• Elizabeth Joy Waters
  • Christopher Bruce Colby


Grape Juice White Wine Vitis Vinifera Grape Berry Botrytis Cinerea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achaerandio, I., Pachova, V., Güell, C., & López, F. (2001). Protein adsorption by bentonite in a white wine model solution: Effect of protein molecular weight and ethanol concentration. Am. J. Enol. Vitic., 52, 122–126Google Scholar
  2. Armstrong, D.E., & Chesters, G. (1964). Properties of protein-bentonite complexes as influenced by equilibration conditions. Soil Sci., 98, 39–52CrossRefGoogle Scholar
  3. Bamforth, C.W. (1999). Beer haze. J. Am. Soc. Brew. Chem., 57, 81–90Google Scholar
  4. Bayly, F.C., & Berg, H.W. (1967). Grape and wine proteins of white wine varietals. Am. J. Enol. Vitic., 18, 18–32Google Scholar
  5. Berg, H.W., & Akiyoshi, M. (1961). Determination of protein stability in wine. Am. J. Enol. Vitic., 12, 107–110Google Scholar
  6. Bézier, A., Lambert, B., & Baillieul, F. (2002). Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur. J. Plant Pathol., 108, 111–120CrossRefGoogle Scholar
  7. Blade, W.H., & Boulton, R. (1988). Adsorption of protein by bentonite in a model wine solution. Am. J. Enol. Vitic., 39, 193–199Google Scholar
  8. Boulton, R., Singleton, V.L., L.F., Bisson & Kunkee, RE (1996). Principles and Practices of Winemaking. Gaithersburg, Maryland: Aspen Publishers, Inc.Google Scholar
  9. Boyes, S., Strübi, P., & Dawes, H. (1997) Measurement of protein content in fruit juices, wine and plant extracts in the presence of endogenous organic compounds. Lebensmittel-Wissenschaft und-Technologie, 30, 778–785CrossRefGoogle Scholar
  10. Brown, A.E., & Adikaram, N.K.B. (1983). A role for pectinase and protease inhibitors in fungal rot development in tomato fruits. Phytopathologische Zeitschrift, 106, 239–251CrossRefGoogle Scholar
  11. Cabaroglu, T., Razungles, A., Baumes, R., & Gunata, Z. (2003). Effect of fining treatments on the aromatic potential of white wines from Muscat Ottonel and Gewurztraminer cultivars. Sc. Aliment, 23, 411–423CrossRefGoogle Scholar
  12. Churchman, G.J. (1999). Procedures for the efficient recycling of bentonite used for the removal of proteins from wine. Final Report to Grape and Wine Research and Development Corporation, Project CSS 98/1Google Scholar
  13. Dambrouck, T., Marchal, R., Marchal-Delahaut, L., Parmentier, M., Maujean, A., & Jeandet, P. (2003). Immunodetection of proteins from grapes and yeast in a white wine. J. Agric. Food Chem., 51, 2727–2732CrossRefGoogle Scholar
  14. Dawes, H., Boyes, S., Keene, J., & Heatherbell, D. (1994). Protein instability of wines: Influence of protein isoelectric point. Am. J. Enol. Vitic., 45, 319–326Google Scholar
  15. Derckel, J.P., Legendre, L., Audran, J.C., Haye, B., & Lambert, B. (1996). Chitinases of the grapevine (Vitis vinifera L.): five isoforms induced in leaves by salicylic acid are constitutively expressed in other tissues. Plant Sci., 119, 31–37CrossRefGoogle Scholar
  16. Derckel, J.P., Audran, J.C., Haye, B., Lambert, B., & Legendre, L. (1998). Characterisation, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and β-1,3-glucanases of ripening grape berries. Physiol. Plantarum, 104, 56–64CrossRefGoogle Scholar
  17. Dubourdieu, D., & Canal-Llaubères, R.M. (1989). Influence of some colloids (polysaccharides and proteins) on the clarification and stabilization of wines. Seventh Australian Wine Industry Technical Conference, Adelaide, SA, Winetitles, Adelaide, SAGoogle Scholar
