Advertisement

Keywords

White Wine Vitis Vinifera Grape Berry Volatile Phenol Wine Aroma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albagnac, G. (1975). La décarboxylation des acides cinnamiques substitués par les levures. Ann. Technol. Agric., 24, 133–141.Google Scholar
  2. Anness, B. J., & Bamforth, C. W. (1982). Dimethyl sulphide – a review. J. Inst.Brew., 88, 244–252.Google Scholar
  3. Anocibar Beloqui, A. (1998). Les composés soufrés volatils des vins rouges.Doctoral dissertation, University Victor Segalen Bordeaux II.Google Scholar
  4. Anocibar Beloqui, A., Kotseridis, Y., & Bertrand, A. (1996). Détermination de la teneur en sulphure de diméthyle dans quelques vins rouges. J. Int. Sci. Vigne Vin, 30, 167–170.Google Scholar
  5. Bailly, S., Jerkovic, V., Marchand-Bryaert, J., & Collin, S. (2006). Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols. J. Agric. Food Chem., 54, 7227–7234.CrossRefGoogle Scholar
  6. Bamforth, C. W., & Anness, B. J. (1981). The role of dimethyl sulphoxide reductase in the formation of dimethyl sulphide during fermentation. J. Inst.Brew., 87, 30–34.Google Scholar
  7. Baumes, R., Bayonove, C., Cordonnier, R., Torres, P., & Seguin, A. (1989). Incidence de la macération pelliculaire sur la composante aromatique des vins doux naturels de muscat. Rev. Fr. Oenol., 116, 5–11.Google Scholar
  8. Baumes, R., Aubert, C., Günata, Z., De Moor, W., & Bayonove, C. (1994). Structure of two C13 norisoprenoid glucosidic precursors of wine flavor. J. Essent. Oil. Res., 6, 587–599.Google Scholar
  9. Baumes, R., Wirth, J., Bureau, S., Günata, Z., & Razungles, A. (2002). Biogeneration of C13-norisoprenoid compounds: Experiments supportive for an apo-carotenoid pathway in grapevines. Anal. Chim. Acta, 458, 3–14.CrossRefGoogle Scholar
  10. Bayonove, C. (1998). L’arôme variétal: le potentiel aromatique du raisin. In: C. Flanzy (Ed.), Oenologie: fondements scientifiques et technologiques (pp. 165–181). Paris : Lavoisier Tec et Doc.Google Scholar
  11. Belancic, A., Günata, Z., Vallier, M.J., & Agosin, E. (2003). β-glucosidase from the grape native yeast Debaryomyces vanriji : Purification, characterization and its effect on monoterpene concentration of a Muscat grape juice. J. Agric. Food Chem., 51, 3083–3091.CrossRefGoogle Scholar
  12. Bezzubov, A. A., & Gessler, N. N. (1992). Plant sources of S-methylmethionine. App. Biochem. Microbiol., 28, 317–322.Google Scholar
  13. Bitteur, S., Tesniere, C., Sarris, J., Baumes, R., Bayonove, C., & Flanzy, C. (1992). Carbonic anaerobiosis of muscat grape. I. Changes in the profiles ol free and bound volatiles. Am. J. Enol. Vitic., 43, 41–48.Google Scholar
  14. Blanchard, L., Darriet, P., & Dubourdieu, D. (2004). Reactivity of 3-mercaptohexanol in red wine: Impact of oxygen, phenolic fractions, and sulfur dioxide. Am. J. Enol. Vitic., 55, 115–120.Google Scholar
  15. Bonnländer, B., Baderschneider, B., Monika Messerer, M., & Winterhalter, P. (1998). Isolation of Two Novel Terpenoid Glucose Esters from Riesling Wine. J. Agric. Food Chem., 46, 1474–1478.CrossRefGoogle Scholar
  16. Bouchilloux, P., Darriet, P., Henry, R., Lavigne-Cruège, V., & Dubourdieu, D. (1998). Identification of volatile and powerful odorous thiols in Bordeaux red wine varieties. J. Agric. Food Chem., 46, 3095–3099.CrossRefGoogle Scholar
  17. Boursiquot, J. M., Sapis, J.C., & Macheix, J.J. (1986). Les esters hydroxycinnamiques chez le genre Vitis. Essai d’application taxonomique : premiers résultats.C. R. Acad. Sci., 302, 177.Google Scholar
  18. Britton, G. (1982). Carotenoid biosynthesis in higher plants. Physiol. Veg., 20, 735–755.Google Scholar
  19. Britton, G. (1995). Structure and properties of carotenoids in relation to function. FASEB J., 9, 1551–1558.Google Scholar
  20. Bureau, S. (1998). Modification de l’environnement limineux des grappes et des ceps de vigne: effets sur le potentiel aromatique des baies de Syrah et de Muscat de Frontignan. Doctoral dissertation, University of Montpellier II.Google Scholar
  21. Cavin, J.F., Andioc, V., Etievant, P., & Divies, C. (1993). Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids. Am. J. Enol. Vitic., 44, 76–80.Google Scholar
  22. Chatonnet, P., Dubourdieu, D., Boidron, J. N., & Pons, M. (1992a). The origin of ethylphenols in wines. J. Sci. Food Agric., 60, 165–178.CrossRefGoogle Scholar
  23. Chatonnet, P., Dubourdieu, D., & Boidron, J. N. (1992b). Le caractère phénolé des vins rouges: caractérisation, origine et moyens de lutte. Rev. Fr. Oenol., 138, 21–24.Google Scholar
  24. Chatonnet, P., Barbe, C., Canal-Llauberes, R.M., Dubourdieu, D., & Boidron, J. N. (1992c). Incidences de certaines préparations pectolytiques sur la teneur en phénols volatils des vins blancs. J. Int. Sci. Vigne Vin, 26, 253–269.Google Scholar
  25. Chatonnet, P., Dubourdieu, D., Boidron, J. N., & Lavigne, V. (1993a). Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J. Sci. Food Agric., 62, 191–202.CrossRefGoogle Scholar
  26. Chatonnet, P., Barbe, C., Boidron, J.N., & Dubourdieu, D. (1993b). Origines et incidences organoleptiques de phénols volatils dans les vins. Application à la maîtrise de la vinification et de l’élevage. In: J. Crouzet, C. Flanzy, C. Martin and J. C. Sapis (Eds.), Connaissance aromatique des cépages et qualité des vins (pp. 279–287). Montpellier: Revue françaised’oenologie.Google Scholar
