• M. Victoria Moreno-Arribas
  • María Ángeles Pozo-Bayón
  • M. Carmen Polo


Angiotensin Converting Enzyme Amino Acid Composition White Wine Peptide Fraction Sparkling Wine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acedo, M.I., Pueyo, E., & Polo, M.C. (1994). Preliminary studies on peptides in wine by HPLC. Am. J. Enol. Vitic., 45, 167–172.Google Scholar
  2. Alcaide-Hidalgo, J.M., Pueyo, E., Polo, M.C., & Martínez-Rodriguez, A.J. (2007). Bioactive peptides released from Saccharomyces cerevisiae under accelerated autolysis in a model wine system. J. Food Sci., 72, M276–279.CrossRefGoogle Scholar
  3. Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Polo, M.C., & Pueyo, E. (2008). Partial characterization of peptides from red wines. Changes during malolactic fermentation and ageing with lees. Food Chem., 107, 622–630.CrossRefGoogle Scholar
  4. Alexandre, H., Heintz, D., Chassagne, D., Guilloux-Benatier, M., Charpentier, C., & Feuillat, M. (2001). Protease A activity and nitrogen fractions released during alcoholic fermentation and autolysis in enological conditions. J. Ind. Microbiol. Biotechnol., 26, 235–240.CrossRefGoogle Scholar
  5. Bartolomé, B., Moreno-Arribas, V., Pueyo, E., & Polo, M.C. (1997). On-line photodiode array detection and OPA-derivatization for identification of small peptides from wine. J. Agric. Food Chem., 45, 3374–3381.CrossRefGoogle Scholar
  6. Cheynier, V., Souquet, J.M., & Moutounet, M. (1989). Glutathione content and glutathione to hydroxycinamic acid ratio in Vitis vinifera grapes and musts. Am. J. Enol. Vitic., 40, 320–324.Google Scholar
  7. Colagrande, O., & Silva, A. (1981). Aspects qualitatives et technologiques de lapplication des methodes thermiques dans la production des vins mousseux. Conn. Vigne Vin, 15, 179–192.Google Scholar
  8. Desportes, C., Charpentier, M., Duteurtre, B., Maujean, A., & Duchiron, F. (2000). Liquid chromatographic fractionation of small peptides from wine. J. Chromatogr. A, 893, 281–291.CrossRefGoogle Scholar
  9. Desportes, C., Charpentier, M., Duteurtre, B., Maujean, A., & Duchiron, F. (2001). Isolation, identification, and organoleptic characterization of low-molecular-weight peptides from white wine. Am. J. Enol. Vitic., 52, 376–380.Google Scholar
  10. Doi, E., Shibata, D., & Matoba, T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. Anal. Biochem., 118, 173–184.CrossRefGoogle Scholar
  11. Dos Santos, A.M., Feuillat, M., & Charpentier, C. (2000). Flor yeast metabolism in a model system similar to cellar ageing of the french Evolution of some by-products, nitrogen compounds and polysaccharides. Vitis, 39, 129–134.Google Scholar
  12. Elskens, M.T., Jaspers, C.L., & Penninckx, M.J. (1991). Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J. Gen. Microbiol., 137, 637–644.Google Scholar
  13. Feuillat, M., Bidan, P., & Rosier, V. (1977). Croissance des bactéries lactiques á partir des principaux constituants azotés du vin. Ann. Technol. Agric., 28, 435–447.Google Scholar
  14. Feuillat, M., Brillant, G., & Rochard, J. (1980). Mise en évidence d’une production de proteaes exocellulaires par les levures au cours de la fermentation alcoolique du moût de raisin. Conn. Vigne Vin, 14, 37–52.Google Scholar
  15. Gómez-Ruiz J.A., Ramos, M., & Recio, I. (2004) Identification of angiotensin-converting enzyme inhibitory peptides in Manchego cheese by high-performance liquid chromatography-tamdem mass spectrometry. J. Chromatog. A, 1054, 269–277.CrossRefGoogle Scholar