  18. Duncan, B. (1992). Varietal differences in white grape protein: Implications for bentonite fining. Aust. NZ Wine Ind. J., 7, 189–193Google Scholar
  19. Ferreira, R.B., Monteiro, S., Picarra-Pereira, M.A., Tanganho, M.C., Loureiro, V.B., & Teixeira, A.R. (2000). Characterization of the proteins from grapes and wines by immunological methods. Am. J. Enol. Vitic., 51, 22–28Google Scholar
  20. Ferreira, R.B., Piçarra-Pereira, M.A., Monteiro, S., Loureiro, V.B., & Teixeira, A.R. (2002). The wine proteins. Trends Food Sci. Tech., 12, 230–239CrossRefGoogle Scholar
  21. Fogler, H.S. (1992). Elements of chemical reaction engineering. New Jersey: Prentice-Hall Inc.Google Scholar
  22. Giannakis, C., Bucheli, C.S., Skene, K.G.M., Robinson, S.P., & Scott, N.S. (1998). Chitinase and β-1,3-glucanase in grapevine leaves: a possible defence against powdery mildew infection. Aust. J. Grape Wine Res., 4, 14–22CrossRefGoogle Scholar
  23. Girbau, T., Stummer, B.E., Pocock, K.F., Baldock, G.A., Scott, E.S., & Waters, E.J. (2004). The effect of Uncinula necator(powdery mildew) and Botrytis cinerea infection of grapes on the levels of haze-forming pathogenesis-related proteins in grape juice and wine. Aust. J. Grape Wine Res., 10, 125–133CrossRefGoogle Scholar
  24. Girbau-Sola, T., Lopez-Tamames, E., Bujan, J., & Buxaderas, S. (2002). Foam aptitude of Trepat and Monastrell red varieties in Cava elaboration. 1 Base wine characteristics. J. Agric. Food Chem., 50, 5596–5599CrossRefGoogle Scholar
  25. Gougeon, R.D., Reinholdt, M., Delmotte, L., Miehe-Brendle, J., Chézeau, J.M., Le Dred, R., Marchal, R., & Jeandet, P. (2002). Direct observation of polylysine side-chain interaction with smectites interlayer surfaces through 1H-27Al heteronuclear correlation NMR spectroscopy. Langmuir, the American Chemical Society Journal of Surfaces and Colloids, 18, 3396–3398Google Scholar
  26. Gougeon, R.D., Soulard, M., Reinholdt, M., Miehe-Brendle, J., Chézeau, J.M., Le Dred, R., Marchal, R., & Jeandet, P. (2003). Polypeptide adsorption onto a synthetic montmorillonite: A combined solid-state NMR, X-ray diffraction, thermal analysis and N2 adsorption study. Eur. J. Inorg. Chem., 2003, 1366–1372CrossRefGoogle Scholar
  27. Hayasaka, Y., Adams, K.S., Pocock, K.F., Baldock, G.A., Waters, E.J., & Hoj, P.B. (2001). Use of electrospray mass spectrometry for mass determination of grape (Vitis vinifera) juice pathogenesis-related proteins: A potential tool for varietal differentiation. J. Agric. Food Chem., 49, 1830–1839CrossRefGoogle Scholar
  28. Høj, P.B., Tattersall, D.B., Adams, K., Pocock, K.F., Hayasaka, Y., van Heeswijck, R., & Waters, E.J. (2000). The ‘haze protiens’ of wine-a summary of properties, factors affecting their accumulation in grapes, and the amount of bentonite required for their removal from wine. Proceedings of the ASEV 50th Anniversary Annual Meeting; June 19–23, 2000; Davis, California, Davis, California, American Society for Enology and ViticultureGoogle Scholar
  29. Hsu, J.C., & Heatherbell, D.A. (1987a). Isolation and characterization of soluble proteins in grapes, grape juice and wine. Am. J. Enol. Vitic., 38, 6–10Google Scholar
  30. Hsu, J.C., & Heatherbell, D.A. (1987b). Heat-unstable proteins in wine. I. Characterization and removal by bentonite fining and heat treatment. Am. J. Enol. Vitic., 38, 11–16Google Scholar