  27. Chatonnet, P., Dubourdieu, D., & Boidron, J. N. (1995). The influence of Brettanomyces dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wine. Am. J. Enol. Vitic., 46, 463–468.Google Scholar
  28. Chone, X., Lavigne-Cruege, V., Tominaga, T., Van Leeuwen, C., Castagned, C., Saucier, C., & Dubourdieu, D. (2006). Effect of vine status on grape aromatic potential: flavor precursors (S-cysteine conjugates), glutathione and phenolic contents in Vitis vinifera L. cv. Sauvignon Blanc grape juice. J. Int. Sc. Vigne Vin, 40, 1–6.Google Scholar
  29. Cordonnier, R., & Bayonove, C. (1974). Mise en évidence dans la baie de raisin, variété Muscat d’Alexandrie, de monoterpènes liés révélables par une ou plusieurs enzymes de fruits. C. R. Acad. Sci. Paris, 278, 3387–3390.Google Scholar
  30. Cox, A., Skouroumounis, G.K., Elsey, G.M., Perkins, M. V., & Sefton, M. A. (2005). Generation of (E)-1-(2,3,6-Trimethylphenyl)buta-1,3-diene from C13-norisoprenoid precursors. J. Agric. Food Chem., 53, 6777–6783.CrossRefGoogle Scholar
  31. Dagan, L. (2006). Potentiel aromatique des raisins de Vitis Vinifera L. cv. Petit Manseng et Gros Manseng. Contribution à l’arôme des vins de pays Côtes de Gascogne. Doctoral dissertation, University of Montpellier II.Google Scholar
  32. Darriet, P. (1993). Recherche sur l’arôme et les précurseurs d’arôme du Sauvignon. Doctoral dissertation, University Victor Segalen Bordeaux II.Google Scholar
  33. Darriet, P., Boidron, J.N., & Dubourdieu, D. (1988). L’hydrolyse des hétérosides terpéniques du Muscat à petits grains par les enzymes périplasmatiques de Saccharomyces cerevisiae. Conn. Vigne Vin, 22, 89–195.Google Scholar
  34. Darriet, P., Tominaga, T., Demole, E., & Dubourdieu, D. (1993). Mise en évidence dans le raisin de Vitis Vinifera L. (var. Sauvignon) d’un précurseur de la 4-méthyl-4-mercaptopentan-2-one. C. R. Acad. Sci. Paris, 316, 1332–1335.Google Scholar
  35. Darriet, P., Tominaga, T., Lavigne, V., Boidron, J.N., & Dubourdieu, D. (1995). Identification of a powerful aromatic component of Vitis vinifera L. var. Sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flav. Frag. J., 10, 385–392.CrossRefGoogle Scholar
  36. De La Presa-Owens, C., & Noble, A.C. (1997). Effect of storage at elevated temperatures on aroma of Chardonnay wines. Am. J. Enol. Vitic., 48, 310–316.Google Scholar
  37. Delcroix, A., Günata, Z., Sapis, J.C., Salmon, J.M., & Bayonove, C. (1994). Glycosidase activities of three enological yeast strains during winemaking: effect on terpenols content of Muscat wine. Am. J. Enol. Vitic., 37, 112–114.Google Scholar
  38. Demmig-Adams, B., Gilmore, A. M., & Adams, W. W. III (1996). In vivo functions of carotenoids in higher plants. FASEB J., 10 , 403–412.Google Scholar
  39. De Mora, S.J., Eschenbruch, R., Knowles, S.J., & Spedding, D.J. (1986). The formation of dimethyl sulphide during fermentation using a wine yeast. Food Microbiol., 3, 27–32.CrossRefGoogle Scholar
  40. De Mora, S.J., Knowles, S.J., Eschenbruch, R., & Torrey, W.J. (1987). Dimethyl sulphide in some australian red wines. Vitis, 26, 79–84.Google Scholar
  41. De Mora, S.J., Lee, P., Shooter, D., & Eschenbruch, R. (1993). The analysis and importance of dimethylsulfoxide in wine. Am. J. Enol. Vitic., 44, 327–332.Google Scholar
  42. D’Incecco N., Bartowsky, E., Kassara, S., Lante, A., Spettoli, P., & Henschke, P. (2004). Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation. Food Microbiol., 21, 257–265.CrossRefGoogle Scholar
  43. Drawert, F., Heimann, W., Emberger, R., & Tressl, R. (1966). Uber die Biogenese von Aromastoffen bei Pflanzen und Früchten. II. Enzymatische Bildung von Hex-2-en-1-al, Hexanal und deren Vorstufen. Ann. Chem., 694, 200–208.Google Scholar
  44. Dubourdieu, D., Tominaga, T., Masneuf, I., Des Gachons, C., & Murat, M.L. (2006). The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. Am. J. Enol. Vitic., 57, 81–88.Google Scholar
  45. Dugelay, I., Günata, Z., Bitteur, S., Sapis, J.C., Baumes, R., & Bayonove, C. (1992a). Formation of volatile phenols from cinnamic precursors during wine making : the role of cinnamoyl esterase from commercial enzymic preparations. In: P. Schreier & P. Winterhalter (Eds.), Progress in flavour studies (pp. 189–193). Carol Stream Ils.: Allured Publishing Co.Google Scholar
  46. Dugelay, I., Günata, Z., Sapis, J.C., Baumes, R., & Bayonove, C. (1992b). Etude de l’origine du citronellol dans les vins. J. Inter. Sci. Vigne Vin, 26, 117–184.Google Scholar
  47. Dugelay, I., Günata, Z., Sapis, J.C., Baumes, R., & Bayonove, C. (1993). Role of cinnamoyl esterase activities from enzyme preparations on the formation of volatile phenols during winemaking. J. Agric. Food Chem., 41, 2092–2096CrossRefGoogle Scholar
  48. Dugelay, I., Baumes, R., Gûnata, Z., Razungles, A., & Bayonove, C. (1995). Evolution de l’arôme au cours de la conservation du vin: formation de 4-(1-éthoxy éthyl)-phénol et 4-(1-éthoxyéthyl)-gaïacol. Sci. Alim., 15, 423–433.Google Scholar
  49. Du Plessis, C.S., & Loubser, G.J. (1974). The bouquet of late harvest wine. Agrochemophysica, 6, 49–52.Google Scholar
