Identification of Impact Odorants of Wines

  • Vicente Ferreira
  • Juan Cacho


Odor Threshold Wine Aroma Aroma Extract Dilution Analysis Stable Isotope Dilution Assay Wine Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, N., Etiévant, P., Langlois, D., Lesschaeve, I., and Issanchou, S. (1993). Evaluation of the representativiness of the odor of beer extracts prior to analysis by GC Eluate Sniffing. J. Agric. Food Chem., 41, 777–780.Google Scholar
  2. Acree, T.E., Barnard, J., and Cunningham, D.G. (1984). A procedure for the sensory analysis of gas chromatographic effluents. Food Chem., 14, 273–286.Google Scholar
  3. Allen, M.S., Lacey, M.J., and Boyd, S. (1994). Determination of methoxypyrazines in red wines by stable isotope dilution gas chromatography-mass spectrometry. J. Agric. Food Chem., 42, 1734–1738.Google Scholar
  4. Amoore, J.E. (1977). Specific anosmia and concept of primary odors. Chem. Senses Flavor, 2, 267–281.Google Scholar
  5. Atanasova, B., Thomas-Danguin, T., Langlois, D., Nicklaus, S., and Etievant, P. (2004). Perceptual interactions between fruity and woody notes of wine. Flav. Frag. J., 19, 476–482.Google Scholar
  6. Aznar, M., López, R., Cacho, J.F., and Ferreira, V. (2001). Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions. J. Agric. Food Chem., 49, 2924–2929.Google Scholar
  7. Bailly, S., Jerkovic, V., Marchand-Bryaert, J., and Collin, S. (2006). Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols. J. Agric. Food Chem., 54,7227–7234.Google Scholar
  8. Belitz, H.D., and Grosch, W. (1988). Química de los Alimentos (Zaragoza, Ed. Acribia).Google Scholar
  9. Bernet, C., Dirninger, N., Etievant, P., and Schaeffer, A. (1999). Evaluation of the odor representativeness of gewurztraminer wines extracts. Sci. Alim., 19, 701–709.Google Scholar
  10. Bernet, C., Dirninger, N., Claudel, P., Etievant, P., and Schaeffer, A. (2002). Application of finger span cross modality matching method (FSCM) by naive assessors for olfactometric discrimination of gewurztraminer wines. Lebens. Wiss. Technol., 35, 244–253.Google Scholar
  11. Boidron, J.N., Chatonnet, P., and Pons, M. (1988). Influence du bois sur certaines substances odorantes des vins. Conn. Vigne Vin, 22, 275–293.Google Scholar
  12. Buettner, A. (2004). Investigation of potent odorants and afterodor development in two Chardonnay wines using the buccal odor screening system (BOSS). J. Agric. Food Chem., 52, 2339–2346.Google Scholar
  13. Cain, W.S., and Gent, J.F. (1991). Olfactory sensitivity – reliability, generality, and association with aging. J. Exp. Psychol. Human Percep. Perfor., 17, 382–391.Google Scholar
  14. Camara, J.S., Marques, J.C., Alves, M.A., and Ferreira, A.C.S. (2004). 3-hydroxy-4,5-dimethyl-2(5H)-furanone levels in fortified Madeira wines, Relationship to sugar content. J. Agric. Food Chem., 52, 6765–6769.Google Scholar
  15. Campo, E., Ferreira, V., Escudero, A., and Cacho, J. (2005). Prediction of the wine sensory properties related to grape variety from dynamic-headspace gas chromatography-olfactometry data. J. Agric. Food Chem., 53, 5682–5690.Google Scholar
  16. Campo, E., Cacho, J., and Ferreira, V. (2006a). Multidimensional chromatographic approach applied to the identification of novel aroma compounds in wine – Identification of ethyl cyclohexanoate, ethyl 2-hydroxy-3-methylbutyrate and ethyl 2-hydroxy-4-methylpentanoate. J. Chromatogr. A., 1137, 223–230.Google Scholar
  17. Campo, E., Ferreira, V., Escudero, A., Marques, J.C., and Cacho, J. (2006b). Quantitative gas chromatography-olfactometry and chemical quantitative study of the aroma of four Madeira wines. Anal. Chim. Acta, 563, 180–187.Google Scholar
  18. Chapman, D.M., Thorngate, J.H., Matthews, M.A., Guinard, J.X., and Ebeler, S.E. (2004). Yield effects on 2-methoxy-3-isobutylpyrazine concentration in Cabernet Sauvignon using a solid phase microextraction gas chromatography/mass spectrometry method. J. Agric. Food Chem., 52, 5431–5435.Google Scholar
  19. Chatonnet, P., Dubourdieu, D., Boidron, J.N., and Lavigne, V. (1993). Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J. Sci. Food Agric., 62, 191–201.Google Scholar
