• M. Luz Sanz
  • Isabel Martínez-Castro


Gluconic Acid Galacturonic Acid White Wine Rotary Power Malolactic Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayestarán, B., Guadalupe, Z., & Leon, D. (2004). Quantification of major grape polysaccharides (Tempranillo v.) released by maceration enzymes during the fermentation process. Anal. Chim. Acta, 513,29–39.CrossRefGoogle Scholar
  2. Barbe, J.C., de Revel, G., Joyeux, A., Lonvaud-Funel, A., & Bertrand, A. (2000). Role of carbonyl compounds in SO2 binding phenomena in musts and wines from botrytized grapes. J. Agric.Food Chem., 48, 3413–3419.CrossRefGoogle Scholar
  3. Barbe, J.C., de Revel, G., & Bertrand, A. (2002). Gluconic acid, its lactones, and SO2binding phenomena in musts from botrytized grapes. J. Agric. Food Chem., 50, 6408–6412.CrossRefGoogle Scholar
  4. Belleville, M.P., Williams, P., & Brillouet, J.M. (1993). A linear arabinan from a red wine. Phytochem., 33,227–229.CrossRefGoogle Scholar
  5. Bernal, J.L., Del Nozal, M.J., Toribio, L., & Del Alamo, M. (1996). HPLC Analysis of carbohydrates in wines and instant coffees using anion exchange chromatography coupled to pulsed amperometric detection. J. Agric. Food Chem.,44, 507–511.CrossRefGoogle Scholar
  6. Bertrand, A., Dubernet, M.O., & Ribéreau-Gayon, P. (1975). Le tréhalose, principal diholoside des vins. C. R. Acad. Sc. Paris series D, 1907–1910.Google Scholar
  7. Boulet, J.C., Williams, P., & Doco, T. (2007). A Fourier transform infrared spectroscopy study of wine polysaccharide. Carbohydr. Polym., 69,79–85.CrossRefGoogle Scholar
  8. Brillouet, J.M., Bosso, C., & Moutounet, M. (1990). Isolation, purification, and characterization of an arabinogalactan from a red wine. Am. J. Enol. Vitic., 41,29–36.Google Scholar
  9. Carlavilla, D., Villamiel, M., Martínez-Castro, I., & Moreno-Arribas, M.V. (2006). Occurrence and significance of quercitol and other inositols in wine during oak wood aging. Am. J. Enol. Vitic., 57,468–473.Google Scholar
  10. Cataldi, T.R.I., & Nardiello, D. (2003). Determination of free proline and monosaccharides in wine samples by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). J. Agric. Food Chem., 51,3737–3742.CrossRefGoogle Scholar
  11. Chalier, P., Angot, B., Delteil, D., Doco, T., & Gunata, Z. (2007). Interaction between aroma compounds and whole mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chem., 100,22–30.CrossRefGoogle Scholar
  12. Coimbra, M.A., Goncalves, F., Barros, A., & Delgadillo, I. (2002). FT-IR spectroscopy and chemometric analysis of white wine polysaccharide extracts. J. Agric. Food Chem., 50,3405–3411.CrossRefGoogle Scholar
  13. Coimbra ,M.A., Barros A.S., Coelho E., Gonçalves F., Rocha S.M., & Delgadillo I. (2005). Quantification of polymeric mannose in wine extracts by FT-IR spectroscopy and OSC-PLS1 regression Carbohydr. Polym., 61,434–440.Google Scholar
  14. Cooper, H.J., & Marshall, A.G. (2001). Electrospray ionization fourier transform mass spectrometric analysis of wine. J. Agric. Food Chem., 49,5710–5718.CrossRefGoogle Scholar
  15. Cutzach, I., Chatonnet, P., & Dubourdieu, D. (1999). Study of the formation mechanisms of some volatile compounds during the aging of sweet fortified wines. J. Agric. Food Chem., 47, 2837–2846.CrossRefGoogle Scholar