  50. Enzell, C. (1985). Biodegradation of carotenoids – an important route to aroma compounds. Pure Appl. Chem., 57, 693–700.CrossRefGoogle Scholar
  51. Escudero, A., Asencio, E., Cacho, J., & Ferreira, V. (2002). Sensory and chemical changes of young white wines stored under oxygen. An assessment of the role played by aldehydes and some other important odorants. Food Chem., 77, 325–331.CrossRefGoogle Scholar
  52. Escudero, A., Campo, E., Farina, L., Cacho, J., & Ferreira, V. (2007). Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem., 55, 4501–4510.CrossRefGoogle Scholar
  53. Etiévant, P.X. (1991). Wine. In: H. Maarse (Ed.), Volatile compounds in food and beverages (pp. 483–546). New york: Dekker Inc.Google Scholar
  54. Farina, L., Boido, E., Carrau, F., Versini, G., & Dellacassa, E. (2005). Terpene compounds as possible precursors of 1,8-cineole in red grapes and wines. J. Agric. Food Chem., 53, 1633–1636.CrossRefGoogle Scholar
  55. Ferreira, B., Hory, C., Bard, M. H., Taissant, C., Olsson, A., & Le Fur, Y. (1995). Effects of skin contact and settling on the level of C18:2, C18:3 and C6 compounds on Burgundy Chardonnay musts and wines. Food Qual. Prefer., 6, 35–41.CrossRefGoogle Scholar
  56. Ford, C.M., & Hoj, P.B. (1998). Multiple glucosyltransferas activities in the grapevine Vitis vinifera L.. Aust. J. Grape Wine Res., 4, 48–58.CrossRefGoogle Scholar
  57. Francis, I. L., Sefton, M. A., & Williams, P. J. (1992). Sensory descriptive analysis of the aroma of hydrolysed precursor fractions from Semillon, Chardonnay and Sauvignon blanc grape juices. J. Sci. Food Agric., 59, 511–520.CrossRefGoogle Scholar
  58. Francis, I. L., Tate, M. E., & Williams, P. J. (1996). The effect of hydrolysis conditions on the aroma released from Semillon grape glycosides. Aus. J. Grape Wine Res., 2, 70–76.CrossRefGoogle Scholar
  59. Fretz, C., Känel, S., Luisier, J. L., & Amado, R. (2005). Analysis of volatile components of Petite Arvine wine. Eur. Food Res. Technol., 221, 3–4.CrossRefGoogle Scholar
  60. Gomez, E., Martinez, A., & Laencina, J. (1994). Localization and bound aromatic compounds among skin, juice and pulp fractions of some grape varieties. Vitis, 33, 1–4.Google Scholar
  61. Goodwin, T. W. (1980). The biochemistry of the carotenoids. Vol. I. Plants, Second edition. London: Chapman and Hall.Google Scholar
  62. Goto, S., & Takamuto, R. (1987). Concentration of dimethyl sulfide in wine after different storage times. Hakkokogaku, 65, 53–57.Google Scholar
  63. Grimaldi, A., Bartowsky, E., & Jiranek, V. (2005). A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int. J. Food Microbiol., 105, 233–244.CrossRefGoogle Scholar
  64. Guedes de Pinho, P., Silva Ferreira, A., Mendes Pinto, M., Gomez Benitez, J., & Hogg, T. (2001). Determination of carotenoid profiles in grapes, musts and fortified wines from Douro varieties of Vitis vinifera. J. Agric. Food Chem., 49, 5484–5488.CrossRefGoogle Scholar
  65. Gueguen, Y., Chemardin, P., Pien, S., Arnaud, A., & Galzy, P. (1997). Enhancement of aromatic quality of Muscat wine by the use of immobilized β-glucosidase. J. Biotechnol., 55, 151–156.CrossRefGoogle Scholar
  66. Günata, Z. (1984). Recherche sur la fraction liée de nature glycosidique de l’arôme du raisin : importance des terpénylglycosides, action des glycosidases. Doctoral dissertation, University Montpellier II.Google Scholar
  67. Günata, Z., Bayonove, C., Baumes, R., & Cordonnier, R. (1985a). The aroma of grapes. Localisation and evolution of free and bound fractions of some grape aroma components cv. Muscat during first devbelopment and maturation. J. Sci. Food Agric., 36, 857–862.CrossRefGoogle Scholar
  68. Günata, Z., Bayonove, C., Baumes, R., & Cordonnier, R. (1985b). The aroma of grapes. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chromatogr., 9, 83–90.CrossRefGoogle Scholar
  69. Günata, Y.Z., Bayonove, C., Baumes, R., & Cordonnier, C. (1986). Stability of free and bound fractions of some aroma components of grape cv. Muscat during the wine processing: preliminary results. Am. J. Enol. Vitic., 37, 112–114.Google Scholar
  70. Günata, Z., Bitteur, S., Baumes, R., Brillouet, J.M., Tapiero, C., & Bayonove, C., Cordonnier R. (1989a). Procédé d’obtention de composants d’arômes et d’arômes à partir de leurs précurseurs glycosidiques et composants d’arômes et arômes ainsi obtenus. French patent 88 02961 (INRA/Gist Brocades).Google Scholar
  71. Günata, Z., Biron, C., Sapis, J.C., & Bayonove, C. (1989b). Glycosidase activities in sound and rotten grapes in relation to hydrolysis of grape monoterpenyl glycosides. Vitis, 28, 191–197.Google Scholar
  72. Günata, Z., Dugelay, I., Sapis, J.C., Baumes, R., & Bayonove, C. (1990). Action des glycosidases exogènes au cours de la vinification : libération de l’arôme à partir des précurseurs glycosidiques. J. Inter. Sci. Vigne Vin, 24, 133–143.Google Scholar
  73. Günata, Z., Dugelay, I., Sapis, J.C., Baumes, R., & Bayonove, C. (1993). Role of the enzymes in the use of the flavour potential from grape glycosides in winemaking. In: P. Schreier & P. Winterhalter (Eds.), Progress in flavor precursors studies (pp. 219–234). Carol Stream Ils.: Allured Publishing.Google Scholar
  74. Guth, H. (1997). Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem., 45, 3027–3032.CrossRefGoogle Scholar
