometry. J. Chromatogr. A, 752, 85–91.CrossRefGoogle Scholar
  28. Grosch, W. (2001). Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem. Senses, 26, 533–545.CrossRefGoogle Scholar
  29. Hartmann, P.J., Mc Nair, H.M., & Zoecklein, W. (2002). Measurements of 3-alkyl-2-methoxypyrazine by Headspace Solid Phase Microextraction in spiked model wines. Am. J. Enol. Vitic., 53, 285–288.Google Scholar
  30. Hermosín, I. (2003). Influence of Ethanol Content on the Extent of Copigmentation in a Cencibel Young Red Wine. J. Agric. Food Chem., 51, 4079–4083.CrossRefGoogle Scholar
  31. Jimenez-Moreno, N. & Ancín-Azpilicueta, C. (2007). Binding of oak volatile compounds by wine lees durimg simulation of wine ageing. Food Sci. Tech., 40, 619–624.Google Scholar
  32. Jung, D.M., & Ebeler S.E. (2003). Headspace solid-phase microextraction method for the study of the volatility of selected flavor compounds. J. Agric. Food Chem., 51, 200–205.CrossRefGoogle Scholar
  33. Jung, D.M., de Ropp J. S., & Ebeler S.E. (2000). Study of interactions between food phenolics and aromatic flavors using one- and two-dimensional 1H NMR Spectroscopy. J. Agric. Food Chem., 48, 407–412.CrossRefGoogle Scholar
  34. King, B.M., & Solms, J. (1982). Interactions of volatile flavour compounds with propyl gallate and other phenols as compared with caffeine. J. Agric. Food Chem., 30, 838–840.CrossRefGoogle Scholar
  35. Langourieux, S., & Crouzet, J.C. (1997). Study of interactions between aroma compounds and glycopeptides by a model system. J. Agric. Food Chem., 45, 1873–1877.CrossRefGoogle Scholar
  36. Le Berre, E., Atanasova, B., Langlois, D., Etievant, P., & Thomas-Danguin, T. (2007). Impact of ethanol on the perception of wine odorant mixtures. Food Qual. Prefer., 18, 901–908CrossRefGoogle Scholar
  37. Lubbers, S., Charpentier, C., Feulliat M., & Voilley, A. (1994a). Influence of yeast walls on the behaviour of aroma compounds in a model wine. Am. J. Enol. Vitic., 45, 29–33,Google Scholar
  38. Lubbers, S., Voilley, A., Feuillat, M., & Charpentier, C. (1994b). Influence of mannoproteins from yeast on the aroma intensity of a model wine. Food Sci. Technol-Leb, 27, 108–114Google Scholar
  39. Lubbers, S., Verret, C., & Voilley, A. (2001). The effect of glycerol on the perceived aroma of a model wine and a white wine. Food Sci. Technol-Leb, 34, 262–265.Google Scholar
  40. Ly, M.H., Covarrubias-Cervantes, M., Dury-Brun, C., Bordet S., Voilley, A., Le, T. M., Belin, J.M., Wache Y. (2008). Retention of aroma compounds by lactic acid bacteria in model food media. Food Hydrocoll., 22, 211–217.CrossRefGoogle Scholar
  41. Mateus, N., Silva, A.M.S., Rivas-Gonzalo, J.C., Santos-Buelga, C., & De Freitas, V.A.P. (2002). Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J. Agric. Food Chem., 50, 2110–2116.CrossRefGoogle Scholar
  42. Moio, L., Ugliano, M., Gambuti, A., Genovese, A., & Piombino, P. (2004). Influence of clarification treatment on concentrations of selected free varietal aroma compounds and glycoconjugates in Falanghina (Vitis vinifera L.) must and wine.Google Scholar
  43. Nedjma, M. (1997). Influence of complex media composition, Cognac’s brandy, or Cognac, on the gas chromatography analysis of volatile sulfur compounds – Preliminary results of the matrix effect. Am. J. Enol. Vitic., 48, 333–338.Google Scholar
  44. Noble, A.C., & Bursick, A.C. (1984) The contribution to glycerol to perceived viscosity and sweetness in white wine Am. J. Enol. Vitic., 35, 110–112.Google Scholar
  45. Nonier, M.F., Vivas, N., de Gaulejac, N.V., Pianet, I., & Fouquet, E. (2007). A kinetic study of the reactions of (+)-catechin with aldehydes derived from toasted oak. J. Sci. Food Agric., 87, 2081–2091.CrossRefGoogle Scholar
  46. Nurgel, C., & Pickering G. (2005). Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited by model white wines. J. Texture Stud., 36, 303–323.CrossRefGoogle Scholar