  20. Cullere, L., Aznar, M., Cacho, J., and Ferreira, V. (2003). Fast fractionation of complex organic extracts by normal-phase chromatography on a solid-phase extraction polymeric sorbent – Optimization of a method to fractionate wine flavor extracts. J. Chromatogr. A., 1017, 17–26.Google Scholar
  21. Cullere, L., Cacho, J., and Ferreira, V. (2004a). Analysis for wine C5-C8 aldehydes through the determination of their O-(2,3,4,5,6-pentafluorobenzyl)oximes formed directly in the solid phase extraction cartridge. Anal. Chim. Acta, 524, 201–206.Google Scholar
  22. Cullere, L., Escudero, A., Cacho, J., and Ferreira, V. (2004b). Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem., 52, 1653–1660.Google Scholar
  23. Cutzach, I., Chatonnet, P., and Dubourdieu, D. (1998). Study on sweet natural non Muscat wine aroma. I. Qualitative analysis of sweet natural wine aroma found during ageing. J. Int. Sci. Vigne Vin, 32, 99–110.Google Scholar
  24. da Costa, M.S., Goncalves, C., Ferreira, A., Ibsen, C., de Pinho, P.G., and Ferreira, A.C.S. (2004). Further insights into the role of methional and phenylacetaldehyde in lager beer flavor stability. J. Agric. Food Chem., 52, 7911–7917.Google Scholar
  25. da Silva, M.A.A.P., Lundahl, D.S., and McDaniel, M.R. (1994). The capability and psychophysics of osme, a new GC-olfactometry technique. In Trends in flavour research, H. Maarse and D.G. Van der heij, eds. (Elsevier science B.V.), pp. 191–209.Google Scholar
  26. Darriet, P., Tominaga, T., Lavigne, V., Boidron, J.N., and Dubourdieu, D. (1995). Identification of a powerful aromatic component of Vitis vinifera L. var. Sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flav. Frag. J., 10, 385–392.Google Scholar
  27. Debonneville, C., Orsier, B., Flament, I., and Chaintreau, A. (2002). Improved hardware and software for quick gas chromatography-olfactometry using Charm and GC-“SNIF” analysis. Anal. Chem., 74, 2345–2351.Google Scholar
  28. Escudero, A., Cacho, J., and Ferreira, V. (2000). Isolation and identification of odorants generated in wine during its oxidation: a gas chromatography-olfactometric study. Eur. Food Res. Technol., 211, 105–110.Google Scholar
  29. Escudero, A., Gogorza, B., Melus, M.A., Ortin, N., Cacho, J., and Ferreira, V. (2004). Characterization of the aroma of a wine from Maccabeo. Key role played by compounds with low odor activity values. J. Agric. Food Chem., 52, 3516–3524.Google Scholar
  30. Escudero, A., Campo, E., Farina, L., Cacho, J., and Ferreira, V. (2007). Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem., 55, 4501–4510.Google Scholar
  31. Etiévant, P.X., Callement, G., Langlois, D., Issanchou, S., and Coquibus, N. (1999). Odor intensity evaluation in gas chromatography – olfactometry by finger span method. J. Agric. Food Chem., 47, 1673–1680.Google Scholar
  32. Falcao, L.D., de Revel, G., Perello, M.C., Moutsiou, A., Zanus, M.C., and Bordignon-Luiz, M.T. (2007). A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C-13-norisoprenoids, and the sensory profile of Brazilian Cabernet Sauvignon wines. J. Agric. Food Chem., 55, 3605–3612.Google Scholar
  33. Fan, W.L., and Qian, M.C. (2005). Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors. J. Agric. Food Chem., 53, 7931–7938.Google Scholar
  34. Fang, Y., and Qian, M. (2005). Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA). Flav. Frag. J., 20, 22–29.Google Scholar
  35. Fedrizzi, B., Versini, G., Lavagnini, I., Nicolini, G., and Magno, F. (2007). Gas chromatography-mass spectrometry determination of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in wine A comparison of headspace solid phase microextraction and solid phase extraction methods. Anal. Chim. Acta, 596, 291–297.Google Scholar
  36. Ferreira, A.C.S., Barbe, J.C., and Bertrand, A. (2003). 3-hydroxy-4,5-dimethyl-2(5H)-furanone, A key odorant of the typical aroma of oxidative aged Port wine. J. Agric. Food Chem., 51, 4356–4363.Google Scholar
  37. Ferreira, V., Ardanuy, M., López, R., and Cacho, J.F. (1998a). Relationship between flavor dilution values and odor unit values in hydroalcoholic solutions: Role of volatility and a practical rule for its estimation. J. Agric. Food Chem., 46, 4341–4346.Google Scholar