  75. Hardie, W., Aggenbach, S., & Jaudzems, V. (1996). The plastids of the grape pericarp and their significance in isoprenoid synthesis. Aust. J. Grape Wine Res., 2, 144–154.CrossRefGoogle Scholar
  76. Heresztyn, T. (1986). Metabolism of phenolic compounds from hydroxycinnamic acids by Brettanomyces yeasts. Arch. Microbiol., 146, 96–98.CrossRefGoogle Scholar
  77. Heyworth, R., & Walker, P.O. (1962). Almond-emulsin β-D-glucosidase and β-D-galactosidase. Biochem. J., 83, 331–335.Google Scholar
  78. Howard, A.G., & Russell, D.W. (1997). Borohydride-coupled HPLC-FPD instrumentation and its use in the determination of dimethylsulfonium compounds. Anal. Chem., 69, 2882–2887.CrossRefGoogle Scholar
  79. Howell, K., Swiegers, J., Elsey, G., Siebert, T., Bartowski, E., Flett, G., Pretorius, I., & de Barros Lopes, M. (2004). Variation in 4-mercapto-4-methylpentan-2-one release by Saccharomyces cerevisiae commercial wine strains. FEMS Microbiol. Letters, 240, 125–129.CrossRefGoogle Scholar
  80. Huyng-Ba, T., Matthey-Doret, W., Fay, L. B., & Bel-Rhlid, R. (2003). Generation of thiols by biotransformation of cystein-aldehyde conjugates with baker yeast. J. Agric. Food Chem., 51, 3629–3635.CrossRefGoogle Scholar
  81. Iland, P., Cynkar, W., Francis, I., Williams, P., & Coombe, B. (1996). Optimisation of methods for the determination of total and red-free glycosyl glucose in black grape berries of Vitis vinifera. Aust. J. Grape Wine Res., 2, 171–178.CrossRefGoogle Scholar
  82. Janusz, A., Capone, D. L., Puglisi, C.J., Perkins, M. V., Elsey, G.M., & Sefton, M. A. (2003). (E)-1-(2,3,6-Trimethylphenyl)buta-1,3-diene: A Potent Grape-Derived Odorant in Wine. J. Agric. Food Chem., 51, 7759–7763.CrossRefGoogle Scholar
  83. Joslin, W. S., & Ough, C. S. (1978). Cause and fate of certain C6 compounds formed enzymatically in macerated grape leaves during harvest and wine fermentation. Am. J. Enol. Vitic., 29, 11–17.Google Scholar
  84. Kiddle, G., Bennett, R., Hick, A., & Wallsgrove, R. (1999). C-S lyase activities in leaves of crucifers and non-crucifers and the characterization of 3 classes of C-S lyase activities from oilseed rape (Brassica rapus L.). Plant Cell Environ., 22, 433–445.CrossRefGoogle Scholar
  85. Ko, S., Eliot, A., & Kirsch, J. (2004). S-methylmethionine is both a substrate and an activator of 1-aminocyclopropane-1-carboxylate synthase. Arch. Biochem. Biophys., 421, 85–90.CrossRefGoogle Scholar
  86. Kotseridis, Y. (1999). Etude de l’arôme des vins de Merlot et Cabernet Sauvignon de la région bordelaise. Doctoral dissertation, University Victor Segalen Bordeaux II.Google Scholar
  87. Kotseridis, Y., & Baumes, R. (2000). Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agric. Food Chem., 48, 400–406.CrossRefGoogle Scholar
  88. Kotseridis, Y., Baumes, R., & Skouroumounis, G. K. (1998). Synthesis of labelled [2H4]-β-damascenone, [2H2]-2-methoxy-3-isobutylpyrazine, [2H2]-α-ionone, and [2H3]-β-ionone, for quantification in grapes, juices and wines. J. Chromatogr. A, 824, 71–78.CrossRefGoogle Scholar
  89. Kotseridis, Y., Baumes, R., & Skouroumounis, G. K. (1999a). Quantitative determination of free and hydrolytically liberated β-damascenone in red grapes and wines using a stable isotope dilution assay. J. Chromatogr. A, 849, 245–254.CrossRefGoogle Scholar
  90. Kotseridis, Y., Baumes, R., Bertrand, A., & Skouroumounis, G. (1999b). Quantitative determination of β-ionone in red wines and grapes of Bordeaux using a stable isotope dilution assay. J. Chromatogr. A, 848, 317–325.CrossRefGoogle Scholar
  91. Lecas, M., Günata, Z., Sapis, J.C., & Bayonove, C. (1991). Purification and partial characterization of β-glucosidase from grape. Phytochem., 30, 451–454.CrossRefGoogle Scholar
  92. Lestremau, F., Andersson, F.A., Desauziers, V., & Fanlo, J.L. (2003). Evaluation of Solid-Phase Microextraction for Time-Weighted Average Sampling of Volatile Sulfur Compounds at ppb Concentrations. Anal. Chem., 75, 2626–2632.CrossRefGoogle Scholar
  93. Lopez, R., Orti, N., Perez-Trujillo, J. P., Cacho, J., & Ferreira, V. (2003). Impact odorants of different young white wines from Canary Islands. J. Agric. Food Chem., 51, 3419–3425.CrossRefGoogle Scholar
  94. Loscos Deodad, N., Segurel, M., Dagan, L., Sommerer, N., Marlin, T., & Baumes, R. (2007). Identification of S-methylmethionine in Petit Manseng grapes as DMS precursor in wine. Anal. Chim. Acta, submitted.Google Scholar
  95. Loubser, G., & Du Plessis, C. S. (1976). The quantitative determination and some values of dimethyl sulfide in white table wines. Vitis, 15, 248–252.Google Scholar
  96. Marais, J. (1979). Effect of storage time and temperature on the formation of dimethyl sulphide and on white wine quality. Vitis, 18, 254–260.Google Scholar
  97. Marais, J. (1983). Terpenes in the aroma on grape and wine: a review. South Afric. J. Enol. Vitic., 4, 49–58.Google Scholar
  98. Marais, J. (1987). Terpene concentration and wine quality of Vitis vinifera L. cv Gewürtraminer as affected by grape maturity and cellar practices. Vitis, 26, 231–245.Google Scholar
  99. Marais, J., Van Wyk, C., & Rapp, A. (1989). Carotenoids in grapes. In: G. Charalambous (Ed.), Flavors and off-Flavors (pp. 71–85). Amsterdam: Elsevier Science.Google Scholar