  31. Jacobs, A.K., Dry, I.B., & Robinson, S.P. (1999). Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol., 48, 325–336CrossRefGoogle Scholar
  32. Jayasankar, S., Li, Z., & Gray, D.J. (2003). Constitutive expression of Vitis viniferathaumatin-like protein after in vitro selection and its role in anthracnose resistance. Funct. Plant Biol., 30, 1105–1115CrossRefGoogle Scholar
  33. Jones, P.R., Gawel, R., Francis, I.L., & Waters, E.J. (2008). The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual. Prefer, 19, 596–607CrossRefGoogle Scholar
  34. Koch, J., & Sajak, E. (1959). A review and some studies on grape protein. Am. J. Enol. Vitic., 10, 114–123Google Scholar
  35. Kunz, W., Henle, J., & Ninham, B.W. (2004). ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr. Opin. Coll. Interface Sci., 9, 19–37CrossRefGoogle Scholar
  36. Kwon, S.W. (2004). Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem., 52, 7258 – 7263CrossRefGoogle Scholar
  37. Lee, T. (1986). Protein instability: nature, characterization and removal by bentoniteGoogle Scholar
  38. Leiper, K.A., Stewart, G.G., McKeown, I.P., Nock, T., & Thompson, M.J. (2005). Optimising beer stabilisation by the selective removal of tannoids and sensitive proteins. J. I. Brewing, 111, 118–127Google Scholar
  39. Leske, P.A., Bruer, N.G.C., & Capdeboscq, V. (1995). An evaluation of some characteristics of commercial bentonites. Wine Industry J., 10, 73–77Google Scholar
  40. Liger-Belair, G. (2005). The physics and chemistry behind the bubbling properties of Champagne and sparkling wines: A state-of-the-art review. J. Agric. Food Chem., 53, 2788–2802CrossRefGoogle Scholar
  41. Madigan, D., Byrne, H., Matthews, S., Kelly, R., McEnroe, C., & Harmey, D. (2000). Studies on the effects of common process variables on the colloidal stability of beer. J. Am. Soc. Brew. Chem., 58, 160–164Google Scholar
  42. Manteau, S., Lambert, B., Jeandet, P., & Legendre, L. (2003). Changes in chitinase and thaumatin-like pathogenesis-related proteins of grape berries during the Champagne winemaking process. Am. J. Enol. Vitic., 54, 267–272Google Scholar
  43. Marchal, R., Berthier, L., Legendre, L., Marchal-Delahaut, P., Jeandet, P., & Maujean, A. (1998). Effects of Botrytis cinerea infection on the must protein electrophoretic characteristics. J. Agric. Food Chem., 46, 4945–4949CrossRefGoogle Scholar
  44. Martínez-Rodriguez, A.J., & Polo, M.C. (2003). Effect of the addition of bentonite to the tirage solution on the nitrogen composition and sensory quality of sparkling wines. Food Chem., 81, 383–388CrossRefGoogle Scholar
  45. Mesquita, P.R., Piçarra-Pereira, M.A., Monteiro, S., Loureiro, V.B., Teixeira, A.R., & Ferreira, R.B. (2001). Effect of wine composition on protein stability. Am. J. Enol. Vitic., 52, 324–330Google Scholar
  46. Miedl, M., Garcia, M.A., & Bamforth, C.W. (2005). Haze formation in model beer systems. J. Agric. Food Chem., 53, 10161–10165CrossRefGoogle Scholar
  47. Miller, G.C., Amon, J.M., Gibson, R.L., & Simpson, R.F. (1985). Loss of wine aroma attributable to protein stabilization with bentonite or ultrafiltration. Aust. J. Grape Wine Res., 256, 46, 49–50Google Scholar
  48. Monteiro, S., Picarra-Pereira, M.A., Teixeira, A.R., Loureiro, V.B., & Ferreira, R.B. (2003a). Environmental conditions during vegetative growth determine the major proteins that accumulate in mature grapes. J. Agric. Food Chem., 51, 4046–4053CrossRefGoogle Scholar