  47. Pet’ka, J., Cacho, J., & Ferreira, V. (2003). Comparison of flavor perception routes (orthonasal, bucal, retronasal and aftertaste) in a synthetic wine model and with GC-olfactometric data. Oral presentation. Actualites Oenologiques. Bordeaux (Francia). Google Scholar
  48. Pineau, B., Barbe, J. B., Van Leeuwen, C., & Dubourdieu, D. (2007). Which Impact forβ-damascenone on red wines aroma? J. Agric. Food Chem., 55, 4103–4108.CrossRefGoogle Scholar
  49. Pueyo, E., Dizy, M., & Polo, M.C. (1993). Varietal differenciation of musts and wines by means of protein fraction Am. J. Enol. Vitic., 44, 255–260Google Scholar
  50. Ramírez-Ramírez, G., Lubbers, S., Charpentier, C., Feuillat, M., Voilley, A., & Chassagne, D. (2001). Aroma compound sorption by oak wood in a model wine. J. Agric. Food Chem., 49, 3893–3897.CrossRefGoogle Scholar
  51. Ramírez-Ramírez, G., Chassagne, D., Feuillat, M., Voilley, A., & Charpentier C. (2004). Effect of wine constituents on aroma compound sorption by oak wood in a model system. Am J. Enol. Vitic., 55, 22–26.Google Scholar
  52. Saucier, C., Little, D., & Glories, Y. (1997). First evidence of acetaldehyde-flavanol condensation products in red wine. Am. J. Enol. Vitic., 48, 370–373.Google Scholar
  53. Saulnier, L., Mercereau, T., & Vezhinet, E.F. (1991) Mannoproteins from flocculating and nonflocculating Saccharomyces cerevisiae yeasts. J. Sci. Food Agric., 54, 275–286.CrossRefGoogle Scholar
  54. Savary, G., Guichard, E., Doublier, J.L., & Cayot, N. (2006). Mixture of aroma compounds: Determination of partition coefficients in complex semi-solid matrices. Food Res. Int., 39,372–379.CrossRefGoogle Scholar
  55. Savary, G., Lafarge, C., Doublier, J.L., & Cayot N. (2007) Distribution of aroma in a starch-polysaccharide composite gel. Food Res. Int., 40, 709–716.CrossRefGoogle Scholar
  56. Spedding, P.L., Grimshaw, J., & Ohare, K.D. (1993). Abnormal evaporation rate of ethanol from low concentration aqueous solutions. Langmuir, 9, 1408–1413.CrossRefGoogle Scholar
  57. Timberlake, C.F., & Bridle, P. (1976). Interactions between anthocyanins, phenolic compounds and acetaldehyde. Am. J. Enol. Vitic., 27, 97–105.Google Scholar
  58. Tsachaki, M., Linforth, R.S.T., & Taylor A.J. (2005). Dynamic headspace analysis of the release of volatile organic compounds from ethanolic systems by direct APCI-MS. J. Agric. Food Chem., 53, 8328–8333.CrossRefGoogle Scholar
  59. Voilley, A., Lamer, C., Dubois, O., & Feuillat, M. (1990). Influence of macromolecules and treatments on the behaviour of aroma compounds in a model wine. J. Agric. Food Chem., 38, 248–251.CrossRefGoogle Scholar
  60. Voilley, A., Beghin, V., Charpentier, V., Charpentier, C., & Peyrond, D. (1991). Interactions between aroma substances and macromolecules in a model in a model wine. Food Sci. Technol-Leb., 24, 469–472Google Scholar
  61. Whiton, R.S., & Zoecklein, B.W. (2000). Optimization of headspace solid-phase microextraction for analysis of wine aroma compounds. Am. J. Enol. Vitic., 51, 379–382.Google Scholar
  62. Will, F., & Dietrich, H. (1990). Analysis of the monomer composition of wine polysacharydes. Z. Lebensm. Unters For., 191, 123–128.CrossRefGoogle Scholar
  63. Yokotsuka, K., Ebihara, T., & Sato, T. (1991). Comparison of soluble proteins in juice and wine from kushu grape, J. Ferment Bioeng., 71, 248–253Google Scholar
  64. Zamora, M.C., Goldner, M.C., & Galmarini, M.V. (2006). Sourness-sweetness interactions in different media: White wine, ethanol and water. J. Sens. Stud., 21, 601–611.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • María Ángeles Pozo-Bayón
    • 1
  • Gary Reineccius
  1. 1.Instituto de Fermentaciones Industriales (CSIC)Spain

Personalised recommendations