  38. Ferreira, V., López, R., Escudero, A., and Cacho, J.F. (1998b). The aroma of Grenache red wine: Hierarchy and nature of its main odorants. J. Sci. Food Agric., 77, 259–267.Google Scholar
  39. Ferreira, V., Hernandez-Orte, P., Escudero, A., López, R., and Cacho, J. (1999). Semipreparative reversed-phase liquid chromatographic fractionation of aroma extracts from wine and other alcoholic beverages. J. Chromatogr. A., 864, 77–88.Google Scholar
  40. Ferreira, V., Aznar, M., López, R., and Cacho, J. (2001a). Quantitative gas chromatography-olfactometry carried out at different dilutions of an extract. Key differences in the odor profiles of four high-quality Spanish aged red wines. J. Agric. Food Chem., 49, 4818–4824.Google Scholar
  41. Ferreira, V., López, R., and Aznar, M. (2001b). Olfactometry and aroma extract dilution analysis of wines. In analysis of taste and aroma, Volume 21, J. Jackson, ed. (Berlin: Springer-Verlag), pp. 89–122.Google Scholar
  42. Ferreira, V., Ortin, N., Escudero, A., López, R., and Cacho, J. (2002a). Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J. Agric. Food Chem., 50, 4048–4054.Google Scholar
  43. Ferreira, V., Pet’ka, J., and Aznar, M. (2002b). Aroma extract dilution analysis. Precision and optimal experimental design. J. Agric. Food Chem., 50, 1508–1514.Google Scholar
  44. Ferreira, V., Jarauta, I., López, R., and Cacho, J. (2003a). Quantitative determination of sotolon, maltol and free furaneol in wine by solid-phase extraction and gas chromatography-ion-trap mass spectrometry. J. Chromatogr. A., 1010, 95–103.Google Scholar
  45. Ferreira, V., Pet’ka, J., Aznar, M., and Cacho, J. (2003b). Quantitative gas chromatography-olfactometry. Analytical characteristics of a panel of judges using a simple quantitative scale as gas chromatography detector. J. Chromatogr. A., 1002, 169–178.Google Scholar
  46. Ferreira, V., Jarauta, I., Ortega, L., and Cacho, J. (2004). Simple strategy for the optimization of solid-phase extraction procedures through the use of solid-liquid distribution coefficients Application to the determination of aliphatic lactones in wine. J. Chromatogr. A., 1025,147–156.Google Scholar
  47. Ferreira, V., Pet’ka, A., and Cacho, J. (2006). Intensity and persistence profiles of flavor compounds in synthetic solutions. Simple model for explaining the intensity and persistence of their aftersmell. J. Agric. Food Chem., 54, 489–496.Google Scholar
  48. Ferreira, V., Ortin, N., and Cacho, J.F. (2007). Optimization of a procedure for the selective isolation of some powerful aroma thiols – Development and validation of a quantitative method for their determination in wine. J. Chromatogr. A, 1143, 190–198.Google Scholar
  49. Fretz, C., Kanel, S., Luisier, J.L., and Amado, R. (2005). Analysis of volatile components of Petite Arvine wine. Eur. Food Res. Technol., 221, 504–510.Google Scholar
  50. Gomez-Miguez, M.J., Cacho, J.F., Ferreira, V., Vicario, I.M., and Heredia, F.J. (2007). Volatile components of Zalema white wines. Food Chem., 100, 1464–1473.Google Scholar
  51. Grob, K., Grob, G., and Grob, K. (1981). Testing capillary gas-chromatographic columns. J. Chromatogr., 219, 13–20.Google Scholar
  52. Grosch, W. (1993). Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci. Technol., 4, 68–73.Google Scholar
  53. Guarrera, N., Campisi, S., and Asmundo, C.N. (2005). Identification of the odorants of two passito wines by gas chromatography-olfactometry and sensory analysis. Am. J. Enol. Vitic., 56,394–399.Google Scholar
  54. Guichard, H., Guichard, E., Langlois, D., Issanchou, S., and Abbott, N. (1995). GC sniffing analysis – olfactive intensity measurement by 2 methods. Z. Lebensm. Unter. Forsch., 201,344–350.Google Scholar
  55. Gurbuz, O., Rouseff, J.M., and Rouseff, R.L. (2006). Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography – Olfactometry and gas chromatography – Mass spectrometry. J. Agric. Food Chem., 54, 3990–3996.Google Scholar
  56. Guth, H. (1997a). Identification of character impact odorants of different white wine varieties. J. Agric. Food Chem., 45, 3022–3026.Google Scholar