  16. De Revel, G., Marchand, S., & Bertrand, A. (2004). Identification of Maillard-type aroma compounds in winelike model systems of cysteine-carbonyls: Occurrence in wine Nutraceutical Beverages: Chemistry, Nutrition, and Health Effects. ACS Symposium Series 871,353-364.Google Scholar
  17. De Smedt, P., Liddle, P.A.P., Cresto, B., & Bossard, A. (1979). Application de la CPG sur colonne capillaire à l’analyse des composés fixes du vin. Annal. Falsif. Expertise Chim. Toxicol., 72,633–642.Google Scholar
  18. De Smedt, P., Liddle, P.A.P., Cresto, B., & Bossard, A. (1981). The analysis of non-volatile constituents of wine by glass capillary gas chromatography. J. Inst. Brew., 87, 349–351.Google Scholar
  19. Del Alamo, M., Bernal, J.L., del Nozal, M.J., & Gómez-Cordovés, C. (2000). Red wine aging in oak barrels: evolution of the monosaccharides content. Food Chem., 71, 189–193.CrossRefGoogle Scholar
  20. Dittrich, H.H., & Barth, A. (1992). Galactose und Arabinose in Mosten und Weinen der Auslese-Gruppe. Wein-Wissenschaft, 47, 129–131.Google Scholar
  21. Doco, T., & Brillouet, J.M. (1993). Isolation and characterisation of a rhamnogalacturonan II from red wine. Carbohydr. Res., 243, 333–343.CrossRefGoogle Scholar
  22. Doco, T., Vuchot, P., Cheynier, V., & Moutounet, M. (2003). Structural modification of wine arabinogalactans during aging on lees. Am. J. Enol. Vitic., 54, 150–157.Google Scholar
  23. Doco, T., Williams, P., & Cheynier, V. (2007). Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition. J. Agric. Food Chem., 55, 6643–6649.CrossRefGoogle Scholar
  24. Dols-Lafargue, M., Gindreau, E., Le Marrec, C., Chambat, G., Heyraud, A., & Lonvaud-Funel, A. (2007). Changes in red wine soluble polysaccharide composition induced by malolactic fermentation. J. Agric. Food Chem., 55, 9592–9599.CrossRefGoogle Scholar
  25. Dubourdieu, D., Ribéreau-Gayon, P., & Fournet, B. (1981). Structure of the extracellular β-D-glucan from Botrytis cinerea. Carbohydr. Res., 93, 294–299.CrossRefGoogle Scholar
  26. Estrella, I., Hernández, M.T., & Olano, A. (1986). Changes in polyalcohol and phenol compound contents in the ageing of sherry wines. Food Chem, 20, 137–152.CrossRefGoogle Scholar
  27. Hashiba, H. (1978). Isolation and identification of Amadori compounds from miso, white wine and sake. Agric. Biol. Chem., 42, 1727–1731.Google Scholar
  28. Herold, B., Pfeiffer, P., & Radler, F. (1995) Determination of the three isomers of 2,3-butanediol formed by yeasts or lactic acid bacteria during fermentation. Am. J. Enol Vitic., 46, 134–137.Google Scholar
  29. Kroh, L.W. (1994). Caramelisation in food and beverages. Food Chem., 51, 373–379.CrossRefGoogle Scholar
  30. Liu, S.Q., & Davis, R.C. (1994). Analysis of wine carbohydrates using capillary gas liquid chromatography. Am. J. Enol. Vitic., 45, 229–234.Google Scholar
  31. Marchand, S., de Revel, G., Vercauteren, J., & Bertrand, A. (2002). Possible mechanism for involvement of cysteine in aroma production in wine. J. Agric. Food Chem., 50, 6160–6164.CrossRefGoogle Scholar
  32. Pellerin, P., Vidal, S., Williams, P., & Brillouet, J. M. (1995). Characterization of five type II arabinogalactan-protein fractions from red wine of increasing uronic acid content. Carbohydr. Res., 277, 135–143.CrossRefGoogle Scholar
