Biochemistry of Alcoholic Fermentation

  • Fernando Zamora


Saccharomyces Cerevisiae Succinic Acid Alcoholic Fermentation Grape Juice Medium Chain Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerny, J. (1997) Composés azotés des moûts et des vins. Rev. Suisse Vitic. Hortic., 28, 161–165.Google Scholar
  2. Alexandre, H., & Charpentier, C. (1998) Biochemical aspects of stuck and sluggish fermentation in grape must. J. Ind. Microbiol. Biotechnol., 20, 20–27.CrossRefGoogle Scholar
  3. Alexandre, H., Rousseaux, I., & Charpentier, C. (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol. Lett., 124, 17–22CrossRefGoogle Scholar
  4. Barnett, J.A. (2003) A history of research on yeasts 5: the fermentation pathway. Yeast, 20,509–543.CrossRefGoogle Scholar
  5. Barnett, J.A., & Entian, K.D. (2005) A history of research on yeasts 9: regulation of sugar metabolism. Yeast, 22, 835–894.CrossRefGoogle Scholar
  6. Barre, P., Blondin, B., Dequin, S., Feuillat, M., Sablayrolles, J.M., & Salmon, J.M. (1998). La levure de fermentation alcoolique. In C. Flanzy (Ed.), Oenologie: fondements scientifiques et technologiques (pp. 454–497). Paris: Tec Doc Lavoisier.Google Scholar
  7. Beech, F.W., Burroughs, L.F., Timberlake, C.F., & Whiting, G.C. (1979) Progres recents sur l’aspect chimique et antimicrobienne de l’ahidride sulfureux. Bull. OIV, 52, 1001–1022.Google Scholar
  8. Beltran, G., Torija, M.J., Novo, M., Ferrer, N., Poblet, M., Guillamón, J.M., Rozes, N., & Mas, A. (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst. Appl. Microbiol., 25, 287–293.CrossRefGoogle Scholar
  9. Bertrand, A., & Miele, A. (1984) Influence de la clarification du moût de raisin sur sa teneur en acides gras. Conn. Vigne Vin, 48, 293–297.Google Scholar
  10. Bisson, L.F. (1999) Stuck and sluggish fermentations. Am. J. Enol. Vitic., 50, 107–119.Google Scholar
  11. Bisson, L.F., & Butzke, C.E. (2000) Diagnosis and rectification of stuck and sluggish fermentations. Am. J. Enol. Vitic., 51, 168–177.Google Scholar
  12. Boulton, R.B., Singleton, V.L., Bisson, L.F., & Kunkee, R.E. (1996). Yeast and biochemistry of ethanol fermentation. In R.B. Boulton (Ed.), Principles and Practices of Winemaking(pp. 139–172). New York: Chapman & Hall.Google Scholar
  13. Cabib, E., Roberts, R., & Bowers, B. (1982) Synthesis of the Yeast Cell Wall and its Regulation. Ann. Rev. Biochem., 51, 763–793.CrossRefGoogle Scholar
  14. Chatonnet, P., Dubourdieu, D., & Boidron, J.N. (1995) The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am. J. Enol. Vitic., 46, 463–468.Google Scholar
  15. Ciriacy, M. (1996) Alcohol dehydrogenases. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 213–224). Boca Raton: CRC Press.Google Scholar
  16. Constantí, M., Poblet, M., Arola, L., Mas, A., & Guillamón, J.M. (1997). Analysis of yeasts populations during alcoholic fermentation in a newly established winery. Am. J. Enol. Vitic., 48, 339–344.Google Scholar
  17. Constantí, M., Reguant, C., Poblet, M., Zamora, F., Mas, A., & Guillamón, J.M. (1998) Molecular analysis of yeast population dynamis: Effect of sulphur dioxide and the inoculum in must fermentation. Int. J. Food Microbiol., 41, 169–175.CrossRefGoogle Scholar
  18. Crabtree, H.D. (1929) Observations on the carbohydrate metabolism of tumours. Biochem. J., 23, 536–545.Google Scholar
  19. Del Nobile, M.A., D’Amato, D., Altieri, C., Corbo, M.R., & Sinigaglia, M. (2003) Modeling the yeast Growth-Cycle in a model wine system. J. Food Sci., 68, 2080–2085.CrossRefGoogle Scholar
  20. Edwards, C.G., Reynolds, A.G., Rodríguez, A.V., Semon, M.J., & Mills, J.M. (1999) Implication of acetic acid in the induction of slow/stuck grape juice fermentation and inhibition of yeast by Lactobacillus sp. Am. J. Enol. Vitic., 50, 204–210.Google Scholar
  21. Fleet, G.H. (1993) The microorganisms of winemaking – isolation, enumeration and identification. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 1–25). Reading: Hrawood Academic.Google Scholar
  22. Fleet, G.H., & Heard, G.M. (1993) Yeast-growth during fermentation. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 27–54). Reading: Hrawood Academic.Google Scholar
  23. Gancedo, J.M. (1988) La regulation du metabolisme des sucres chez la levure. In P. Bidan & J.R. Bonneviale (Eds.), Application à l’œnologie des progrès récents en microbiologie et en fermentation (pp. 133–143). Paris: OIV.Google Scholar
  24. Gancedo, J.M. (1992) Carbon catabolite repression in yeast. Eur. J. Biochem., 206, 297–313.CrossRefGoogle Scholar
  25. Gao, Y.C., Zhang, G., Krentz, S., Darius, S., Power, J., & Lagarde, G. (2002) Inhibition of spoliage lactic acid bacteria by lysozyme during wine alcholic fermentation. Aust. J. Grape Wine Res., 8, 76–83.CrossRefGoogle Scholar