  57. Guth, H. (1997b). Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem., 45, 3027–3032.Google Scholar
  58. GC-Sniffer 9000. Product brochure (2008). page=269.
  59. IUPAC (1997). Compendium of chemical terminology, 2nd ed.
  60. Komes, D., Ulrich, D., and Lovric, T. (2006). Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. Eur. Food Res. Technol., 222, 1–7.Google Scholar
  61. Kotseridis, Y., and Baumes, R. (2000). Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agric. Food Chem., 48, 400–406.Google Scholar
  62. Kotseridis, Y., Baumes, R.L., Bertrand, A., and Skouroumounis, G.K. (1999). Quantitative determination of 2-methoxy-3-isobutylpyrazine in red wines and grapes of Bordeaux using a stable isotope dilution assay. J. Chromatogr. A., 841, 229–237.Google Scholar
  63. Le Fur, Y., Mercurio, V., Moio, L., Blanquet, J., and Meunier, J.M. (2003). A new approach to examine the relationships between sensory and gas chromatography-olfactometry data using generalized procrustes analysis applied to Six French Chardonnay wines. J. Agric. Food Chem., 51, 443–452.Google Scholar
  64. Le Guen, S., Prost, C., and Demaimay, M. (2000). Critical comparison of three olfactometric methods for the identification of the most potent odorants in cooked mussels (Mytilus edulis). J. Agric. Food Chem., 48, 1307–1314.Google Scholar
  65. Ledauphin, J., Barillier, D., and Beljean-Leymarie, M. (2006a). Gas chromatographic quantification of aliphatic aldehydes in freshly distilled Calvados and Cognac using 3-methylbenzothiazolin-2-one hydrazone as derivative agent. J. Chromatogr. A., 1115, 225–232.Google Scholar
  66. Ledauphin, J., Basset, B., Cohen, S., Payot, T., and Barillier, D. (2006b). Identification of trace volatile compounds in freshly distilled Calvados and Cognac: Carbonyl and sulphur compounds. J. Food Comp. Anal., 19, 28–40.Google Scholar
  67. Lee, S.J., and Noble, A.C. (2003). Characterization of odor-active compounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry. J. Agric. Food Chem., 51, 8036–8044.Google Scholar
  68. Lopez, P., Batlle, R., Nerin, C., Cacho, J., and Ferreira, V. (2007). Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption – Application to the retention of seven volatile organic compounds. J. Chromatogr. A., 1139, 36–44.Google Scholar
  69. López, R., Ferreira, V., Hernandez, P., and Cacho, J.F. (1999). Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: a comparative study. J. Sci. Food Agric., 79, 1461–1467.Google Scholar
  70. López, R., Ferreira, V., Culleré, L., Grasa, C., and Cacho, J. (2003a). Improvements for the analytical chemistry of flavours obtained from the use of new-generation polymeric sorbents. In Flavour Research at the Dawn of the Twenty-first Century, Proceedings of the 10th Weurman Flavour Research Symposium, J.L.L. Quéré and P.X. Etievant, eds. (Paris: Lavoisier, Ed. TecandDoc, 2003. ISBN 2-7430-0639-0), pp. pp. 662–665.Google Scholar
  71. López, R., Ortin, N., Perez-Trujillo, J.P., Cacho, J., and Ferreira, V. (2003b). Impact odorants of different young white wines from the Canary Islands. J. Agric. Food Chem., 51, 3419–3425.Google Scholar
  72. López, R., Ezpeleta, E., Sanchez, I., Cacho, J., and Ferreira, V. (2004). Analysis of the aroma intensities of volatile compounds released from mild acid hydrolysates of odourless precursors extracted from Tempranillo and Grenache grapes using gas chromatography-olfactometry. Food Chem., 88, 95–103.Google Scholar
  73. López, R., Lapena, A.C., Cacho, J., and Ferreira, V. (2007). Quantitative determination of wine highly volatile sulfur compounds by using automated headspace solid-phase microextraction and gas chromatography-pulsed flame photometric detection – Critical study and optimization of a new procedure. J. Chromatogr. A., 1143, 8–15.Google Scholar