  33. Pellerin, P., Doco, T., Vidal, S., Williams, P., Brillouet J.M., & O’Neill M.A. (1996). Structural characterization of red wine rhamnogalacturonan II. Carbohydr. Res., 290, 183–197.CrossRefGoogle Scholar
  34. Plouvier, V. (1963). Sur la recherche des itols a chaine droite et des cyclitols chez les végétaux. Relations entre leur répartition et la classification systématique. Bull. Soc. Chim. Biol., 45, 1079–1118.Google Scholar
  35. Pripis-Nicolau, L., de Revel, G., Bertrand, A., & Maujean, A. (2000). Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions J. Agric. Food Chem., 48, 3761–3766.CrossRefGoogle Scholar
  36. Ribereau-Gayon, P. (1973). Reactions of sulphur dioxide in wine. Bull. l’O.I.V., 46, 406–416.Google Scholar
  37. Ribéreau-Gayon, P., Glories, Y, Maujean, A., & Dubordieu, P. (2000). Glucids. In John Wiley and Sons Ltd. Handbook of Enology vol 2. (pp. 65–90). Baffins Lane, Chichester, West Sussex PO19 1UD, England.Google Scholar
  38. Riou, V., Vernhet, A., Doco, T., & Moutounet, M. (2002). Aggregation of grape seed tannins in model wine-effect of wine polysaccharides. Food Hydrocoll., 16, 17–23.CrossRefGoogle Scholar
  39. Santa-María, G., Olano, A., & Tejedor, M. (1983). Quantitative determination of trehalose and inositol in white and red wines by gas liquid chromatography. Chem. Mikrobiol. Technol. Lebensm., 9, 123–126.Google Scholar
  40. Sanz, M.L., Villamiel, M., & Martínez-Castro, I. (2004). Inositols and carbohydrates in different fresh fruit juices. Food Chem., 87, 325–328.CrossRefGoogle Scholar
  41. Sanz, M.L., Martínez-Castro, I., & Moreno-Arribas M.V. (2008) Identification of the origin of commercial enological tannins by the analysis of monosaccharides and polyalcohols. Food Chem., 111, 778–783.CrossRefGoogle Scholar
  42. Sponholz, W.R., & Dittrich, H.H. (1984). Galacturonic, glucuronic, 2-and 5-oxogluconic in wines, sherries, fruit and dessert wines. Vitis, 23, 214–224.Google Scholar
  43. Sponholz, W.R., & Dittrich, H.H. (1985). Origin of gluconic acid, 2- and 5-oxogluconic, glucuronic and galacturonic acids in musts and wines. Vitis, 24, 51–58.Google Scholar
  44. Usseglio-Tomasset, L., & Amerio, G .(1978). [Pentoses, rhamnose and galactose in dry wines.] Vini d’Italia, 20, (112), 27–33.Google Scholar
  45. Versini, G., Dallaserra, A., & Margheri, G. (1984). [Polyalcohols and secondary sugars in concentrated rectified musts as genuineness parameters]. Vignevini, 11, 41–47.Google Scholar
  46. Vidal, S., Williams, P., Doco, T., Moutounet, M., & Pellerin, P. (2003). The polysaccharides of red wine: total fractionation and characterization. Carbohydr. Polym., 54, 439–447.CrossRefGoogle Scholar
  47. Viriot, C., Scalbert, A., Lapierre, C., & Moutounet, M. (1993). Ellagitannins and lignins in aging of spirits in oak barrels. J. Agric. Food Chem., 41, 1872–1879.CrossRefGoogle Scholar
  48. Waters, E. J., Pellerin, P., & Brillouet, J. M. (1994). A Saccharomyces mannoprotein that protects wine from protein haze. Carbohydr. Polym., 23, 185–191.CrossRefGoogle Scholar
  49. Wuerdig, G. (1977). [Appearance of mucic acid in musts prepared from grapes contaminated with Botrytis.] Bull. l’O.I.V., 50, 50–56.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Luz Sanz
    • 1
  • Isabel Martínez-Castro
  1. 1.Instituto de Química Orgánica General (CSIC)Spain

Personalised recommendations