  16. González-Llano, D., Herraiz, T., & Polo, M.C. (2004). Peptides. In: M.L. Leo Nollet (Ed.), Handbook of Food Analysis, Vol. 1: Physical Characterization and Nutrient Analysis. Chapter 6 (pp. 125–166). New York: Marcel Dekker.Google Scholar
  17. Lavigne, V., Pons, A., & Dubourdieu, D. (2007). Assay of glutathion in must and wines using capillary electrophoresis and laser-induced fluorescence detection. Changes in concentration in dry white wines during alcoholic fermentation and aging. J. Chromatog. A, 1139, 130–135.CrossRefGoogle Scholar
  18. Leitáo, M.C., Teixeira, H.C., Barreto Crespo, M.T., & San Romáo, M.V. (2000). Biogenic amines occurence in wine. Amino acid decarboxylase and proteolytic activities expression by Oenococcus oeni. J. Agric. Food Chem., 48, 2780–2784.CrossRefGoogle Scholar
  19. Lin, J.Y. (2003). Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci., 73, 1543–1555.CrossRefGoogle Scholar
  20. Luguera, C., Moreno-Arribas, M.V., Pueyo, E., & Polo, M.C. (1997). Capillary electrophorestic analysis of wine proteins. Modifications during the manufacture of sparkling wines. J. Agric. Food Chem., 45, 3766–3770.CrossRefGoogle Scholar
  21. Manca de Nadra, M.C., Farias, M., Moreno-Arribas, M.V., Pueyo, E., & Polo, M.C. (1997). Proteolitic activity of Leuconostoc oenos: Effect on proteins and polypeptides from white wine. FEMS Microbiol. Lett., 150, 135–139.CrossRefGoogle Scholar
  22. Manca de Nadra, M.C., Farias, M.E., Moreno-Arribas, V., Pueyo, E., & Polo, M.C. (1999). A proteolytic effect of Oenococcus oeni on the nitrogenous macromolecular fraction of red wine. FEMS Microbiol. Lett., 174, 41–47.CrossRefGoogle Scholar
  23. Manca de Nadra, M.C., Farias, M.E., Pueyo, E., & Polo, M.C. (2005). Protease activity of Oenococcus oeni viable cells on red wine nitrogenous macromolecular fraction in presence of SO2 and ethanol. Food Control, 16, 851–854.CrossRefGoogle Scholar
  24. Martínez-Rodriguez, A., & Polo, M.C. (2000). Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J. Agric. Food Chem., 48, 1081–1085.CrossRefGoogle Scholar
  25. Martínez-Rodriguez, A.J., Carrascosa, A.V., & Polo, M.C. (2001). Release of nitrogen compounds to the extracellular medium by three strains of Saccharomyces cerevisaiaeduring induced autolysis in a model wine system. Int. J. Food Microbiol., 68, 155–160.CrossRefGoogle Scholar
  26. Martínez-Rodríguez, A.J., Carrascosa, A.V., Martín-Álvarez, P.J., Moreno-Arribas, V., & Polo, M.C. (2002). Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wines production by the traditional method. J. Ind. Microbiol. Biotechnol., 29, 314–322.CrossRefGoogle Scholar
  27. Moreno-Arribas, M.V., & Polo, M.C. (2005). Winemaking biochemistry and microbiology: Current knowledge and future trends. Crit. Rev. Food Sci. Nut., 45, 265–286.CrossRefGoogle Scholar
  28. Moreno-Arribas, V., Pueyo, E., & Polo, M.C. (1996). Peptides in musts and wines. Changes during the manufacture of cavas (sparkling wines). J. Agric. Food Chem., 44, 3783–3788.Google Scholar
  29. Moreno-Arribas, M.V., Bartolomé, B., Pueyo, E., & Polo, M.C. (1998a). Isolation and characterization of individual peptides from wine. J. Agric. Food Chem., 46, 3422–3425.CrossRefGoogle Scholar
  30. Moreno-Arribas, V., Pueyo, E., Polo, M.C., & Martín-Alvarez, P.J. (1998b). Changes in the amino acid composition of the different nitrogenous fractions during the aging of wine with yeasts. J. Agric. Food Chem., 46, 4042–4051.CrossRefGoogle Scholar
  31. Okuda, T., & Yokotsuka, K. (1999). Levels of glutathione and activities of related enzymes during ripening of Koshu and Cabernet Sauvignon grapes and during winemaking. Am. J. Enol. Vitic., 50, 264–270.Google Scholar