  74. Marti, M.P., Mestres, M., Sala, C., Busto, O., and Guasch, J. (2003). Solid-phase microextraction and gas chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma. J. Agric. Food Chem., 51, 7861–7865.Google Scholar
  75. Mateo-Vivaracho, L., Ferreira, V., and Cacho, J. (2006). Automated analysis of 2-methyl-3-furanthiol and 3-mercaptohexyl acetate at ng L-1 level by headspace solid-phase microextracion with on-fibre derivatisation and gas chromatography-negative chemical ionization mass spectrometric determination. J. Chromatogr. A., 1121, 1–9.Google Scholar
  76. Mateo-Vivaracho, L., Cacho, J., and Ferreira, V. (2007). Quantitative determination of wine polyfunctional mercaptans at nanogram per liter level by gas chromatography-negative ion mass spectrometric analysis of their pentafluorobenzyl derivatives. J. Chromatogr. A., 1146,242–250.Google Scholar
  77. McDaniel, M.R., Miranda-López, R., Walson, B.T., Micheals, N.J., and Libbey, L.M. (1990). Pinot Noir aroma: A sensory/gas chromatographic approach. In Flavors and Off-Flavors, G. Charalambous, ed. (Amsterdam: Elsevier), pp. 23–36.Google Scholar
  78. Mestres, M., Busto, O., and Guasch, J. (2000). Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A., 881, 569–581.Google Scholar
  79. Miranda-Lopez, R., Libbey, L.M., Watson, B.T., and McDaniel, M.R. (1992). Odor analysis of Pinot Noir wines from grapes of different maturities by a gas chromatography-olfactometry technique (osme). J. Food Sci., 57, 985–993 and 1019.Google Scholar
  80. Moio, L., Chambellant, E., Lesschaeve, I., Issanchou, S., Schlich, P., and Etievant, P.X. (1995). Production of representative wine extracts for chemical and olfactory analysis. It. J. Food Sci., 7, 265–278.Google Scholar
  81. Molyneux, R.J., and Schieberle, P. (2007). Compound identification: A Journal of agricultural and food chemistry perspective. J. Agric. Food Chem., 55, 4625–4629.Google Scholar
  82. Moreno, J.A., Zea, L., Moyano, L., and Medina, M. (2005). Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control, 16, 333–338.Google Scholar
  83. Murat, M., Tominaga, T., and Dubourdieu, D. (2001). Mise en évidence de composés clefs dans l’arôme des vins rosés et clairets de Bordeaux. J. Int. Sci. Vigne Vin, 35, 99–105.Google Scholar
  84. Ong, P.K.C., and Acree, T.E. (1999). Similarities in the aroma chemistry of Gewurztraminer variety wines and lychee (Litchi chinesis Sonn.) fruit. J. Agric. Food Chem., 47, 665–670.Google Scholar
  85. Pet’ka, J., Ferreira, V., and Cacho, J. (2005). Posterior evaluation of odour intensity in gas chromatography-olfactometry: comparison of methods for calculation of panel intensity and their consequences. Flavour Frag. J., 20, 278–287.Google Scholar
  86. Pet’ka, J., Ferreira, V., Gonzalez-Vinas, M.A., and Cacho, J. (2006). Sensory and chemical characterization of the aroma of a white wine made with Devin grapes. J. Agric. Food Chem., 54, 909–915.Google Scholar
  87. Pollien, P., Ott, A., Montignon, F., Baumgartner, M., Munoz-Box, R., and Chaintreau, A. (1997). Hyphenated headspace Gas chromatography sniffing technique : screening of impact odorants and quantitative aromagram comparisons. J. Agric. Food Chem., 45, 2630–2637.Google Scholar
  88. Pollien, P., Fay, L.B., Baumgartner, M., and Chaintreau, A. (1999). First attempt of odorant quantitation using gas chromatography-olfactometry. Anal. Chem., 71, 5391–5397.Google Scholar
  89. Priser, C., Etievant, P.X., Nicklaus, S., and Brun, O. (1997). Representative champagne wine extracts for gas chromatography olfactometry analysis. J. Agric. Food Chem., 45, 3511–3514.Google Scholar
  90. Prouteau, C., Schneider, R., Lucchese, Y., Nepveu, F., Renard, R., and Vaca-Garcia, C. (2004). Improving headspace-solid-phase microextraction of 3-isobutyl-2-methoxypyrazine by experimental design with regard to stable isotope dilution gas chromatography-mass spectrometric analysis of wine. Anal. Chim. Acta, 513, 223–227.Google Scholar