  100. Masneuf, I., Murat, M.L., Naumov, G.I., Tominaga, T., & Dubourdieu, D. (2002). Hybrids Saccharomyces cerevisiae x Saccharomyces bayanus var. uvarum having a high liberating ability of some sulfur varietal aromas of Vitis vinifera Sauvignon Blanc. J. Int. Sc. Vigne Vin, 36, 205–212.Google Scholar
  101. Masneuf-Pomarede, I., Mansour, C., Murat, M.L., Tominaga, T., & Dubourdieu, D. (2006). Influence of fermentation temperature on volatile thiols concentrations in Sauvignon Blanc. Int. J. Food Microbiol., 108, 385–390.Google Scholar
  102. Mathieu, S., Terrier, N., Procureur, J., Bigey, F., & Günata, Z. (2005). A Carotenoid Cleavage Dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J. Exp. Bot., 56, 2721–2731.CrossRefGoogle Scholar
  103. Mc Mahon, H. M., Zoecklein, B. W., & Jasinski, (1999). The effects of prefermentation maceration temperature and percent alcohol (v/v) at press on the concentration of Cabernet Sauvignon grape glycosides and glycoside fractions. Am. J. Enol. Vitic., 50, 385–390.Google Scholar
  104. Mendes Pinto, M., Silva Ferreira, A., Oliveira, M.B., & Guedes de Pinho, P. (2004). Evaluation of some carotenoids in grapesby reversed- and normal-phase liquid chromatography: a qualitative analysis. J. Agric. Food Chem., 52, 3182–3188.CrossRefGoogle Scholar
  105. Moneger, R. (1968). Contribution à l’étude de l’influence exercée par la lumière sur la biosynthèse des caroténoïdes chez Spirodela polyrrhiza L. Schleiden. Physiol. Vég., 6, 165–202.Google Scholar
  106. Murat, M. L., Tominaga, T., & Dubourdieu, D. (2001a). Assessing, the aromatic potential of Cabernet Sauvignon and Merlot musts used to produce rose wine by assaying the cysteinylated precursor of 3-mercaptohexan-1-ol. J. Agric. Food Chem., 49, 5412–5417.CrossRefGoogle Scholar
  107. Murat, M. L., Masneuf, I., Darriet, P., Lavigne, V., Tominaga, T., & Dubourdieu, D. (2001b). Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in Sauvignon blanc wine. Am. J. Enol. Vitic., 52, 136–139.Google Scholar
  108. Murat, M. L., Tominaga, T., Saucier, C., Glories, Y., & Dubourdieu, D. (2003). Effect of anthocyanins on stability of a key odorous compounds, 3-mercaptohexan-1-ol, in Bordeaux rose wines. Am. J. Enol. Vitic., 54, 135–138.Google Scholar
  109. Park, S. K., Morrison, J. C., Adams, D. O., & Noble, A. C. (1991). Distribution of free and glycosidicaly bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. J. Agric. Food Chem., 39, 514–518.CrossRefGoogle Scholar
  110. Park, S. K., Boulton, R. B., Bartra, E., & Noble, A. C. (1994). Incidence of volatile sulfur compounds in California wines. A preliminary survey. Am. J. Enol. Vitic., 45, 342–344.Google Scholar
  111. Peyrot des Gachons, C., Tominaga, T., & Dubourdieu, D. (2000). Measuring the aromatic potential of Vitis vinifera L. cv. Sauvignon Blanc grapes by assaying S-cystein conjugates, precursors of the volatile thiols responsible for their varietal aroma. J. Agric. Food Chem., 48, 3387–3391.CrossRefGoogle Scholar
  112. Peyrot des Gachons, C., Tominaga, T., & Dubourdieu, D. (2002a). Localization of S-cysteine conjugates in the berry: Effect of skin contact on aromatic potential of Vitis vinifera L. cv. Sauvignon Blanc must. Am. J. Enol. Vitic., 53, 144–146.Google Scholar
  113. Peyrot des Gachons, C., Tominaga, T., & Dubourdieu, D. (2002b). Sulfur aroma precusor present in S-glutathione conjugate form: Identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon Blanc. J. Agric. Food Chem., 50, 4076–4079.CrossRefGoogle Scholar
  114. Peyrot des Gachons, C., Van Leeuwen, C., Tominaga, T., Soyer, J. P., Gaudillère, J. P., & Dubourdieu, D. (2005). Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv. Sauvignon blanc in field conditions. J. Sci. Food Agric., 85, 73–85.CrossRefGoogle Scholar
  115. Pripis-Nicolau, L., De Revel, G., Bertrand, A., & Lonvaud-Funel, A. (2004). Methionine catabolism and production of volatile sulphur compounds by Oenococcus oeni. J. Appl. Microbiol., 96, 1176–1184.CrossRefGoogle Scholar
  116. Puglisi, C.J., Daniel, M.A., Capone, D.L., Elsey, G.M., Prager, R.H., & Sefton, M.A. (2005). Precursors to damascenone: synthesis and hydrolysis of isomeric 3,9-dihydroxymegastigma-4,6,7-trienes. J. Agric. Food Chem., 53, 4895–4900.CrossRefGoogle Scholar
  117. Rapp, A., Günther, M., & Ullemeyer, H. (1985). Uber Veränderung der Aromastoffe während der Flaschenlagerung von Weissweinen der Rebsorten Riesling. Z. Lebensm. Untersuch. Forsch., 180, 109–116.CrossRefGoogle Scholar
  118. Razungles, A., Bayonove, C., Cordonnier, R., & Baumes, R. (1987). Etude des caroténoïdes du raisin à maturité. Vitis, 26, 183–191.Google Scholar
  119. Razungles, A., Bayonove, C., Cordonnier R., & Sapis, J.C. (1988). Grape carotenoids: changes during the maturation period and localization in mature berries. Am. J. Enol. Vitic., 39, 44–48.Google Scholar
  120. Razungles, A., Günata, Y., Pinatel, S., Baumes, R., & Bayonove, C. (1993). Etude quantitative de composés terpéniques, norisoprénoïdes et de leurs précurseurs dans diverses variétés de raisin. Z. Lebensm. Untersuch. Forsch., 13, 59–72.Google Scholar