  49. Monteiro, S., Barakat, M., Picarra-Pereira, M.A., Teixeira, A.R., & Ferreira, R.B. (2003b). Osmotin and thaumatin from grape: A putative general defense mechanism against pathogenic fungi. Phytopathology, 93, 1505–1512CrossRefGoogle Scholar
  50. Morant, I. (1990). Evaluation of bentonites available on the Australian market. Technical Review, 67, 16–18, 31–33Google Scholar
  51. Moretti, R.H., & Berg, H.W. (1965). Variability among wines to protein clouding. Am. J. Enol. Vitic., 16, 69–78Google Scholar
  52. Muhlack, R., Nordestgaard, S., Waters, E.J., O’Neill, B.K., Lim, A., & Colby, C.B. (2006). In-line dosing for bentonite fining of wine or juice: contact time, clarification, product recovery & sensory effects. Aust. J. Grape Wine Res., 12, 221–234CrossRefGoogle Scholar
  53. Murphey, J.M., Spayd, S.E., & Powers, J.R. (1989). Effect of grape maturation on soluble protein characteristics of Gewürztraminer and White Riesling juice and wine. Am. J. Enol. Vitic., 40, 199–207Google Scholar
  54. Nordestgaard, S., Chuan, Y.P., O’Neill, B., Waters, E., Deans, L., Policki, P., & Colby, C. (2006). In-line Dosing of White Wine for Bentonite Fining with Centrifugal Clarification. Am. J. Enol. Vitic., 58, 283–285Google Scholar
  55. Oh, H.I., Hoff, J.E., Armstrong, G.S., & Haff, L.A. (1980). Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem., 28, 394–398CrossRefGoogle Scholar
  56. Paetzold, M., Dulau, L., & Dubourdieu, D. (1990). Fractionnement et caractérisation des glycoprotéines dans les moûts de raisins blancs. J. Int. Sci. Vigne Vin, 24, 13–28Google Scholar
  57. Pastorello, E.A., Farioli, L., Pravettoni, V., Ortolani, C., Fortunato, D., Giuffrida, M.G., Garoffo, L.P., Calamari, A.M., Brenna, O., & Conti, A. (2003). Identification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin. J. Allergy Clin. Immun., 111, 350–359CrossRefGoogle Scholar
  58. Peng, Z., Waters, E.J., Pocock, K.F., & Williams, P.J. (1996a). Red wine bottle deposits, I: a predictive assay and an assessment of some factors affecting deposit formation. Aust. J. Grape Wine Res., 2, 25–29Google Scholar
  59. Peng, Z., Waters, E.J., Pocock, K.F., & Williams, P.J. (1996b). Red wine bottle deposits, II: cold stabilisation is an effective procedure to prevent deposit formation. Aust. J. Grape Wine Res., 2, 30–34Google Scholar
  60. Peng, Z., Pocock, K.F., Waters, E.J., Francis, I.L., & Williams, P.J. (1997). Taste properties of grape (Vitis vinifera) pathogenesis-related proteins isolated from wine. J. Agric. Food Chem., 45, 4639–4643CrossRefGoogle Scholar
  61. Pocock, K.F., & Waters, E.J. (1998). The effect of mechanical harvesting and transport of grapes, and juice oxidation, on the protein stability of wines. Aust. J. Grape Wine Res., 4, 136–139CrossRefGoogle Scholar
  62. Pocock, K.F., & Waters, E.J. (2006). Protein haze in bottled white wines: how well do stability tests and bentonite fining trials predict haze formation during storage and transport?. Aust. J. Grape Wine Res., 12, 212–220CrossRefGoogle Scholar
  63. Pocock, K.F., Hayasaka, Y., Peng, Z., Williams, P.J., & Waters, E.J. (1998). The effect of mechanical harvesting and long-distance transport on the concentration of haze-forming proteins in grape juice. Aust. J. Grape Wine Res., 4, 23–29CrossRefGoogle Scholar
  64. Pocock, K.F., Hayasaka, Y., McCarthy, M.G., & Waters, E.J. (2000). Thaumatin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J. Agric. Food Chem., 48, 1637–1643CrossRefGoogle Scholar