  91. Punter, P.H. (1983). Measurement of human olfactory thresholds for several groups of structurally related compounds. Chem. Senses, 7, 215–235.Google Scholar
  92. Rauhut, D., Kurbel, H., Macnamara, K., and Grossmann, M. (1998). Headspace GC-SCd Monitoring of Low Volatile Sulfur-Compounds During Fermentation and in Wine. Analusis, 26, 142–145.Google Scholar
  93. Ruth, S.M.v., Roozen, J.P., and Posthumus, M.A. (1995). Instrumental and sensory evaluation of the flavour of dried French beans (Phaseolus vulgaris) influenced by storage conditions. J. Sci. Food Agric., 69, 393–401.Google Scholar
  94. Ryan, D., Watkins, P., Smith, J., Allen, M., and Marriott, P. (2005). Analysis of methoxypyrazines in wine using headspace solid phase microextraction with isotope dilution and comprehensive two-dimensional gas chromatography. J. Sep. Sci., 28, 1075–1082.Google Scholar
  95. Sala, C., Mestres, M., Marti, M.P., Busto, O., and Guasch, J. (2002). Headspace solid-phase microextraction analysis of 3-alkyl-2-methoxypyrazines in wines. J. Chromatogr. A., 953, 1–6.Google Scholar
  96. Sarrazin, E., Dubourdieu, D., and Darriet, P. (2007). Characterization of key-aroma compounds of botrytized wines, influence of grape botrytization. Food Chem., 103, 536–545.Google Scholar
  97. Schieberle, P., and Grosch, W. (1987). Evaluation of the flavour of wheat and rey bread crusts by aroma extract dilution analysis. Z. Lebensm. Unters. Forsch., 185, 111–113.Google Scholar
  98. Schneider, R., Kotseridis, Y., Ray, J.L., Augier, C., and Baumes, R. (2003). Quantitative determination of sulfur-containing wine odorants at sub parts per billion levels. 2. Development and application of a stable isotope dilution assay. J. Agric. Food Chem., 51, 3243–3248.Google Scholar
  99. Serot, T., Prost, C., Visna, L., and Burcea, M. (2001). Identification of the main odor-active compounds in musts from french and romanian hybrids by three olfactometric methods. J. Agric. Food Chem., 49, 1909–1914.Google Scholar
  100. Stevens, S.S. (1975). Psychophysics. pp. 99–133, Wiley: New York.Google Scholar
  101. Stevens, S.S., and Stone, G. (1959). Finger span: Ratio scale, category scale and JND scale. J. Exp. Psychol., 57, 91–95.Google Scholar
  102. Tat, L., Comuzzo, P., Battistutta, F., and Zironi, R. (2007). Sweet-like off-flavor in aglianico del vulture wine: Ethyl phenylacetate as the mainly involved compound. J. Agric. Food Chem., 55, 5205–5212.Google Scholar
  103. Tominaga, T., and Dubourdieu, D. (2006). A novel method for quantification of 2-methyl-3-furanthiol and 2-furanmethanethiol in wines made from Vitis vinifera grape varieties. J. Agric. Food Chem., 54, 29–33.Google Scholar
  104. Tominaga, T., Murat, M.L., and Dubourdieu, D. (1998). Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis-Vinifera L. CV Sauvignon Blanc. J. Agric. Food Chem., 46, 1044–1048.Google Scholar
  105. Ullrich, F., and Grosch, W. (1987). Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Z. Lebensm. Untersch. Forsch., 184, 277–282.Google Scholar
  106. van Ruth, S.M. (2004). Evaluation of two gas chromatography-olfactometry methods: the detection frequency and perceived intensity method. J. Chromatogr. A., 1054, 33–37.Google Scholar
  107. Van Wyk, C.J., Augustyn, O.P.H., De Wet, P., and Joubert, W.A. (1979). Isoamyl acetate, a key fermentation volatile of wines of vitis vinifera cv. Pinotage. Am. J. Enol. Vitic., 30, 167–173.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vicente Ferreira
    • 1
  • Juan Cacho
  1. 1.Laboratory for Flavor Analysis and Enology, Department of Analytical Chemistry, Faculty of SciencesUniversity of Zaragoza50009 ZaragozaSpain

Personalised recommendations