  121. Razungles, A. J., Babic, I., Sapis, J. C., & Bayonove, C. L. (1996). Particular behavior of epoxyxanthophylls during veraison and maturation of grape. J. Agric. Food Chem., 44, 3821–3825.CrossRefGoogle Scholar
  122. Ribéreau-Gayon, P. (1965). Identification d’esters des acides cinnamiques et de l’acide tartrique dans les limbes et les baies de Vitis Vinifera L. C. R. Acad. Sci., 260, 341.Google Scholar
  123. Romeyer, F., Macheix, J., Goiffon, J., Reminiac, C., & Sapis, J. C. (1983). The browning capacity of grapes. 3. Changes and importance of hydroxycinnamic acid-tartaric acid esters during development and maturation of the fruit. J. Agric. Food Chem., 31, 346–349.CrossRefGoogle Scholar
  124. Roufet, M., Bayonove, C., & Cordonnier, R. (1986). Changes in fatty acids from grape lipidic fractions during crushing exposed to air. Am. J. Enol. Vitic., 37, 59–72.Google Scholar
  125. Roufet, M., Bayonove, C., & Cordonnier, R. (1987). Etude de la composition lipidique du raisin Vitis Vinifera L. Evolution au cours de la maturation et localisation dans la baie. Vitis, 26, 85–97.Google Scholar
  126. Rouillon, A., Surdin-Kerjan, Y., & Thomas, D. (1999). Transport of sulfonium compounds. Characterization of the S adenosylmethionine and S-methylmethionine permeases from the yeast Saccharomyces cerevisiae. J. Biol. Chem., 274, 28096–28105.CrossRefGoogle Scholar
  127. Sarrazin, E., Shinkaruk, S., Tominaga, T., Bennetau, B., Frerot, E., & Dubourdieu, D. (2007). Odorous impact of volatile thiols on the aroma of young botrytized sweet wines: identification and quantification of new sulfanyl alcohols. J. Agric. Food Chem., 55, 1437–1444.CrossRefGoogle Scholar
  128. Sarry, E., & Günata, Z. (2004). Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors. Food Chem., 87, 509–521.CrossRefGoogle Scholar
  129. Schneider, R. (2001). Contribution à la connaissance du l’arôme et du potentiel aromatique du Melon B. (Vitis vinifera L.) et des vins de Muscadet. Doctoral dissertation, University Montpellier II.Google Scholar
  130. Schneider, R., Razungles, A., Charrier, F., & Baumes, R. (2002). Effet du site, de la maturité et de l’éclairement des grappes sur la composition aromatique des baies de Vitis vinifera L. cv. Melon B. dans le vignoble du Muscadet. Bull. l’OIV, 75, 269–282.Google Scholar
  131. Schneider, R., Koseridis, Y., Ray, J. L., Augier, C., & Baumes, R. (2003). Quantitative determination of sulfur-containing wine odorants at sub parts per billion levels. 2. Development and application of a stable isotope dilution assay. J. Agric.Food Chem., 51, 3243–3248.CrossRefGoogle Scholar
  132. Schneider, R., Charrier, F., Moutounet, M., & Baumes, R. (2005). Rapid analysis of grape aroma glycoconjugates using Fourier-transform infrared spectrometry and chemometric techniques. Anal. Chim. Acta, 513, 91–96.CrossRefGoogle Scholar
  133. Schneider, R., Charrier, F., Razungles, A., & Baumes, R. (2006). Evidence for an alternative biogenetic pathway leading to 3-mercaptohexanol and 4-mercaptopentan-2-one in wines. Anal. Chim. Acta, 563, 58–64.CrossRefGoogle Scholar
  134. Schreier, P., Drawert, F., Junker, A., Barton, H., & Leupold, G. (1976). Über die Biosynthese von Aromastoffen durch Mikroorganismen. Z. Lebensm. Untersuch. Forsch., 162, 279–284.CrossRefGoogle Scholar
  135. Sefton, M.A. (1998). Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera grape cv. Merlot and Cabernet Sauvignon. Aust. J. Grape Wine Res., 4, 30–38.CrossRefGoogle Scholar
  136. Sefton, M.A., Skouroumounis, G.K., Massy-Westropp, R.A., & Williams, P.J. (1989). Norisoprenoids in Vitis vinifera white wine grapes and the identification of a precursor of damascenone in these fruits. Aust. J. Chem., 42, 2071–2084.Google Scholar
  137. Sefton, M.A., Francis, I.L., & Williams, P.J. (1993). The volatile composition of Chardonnay juice: A study by flavor precursor analysis. Am. J. Enol. Vitic., 44, 358–370.Google Scholar
  138. Ségurel, M. (2005). Contribution des précurseurs glycosidiques et du sulfure de diméthyle des baies de Vitis vinifera L. cv. Grenache noir et Syrah à l’arôme des vins de la vallée du Rhône. Doctoral dissertation, University Montpellier II.Google Scholar
  139. Ségurel, M., Razungles, A., Riou, C., Salles, M., & Baumes, R. (2004). Contribution of dimethyl sulphide to the aroma of syrah and grenache noir wines and estimation of its potential in grapes of these varieties. J. Agric. Food Chem., 52, 7084–7093.CrossRefGoogle Scholar
  140. Ségurel, M., Razungles, A., Riou, C., Trigueiro, M.G.L., & Baumes, R. (2005). Ability of possible precursors to release DMS during wine aging and in the conditions of heat alkaline treatment. J. Agric. Food Chem., 53, 2637–2645.CrossRefGoogle Scholar
  141. Shapiro, S.K., Yphantis, D.A., & Almenas, A., (1964). Biosynthesis of Methionine in Saccharomyces cerevisiae. Partial purification and properties of S-adenosylmethionine:homocysteine methyltransferase. J. Biol. Chem., 239, 1551–1556.Google Scholar
  142. Silva Ferreira, A., & Guedes de Pinho, P. (2004). Nor-isoprenoids profile during Port wine ageing- Influence of some technological parameters. Anal. Chim. Acta, 513, 169–176.CrossRefGoogle Scholar
  143. Simpson, R. (1978). 1,1,6-trimethyl-1,2-dihydronaphtalene: an important contributor to the bottle aged bouquet of wine. Chem. Ind. Lond., 37, 163.Google Scholar