  65. Pocock, K.F., Høj, P.B., Adams, K.S., Kwiatkowski, M.J., & Waters, E.J. (2003). Combined heat and proteolytic enzyme treatment of white wines reduces haze forming protein content without detrimental effect. Aust. J. Grape Wine Res., 9, 56–63CrossRefGoogle Scholar
  66. Pocock, K.F., Alexander, G.M., Hayasaka, Y., Jones, P.R., & Waters, E.J. (2006). Sulfate – a candidate for the missing essential factor that is required for the formation of protein haze in white wine. J. Agric. Food Chem., 55, 1799–1807CrossRefGoogle Scholar
  67. Pollnitz, A.P., Capone, D.L., Caldersmith, M.C., & Sefton, M.A. (2003). The effect of various wine bottle closures and fining agents on flavour and aroma compounds in wine. In: S.M. Bell, K.A. de Garis, C.G. Dundon, R.P. Hamilton, S.J. Partridge & G.S. Wall (Eds), Grapegrowing at the edge; managing the wine business; impacts on wine flavour, edn. (pp 59–63) Adelaide, South Australia: Australian Society of Viticulture and OenologyGoogle Scholar
  68. Rankine, B.C. (1962). Bentonite and wine fining. Austr. Wine Brew. Spirit Rev., 81, 18–22Google Scholar
  69. Rankine, B.C. (1989). Making good wine. Sydney: Pan MacmillanGoogle Scholar
  70. Renault, A.S., Deloire, A., & Bierne, J. (1996). Pathogenesis-related proteins in grapevines induced by salicylic acid and Botrytis cinerea. Vitis, 35, 49–52Google Scholar
  71. Robert, N., Roche, K., Lebeau, Y., Breda, C., Boulay, M., Esnault, R., & Buffard, D. (2002). Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens. Plant Sci., 162, 389–400CrossRefGoogle Scholar
  72. Robinson, S.P., Jacobs, A.K., & Dry, I.B. (1997). A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol., 114, 771–8.CrossRefGoogle Scholar
  73. Salzman, R.A., Tikhonova, I., Bordelon, B.P., Hasegawa, P.M., & Bressan, R.A. (1998). Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiol., 117, 465–472CrossRefGoogle Scholar
  74. Sbornik, M., Rakoski, J., Mempel, M., Ollert, M., & Ring, J. (2007). IgE-mediated type-I-allergy against red wine and grapes. Allergy, 62, 1339–1340CrossRefGoogle Scholar
  75. Schad, S.G., Trcka, J., Vieths, S., Scheurer, S., Conti, A., Brocker, E.B., & Trautmann, A. (2005). Wine anaphylaxis in a German patient: IgE-mediated allergy against a lipid transfer protein of grapes. International Archives of Allergy and Immunology, 136, 159–164CrossRefGoogle Scholar
  76. Senee, J., Robillard, B., & Vignes-Adler, M. (1999). Films and foams of Champagne wines. Food Hydrocoll., 13, 15–26CrossRefGoogle Scholar
  77. Siebert, K. (1999). Protein-polyphenol haze in beverages. Food Technol., 53, 54–57Google Scholar
  78. Siebert, K.J., & Lynn, P.Y. (2003). Effects of alcohol and pH on protein-polyphenol haze intensity and particle size. J. Am. Soc. Brew. Chem., 61, 88–98Google Scholar
  79. Siebert, K.J., Carrasco, A., & Lynn, P.Y. (1996a). Formation of protein-polyphenol haze in beverages. J. Agric. Food Chem., 44, 1997–2005Google Scholar
  80. Siebert, K.J., Troukhanova, N.V., & Lynn, P.Y. (1996b). Nature of polyphenol-protein interactions. J. Agric. Food Chem., 44, 80–85CrossRefGoogle Scholar
  81. Smart, R.E., & Coombe, B.C. (1983). Water relations of grapevines. In: T.T. Kozlowski (Eds), Water deficits and plant growth, edn. (pp 137–196) New York: Academic PressGoogle Scholar
  82. Somers, T.C., & Ziemelis, G. (1973). Direct determination of wine proteins. Am. J. Enol. Vitic., 24, 47–50Google Scholar
  83. Tattersall, D.B., van Heeswijck, R., & Høj, P.B. (1997). Identification and characterisation of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol., 114, 759–769CrossRefGoogle Scholar