  32. Park, S.K., Boulton, R.B., & Noble A.C. (2000). Automated HPLC analysis of glutathione and thiol-containing compounds in grape juice and wine using pre-column derivatization with fluorescence detection. Food Chem., 68, 475–480.CrossRefGoogle Scholar
  33. Perrot, L., Dukic, S., Charpentier, M., Duteurtre, B., Duchiron, F., & Kaltenbach, M.L. (2003). Antihypertensive effect of a low molecular weight fraction (1 kDa) of champagne wine in spontaneously hypertensive rats. In: A. Lonvaud-Funel, G. Revel, P. Darriet (Eds.), Oenologie 2003 (pp. 688–691) Paris: TEC and DOC.Google Scholar
  34. Person, M. de, Sevestre, A., Chaimbault, P., Perrot, L., Duchiron, F., & Elfakir, C. (2004). Characterization of low-molecular weight peptides in champagne wine by liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta, 520, 149–158.CrossRefGoogle Scholar
  35. Polo, M.C., González-Llano, D., & Ramos, M. (2000). HPLC of peptides. In: Leo M.L. Nollet (Ed.), Food Analysis by HPLC (Food Science and Technology Series) (pp. 99–125). New York: Marcel Dekker.Google Scholar
  36. Pozo-Bayón, M.A., Alcaíde, J.M., Polo, M.C., & Pueyo, E. (2005). Angiotensin I-converting enzyme inhibitory compounds in white and red wines. Food Chem., 100, 43–47.CrossRefGoogle Scholar
  37. Remize, F., Augagneur, Y., Guilloux-Benatier, M., & Guzzo, J. (2005). Effect on nitrogen limitation and nature of the feed upon Oenococcus oeni metabolism and extracellular protein production. J. App. Microbiol., 98, 652–661.CrossRefGoogle Scholar
  38. Remize, F., Gaudin, A., Kong, Y., Guzzo, J., Alexandre, H., Krieger, S., & Guilloux-Benatier, M. (2006). Oenococcus oeni preference for peptides: Qualitative assimilation and quantitative analysis of nitrogen assimilation. Arch. Microbiol., 185, 459–469.CrossRefGoogle Scholar
  39. Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulphate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 KDa. Anal. Biochem., 79, 544–552.Google Scholar
  40. Takayanagi, T., & Yokotsuka, K. (1999). Angiotensin I converting enzyme-inhibitory peptides from wine. Am. J. Enol. Vitic., 50, 65–68.Google Scholar
  41. Usseglio-Tomasset, L., & Bosia, P.D. (1990). Amino acids and oligopeptides development from the must to the wine. Bull. lOIV, 63, (707–708), 21–46.Google Scholar
  42. Usseglio-Tomasset, L., & Di Stefano, R. (1978). Observazioni sulle sostanze azozate dei vini in realzione alle loro dimensioni molecolari Annali dell’Istituto sperimentale per l’enologia Asti 9, 101.Google Scholar
  43. Vaimakis, V., & Roussis, I.G. (1996). Must oxigenation together with glutathione addition in the oxidation of white wine. Food Chem., 57, 419–422.CrossRefGoogle Scholar
  44. Yanai, T., Suzuki, I., & Sato, M. (2003). Prolyl endopeptidase inhibitory peptides in wine. Biosc. Biotech. Biochem., 67, 380–382.CrossRefGoogle Scholar
  45. Yokotsuka, K., Aihara, T., Umehara, Y., & Kushida, T. (1975). Free amino acids and peptides in must and wines from jspsnese grapes. J. Fermen. Technol., 53, 631–635.Google Scholar
  46. Zhang, Y., Choi, H.J., Han, H.S., Park, J.H., Kim, S., Bae, J.H., Kim, H.K., & Choi, C. (2003). Polyphenolic compounds from korean pear and their biological activities. Food Sci. Biotech., 12, 262–267.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Victoria Moreno-Arribas
    • 1
  • María Ángeles Pozo-Bayón
  • M. Carmen Polo
  1. 1.Instituto de Fermentaciones Industriales (CSIC)SPAIN

Personalised recommendations