  144. Singleton, V., Timberlake, C., & Lea, A. (1978). The phenolic cinnamates of white grapes and wines. J. Sci. Food Agric., 29, 403–410.CrossRefGoogle Scholar
  145. Skouroumounis, G.K., Massy-Westropp, A., & Sefton, M.A. (1992). Precursors of β-damascenone in fruit juices. Tetrahedron Lett., 33, 3533–3536.CrossRefGoogle Scholar
  146. Spedding, D. J., & Raut, P. (1982). The influence of dimethyl sulphide and carbon disulphide in the bouquet of wines. Vitis, 21, 240–246.Google Scholar
  147. Spinnler, H., Berger, C., Lapadatescu, C., & Bonnarme, P. (2001). Production of sulfur compounds by several yeasts of technological interest for cheese ripening. Int. Dairy J., 11, 245–252.CrossRefGoogle Scholar
  148. Stahl-Biskup, E., Intert, F., Holthuijzen, J., Stengele, M., & Schulz, G. (1993). Glycosidically bound volatiles – A review 1986–1991. Flav. Frag. J., 8, 61–80.CrossRefGoogle Scholar
  149. Strauss, C.R., Wilson, B., Gooley, P.R., & Williams, P.J. (1986). Role of monoterpenes in grape and wine flavor. In: T.H. Parliment & R. Croteau (Eds.), Biogeneration of aromas, (pp. 222–242). Washington: ACS Symposium Series 317.Google Scholar
  150. Strauss, C.R., Wilson, B., Anderson R., & Williams, P.J. (1987a). Development of precursors of C13-norisoprenoids. Flavorant in Riesling grapes. Am. J. Enol. Vitic., 38, 23–27.Google Scholar
  151. Strauss, C.R., Wilson, B., & Williams, P.J. (1987b). 3-Oxo-α-ionol, vomifoliol and roseoside in Vitis vinifera fruit. Phytochem., 26, 1995–1997.CrossRefGoogle Scholar
  152. Strauss, C.R., Gooley, P.R., Wilson, B., & Williams, P.J. (1987c). Application of droplet countercurrent chromatography to the analysis of conjugated forms of terpenoids, phenols and other constituents of grape juice. J. Agric. Food Chem., 35, 519–524.CrossRefGoogle Scholar
  153. Strauss, C.R., Wilson, B., & Williams, P.J. (1988). Novel monoterpene diols and diol glycosides in Vitis vinifera grapes. J. Agric. Food Chem., 36, 569–573.CrossRefGoogle Scholar
  154. Talou, T., Delmas, M., & Gaset, A. (1987). Principal constituents of black truffle (Tuber melanosporum) aroma. J. Agric. Food Chem., 35, 774–777.CrossRefGoogle Scholar
  155. Tominaga, T. (1998). Recherches sur l’arôme variétal des vins de Vitis vinifera L. cv. sauvignon blanc et sa génèse à partir de précurseurs inodores du raisin. Doctoral dissertation, University Victor Segalen Bordeaux II.Google Scholar
  156. Tominaga, T., Masneuf, I., & Dubourdieu, D. (1995). Mise en évidence d’un S-conjugué de la cystéine, précurseur d’arôme du Sauvignon. J. Inter. Sci. Vigne Vin, 29, 227–232.Google Scholar
  157. Tominaga, T., Darriet, P., & Dubourdieu, D. (1996). Identification de l’acétate de3-mercaptohexanol, composé à forte odeur de buis, intervenant, dans l’arôme des vins de Sauvignon. Vitis, 35, 207–210.Google Scholar
  158. Tominaga, T., Murat, M.L., & Dubourdieu, D. (1998a). Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis vinifera L. Cv. Sauvignon blanc. J. Agric. Food Chem., 46, 1044–1048.CrossRefGoogle Scholar
  159. Tominaga, T., Peyrot des Gachons, C., & Dubourdieu, D. (1998b). A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon Blanc: S-cystein conjugates. J. Agric. Food Chem., 46, 5215–5219.CrossRefGoogle Scholar
  160. Tominaga, T., Baltenweck-Guyot, R., Peyrot des Gachons, C., & Dubourdieu, D. (2000a). Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. Am. J. Enol. Vitic., 51, 178–181.Google Scholar
  161. Tominaga, T., Blanchard, L., Darriet, P., & Dubourdieu, D. (2000b). A powerful aromatic volatile thiol, 2-furanemethanethiol, exhibiting roast coffee aroma in wine made from several Vitis vinifera grape varieties. J. Agric. Food Chem., 48, 1799–1802.CrossRefGoogle Scholar
  162. Tominaga, T., Guimberteau, G., & Dubourdieu, D. (2003a). Contribution of benzenemethanethiol to smoky aroma of certain Vitis vinifera L. wines. J. Agric. Food Chem., 51, 1373–1376.CrossRefGoogle Scholar
  163. Tominaga, T., Guimberteau, G., & Dubourdieu, D. (2003b). Role of certain volatile thiols in the bouquet of aged champagne wine. J. Agric. Food Chem., 51, 1016–1020.CrossRefGoogle Scholar
  164. Tominaga, T., Niclass, Y., Frérot, E., & Dubourdieu, D. (2006). Stereoisomeric distribution of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in dry and sweet white wines made from Vitis vinifera (Var. Sauvignon Blanc and Semillon). J. Agric. Food Chem., 54, 7251–7255.CrossRefGoogle Scholar
  165. Ugliano, M., Genovese, A., & Moio, L. (2003). Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcuc oeni. J. Agric. Food Chem., 51, 5073–5078.CrossRefGoogle Scholar
  166. Ugliano, M., Bartowsky, E., McCarthy, J., Moio, L., & Henschke, P. (2006). Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomyces yeast strains. J. Agric. Food Chem., 54, 6322–6331.CrossRefGoogle Scholar
  167. Valentin, G. (1993). Etude des enzymes impliquées dans la formation des aldéhydes à six atomes de carbone chez le raisin. Doctoral dissertation, University of Montpellier II.Google Scholar
  168. Vermeulen, C., Lejeune, I., Tran, T., & Collin, S. (2006). Occurrence of polyfunctional thiols in fresh lager beers. J. Agric. Food Chem., 54, 5061–5068.CrossRefGoogle Scholar
  169. Versini, G. (1985). On the aroma of ≪ Traminer aromatico ≫ or ≪ Gewuerztraminer ≫ wine. Vignevini, 12, 57–65.Google Scholar