  84. Tattersall, D.B., Pocock, K.F., Hayasaka, Y., Adams, K., van Heeswijck, R., Waters, E.J., & Høj, P.B. (2001). Pathogenesis related proteins – their accumulation in grapes during berry growth and their involvement in white wine heat instability. Current knowledge and future perspectives in relation to winemaking practices. In: K.A. Roubelakis-Angelakis (Eds), Molecular biology & biotechnology of the grapevine, edn. (pp 183–201) Dordrecht, The Netherlands: Kluwer Academic PublishersGoogle Scholar
  85. Vassilopoulou, E., Zuidmeer, L., Akkerdaas, J., Tassios, I., Rigby, N.R., Mills, E.N.C., van Ree, R., Saxoni-Papageorgiou, P., & Papadopoulos, N.G. (2007). Severe immediate allergic reactions to grapes: Part of a lipid transfer protein-associated clinical syndrome. International Archives of Allergy and Immunology, 143, 92–102CrossRefGoogle Scholar
  86. Waters, E.J., Wallace, W., & Williams, P.J. (1991). Heat haze characteristics of fractionated wine proteins. Am. J. Enol. Vitic., 42, 123–127Google Scholar
  87. Waters, E.J., Wallace, W., & Williams, P.J. (1992). Identification of heat-unstable wine proteins and their resistance to peptidases. J. Agric. Food Chem., 40, 1514–1519CrossRefGoogle Scholar
  88. Waters, E.J., Peng, Z., Pocock, K.F., Jones, G.P., Clarke, P., & Williams, P.J. (1994). Solid-state 13c nmr investigation into insoluble deposits adhering to the inner glass surface of bottled red wine. J. Agric. Food Chem., 42, 1761–1766CrossRefGoogle Scholar
  89. Waters, E.J., Peng, Z., Pocock, K.F., & Williams, P.J. (1995a). Proteins in white wine, I: Procyanidin occurrence in soluble proteins and insoluble protein hazes and its relationship to protein instability. Aust. J. Grape Wine Res., 1, 86–93CrossRefGoogle Scholar
  90. Waters, E.J., Peng, Z., Pocock, K.F., & Williams, P.J. (1995b). Proteins in white wine, II: Their resistance to proteolysis is not due to either phenolic association or glycosylation. Aust. J. Grape Wine Res., 1, 94–99CrossRefGoogle Scholar
  91. Waters, E.J., Shirley, N.J., & Williams, P.J. (1996). Nuisance proteins of wine are grape pathogenesis-related proteins. J. Agric. Food Chem., 44, 3–5CrossRefGoogle Scholar
  92. Waters, E.J., Hayasaka, Y., Tattersall, D.B., Adams, K.S., & Williams, P.J. (1998). Sequence analysis of grape (Vitis vinifera) berry chitinases that cause haze formation in wines. J. Agric. Food Chem., 46, 4950–4957CrossRefGoogle Scholar
  93. Waters, E.J., Alexander, G., Muhlack, R., Pocock, K.F., Colby, C., O’Neill, B.N., Høj, P.B., & Jones, P.R. (2005). Preventing protein haze in bottled wine. Aust. J. Grape Wine Res., 11, 215–225CrossRefGoogle Scholar
  94. Yokotsuka, K., Ebihara, T., & Sato, T. (1991). Comparison of soluble proteins in juice and wine from Koshu grapes. J. Fermentation and Bioengineering, 71, 248–253CrossRefGoogle Scholar
  95. Zalewska-Sobczak, J., Borecka, H., & Urbanek, H. (1981). Comparison of pectinase, xylanase and acid protease activities of virulent and less virulent isolates of Botrytis cinerea. Phytopathologische Zeitschrift, 101, 222–227CrossRefGoogle Scholar
  96. Zoecklin, B. (1988). Bentonite fining of juice and wine. VCESUSo America). Publication 463–014.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elizabeth Joy Waters
    • 1
  • Christopher Bruce Colby
  1. 1.The AustralianWine Research InstituteGlen OsmondAustralia

Personalised recommendations