  170. Versini, G., Rapp, A., Marais, J., Mattivi, F., & Spraul, M. (1996). A new 1,1,6-trimethyl-1,2-dihydronaphtalene (TDN) precursor isolated from Riesling grape products: Partial structure elucidation and possible reaction mechanism. Vitis, 35, 15–21.Google Scholar
  171. Voirin, S. (1990). Connaissance de l’arôme du raisin: analyse et synthèse de précurseurs hétérosidiques.Doctoral dissertation, University Montpellier II.Google Scholar
  172. Voirin, S., Baumes, R., Bitteur, S., Günata, Z., & Bayonove, C. (1990). Novel monoterpene dissacharide glycosides of Vitis vinifera grapes. J. Agric. Food Chem., 38, 1373–1378.CrossRefGoogle Scholar
  173. Voirin, S. G., Baumes, R., Sapis, J.C., & Bayonove, C.L. (1992). Analytical methods for monoterpene glycosides in grape and wine. II. Qualitative and quantitative determination of monoterpene glycosides in grape. J. Chromatogr., 595, 269–281.CrossRefGoogle Scholar
  174. Wakabayashi, H., Wakabayashi, M., & Engel, K.H. (2003). β-lyase-catalysed-transformations of sulphur-containing flavour precursors. In: J.L. Lequéré & P. Etievant (Eds.), Flavour Research at the Dawn of the Twenty First Century (pp. 350–355). Paris: Tec & Doc.Google Scholar
  175. Wakabayashi, H., Wakabayashi, M., Eisenreich, W., & Engel, K.H. (2004). Stereochemical course of the generation of 3-mercaptohexanal and 3-mercaptohexanol by β-lyase-catalysed cleavage of cystein conjugates. J. Agric. Food Chem., 52, 110–116.CrossRefGoogle Scholar
  176. Williams, P.J., Strauss, C.R., & Wilson, B. (1980). Hydroxylated linalool derivatives as precursors of volatile monoterpenes of Muscat grapes. J. Agric. Food Chem., 28, 766–771.CrossRefGoogle Scholar
  177. Williams, P.J., Strauss, C.R., & Wilson, B. (1982a). Novel monoterpene dissacharide glycoside of Vitis vinifera grapes and wines. Phytochem., 21, 2013–2020.CrossRefGoogle Scholar
  178. Williams, P.J., Strauss, C.R., Wilson, B., & Massy-Westropp, R.A. (1982b). Studies on the hydrolysis of Vitis vinifera monoterpene precursor compounds and model β-D-glucosides rationalizing the monoterpene composition of grape. J. Agric. Food Chem., 30, 1219–1223.CrossRefGoogle Scholar
  179. Williams, P.J., Strauss, C.R., Wilson, B., & Massy-Westropp, R.A. (1983). Glycosides of 2-phenylethanol and benzyl alcohol in Vitis vinifera grapes. Phytochem., 22, 2039–2041.CrossRefGoogle Scholar
  180. Williams, P.J., Strauss, C.R., Wilson, B., & Dimitriadis, E. (1984). Recent studies into grape terpene glycosides. In: J. Adda (Ed.), Progress in Flavour Research (pp. 349–357). Amsterdam: Eselvier Science.Google Scholar
  181. Williams, P.J., Cynkar, W., Francis, I.L., Gray, J.D., Hand, P.G., & Coombe, B.G. (1995). Quantification of glycosides in grape juices and wines through a determination of glycosyl glucose. J. Agric. Food Chem., 43, 121–128.CrossRefGoogle Scholar
  182. Wilson, B., Strauss, C.R., & Williams, P.J. (1984). Changes in free and glycosidically bound monoterpenes in developping Muscat grapes. J. Agric. Food Chem., 32, 919–924.CrossRefGoogle Scholar
  183. Wilson, B., Strauss, C.R., & Williams, P.J. (1986). The distribution of free and glycosidally-bound monoterpene among skin, juice and pulp fractions of some white grape varieties. Am. J. Enol. Vitic., 37, 107–111.Google Scholar
  184. Winterhalter, P. (1992). Oxygenated C13-norisoprenoids. Important flavor precursors. In: R. Teranishi, G. Takeoka, & M. Günther (Eds.), (pp. 98–115). Thermal and Enzymatic Conversions of Precursors to Flavor Compounds. Washington: ACS Symposium Series 490.Google Scholar
  185. Winterhalter, P. (1993). The generation of C13-norisoprenoid volatiles in Riesling wine. In: J. Crouzet, C. Flanzy, C. Martin, & J.C. Sapis (Eds.), Connaissance aromatique des cépages et qualité des vins (pp. 65–73). Montpellier: Revue française d’oenologie.Google Scholar
  186. Winterhalter, P., & Rouseff, R. (2000). Carotenoid-derived aroma compounds. In P. Winterhalter & R. Rouseff (Eds.), Carotenoid-derived aroma compounds: an introduction (pp. 1–17). Washington, DC: ACS Symposium Series 802.Google Scholar
  187. Winterhalter, P., & Skouroumounis, G.K. (1997). Glycoconjugated aroma compounds: occurence, role and biotechnological transformation. Adv. Biochem. Eng./Biotechnol., 55, 73–105.Google Scholar
  188. Wirth, J. (2001). Etude de la filiation entre les norisoprénoïdes et les caroténoïdes chez la vigne. Doctoral dissertation, University of Montpellier II.Google Scholar
  189. Wirth, J., Guo, W., Baumes, R., & Günata, Z. (2001). Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from Vitis vinifera Muscat of Alexandria and Shiraz cultivars. J. Agric. Food Chem., 49, 2917–2923.CrossRefGoogle Scholar
  190. Wirth, J., Sauvage, F.X., Baumes, R., & Günata, Z. (2003). Biogenesis of C13-norisoprenoids in grape: biotransformation of C_13-norisoprenoids by a cell suspension culture of cv. Gamay. In: J.L. Le Quéré & P.X. Etiévant (Eds.), Flavour research at the dawn of the twenty-first century (pp 393–396). Cachan, France: Tec. et Doc. Lavoisier.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Raymond Baumes
    • 1
  1. 1.UMR Sciences pour l’Oenologie34060 MontpellierFrance

Personalised recommendations