  26. Geneix, C., Lafon-Lafourcade, S., & Ribéreau-Gayon, P. (1983) Effet des acides gras sur la viabilité des populations de Saccharomyces cerevisiæ. C.R. Acad Sci., 296, 943–947.Google Scholar
  27. Gerland, C. (2000) Gestion de la flore bactérienne lactique: enjeu important pour l’élaboration des vins de qualité. Rev. Oenol., 96, 31–36.Google Scholar
  28. Heerde, E., & Radler, F. (1978) Metabolism of the anaerobic formation of succinic acid by Saccharomyces cerevisiae. Arch. Microbiol., 117, 269–276.CrossRefGoogle Scholar
  29. Heinisch, J.J., & Rodicio, R. (1996) Fructose-1,6 biphospohate aldolase, triose phosphate isomerase, glyceraldehide-3-phospkate deshidrogenases and phosphoglycerate mutase. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 119–140). Boca Raton: CRC Press.Google Scholar
  30. Hensche, P.A., & Jiranek, V. (1993) Yeast – metabolism of nitrogen compounds. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 77–164). Reading: HrawoodAcademic.Google Scholar
  31. Hernández-Orte, P., Cacho, J., & Ferreira, V. (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study, J. Agric. Food Chem., 50, 2891–2899.CrossRefGoogle Scholar
  32. Hernández-Orte, P., Ibarz, M.J., Cacho, J., & Ferreira, V. (2006) Addition of amino acids to grape juice of the Merlot variety: Effect on amino acid uptake and aroma generation during alcoholic fermentation. Food Chem., 98, 300–310.CrossRefGoogle Scholar
  33. Hohmann, S. (1996) Pyruvate decarboxylases. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 187–212). Boca Raton: CRC Press.Google Scholar
  34. Horecker, B.L. (2002) The Pentose Phosphate Pathway. J. Biol. Chem., 277, 47965–47971.CrossRefGoogle Scholar
  35. Ingledew, W.M., & Kunkee, R.E. (1985) Factors influencing sluggish fermentations of grape juice. Am. J. Enol. Vitic., 36, 65–76.Google Scholar
  36. Jiranek, V., Langridge, P., & Henschke, P.A. (1995) Regulation of hydrogen sulfite liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl. Environm. Microbiol., 61, 461–467.Google Scholar
  37. Jones, R.P., & Greenfield, P.F., (1987) Ethanol and the fluidity of the yeast plasma membrane. Yeast, 3, 223–232.CrossRefGoogle Scholar
  38. Kajiwara, S., Aritomi, T., Suga, K., Ohtaguchi, K., & Kobayashi, O. (2000) Overexpression of the OLE1 gene enhances ethanol fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 53, 568–574.CrossRefGoogle Scholar
  39. Kresge, N., Simoni, R.D., & Hill, R.L. (2005) Otto Fritz Meyerhof and the Elucidation of the Glycolytic Pathway. J. Biol. Chem., 280, 124–126.Google Scholar
  40. Kunkee, R.E. (1991). Relationship between nitrogen content of must and sluggish fermentation. In Proceedings of the International Symposium of Nitrogen in Grapes and Wine, 18–19 de Juny de 1991, Seattle, Washington (pp. 148–155). Davis CA: American Society of Enology and Viticulture.Google Scholar
  41. Lafon-Lafourcade, S. (1983). Wine and brandy. Biotechnology, In H.J. Rehm & G. Reed. (Eds.), Food and Feed Production with Microorganisms, Vol 5, (pp. 81–163). Weinheim: Verlag Chemie.Google Scholar
  42. Lafon-Lafourcade, S., & Peynaud, E. (1974) Sur l’action antibacterienne de l’anhidride sulfureux sous forme libre et sous forme combinée. Conn. Vigne Vin, 8, 187–203.Google Scholar
  43. Lafon-Lafourcade, S., Geneix, C., & Ribereau-Gayon, P. (1984). Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Appl. Environm. Microbiol., 47, 1246–1249.Google Scholar
  44. Lagunas, R. (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev., 16,229–242.Google Scholar
  45. Lagunas, R., & Gancedo, C. (1983) Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae. Eur. J. Biochem., 137, 479–483.CrossRefGoogle Scholar
  46. Lagunas, R., Dominguez, C., Busturia, A., & Sáez, M.J. (1982) Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems. J. Bacteriol., 152, 19–25Google Scholar
  47. Lambrechts, M.G., & Pretorius, S. (2000) Yeast and its importance to wine aroma – A Review. South Afric. J. Enol. Vitic., 21, 97–128.Google Scholar
  48. Laroche, C., Beney, L., Marechal, P.A., & Gervais, P. (2001) The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures. Appl. Microbiol. Biotechnol., 56, 249–254.CrossRefGoogle Scholar
  49. Larue, F., Lafon-Lafourcade, S., & Ribéreau-Gayon, P. (1982). Inhibition de Saccharomyces cerevisiae dans le moût de raisin. C.R. Acad. Sci., 294, 587–590.Google Scholar
  50. Los, D.A., & Murata, N. (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophy. Acta, 1666, 142–157.Google Scholar
  51. Manginot, C., Roustan, J.L., & Sablayrolles, J.M. (1998) Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of stationary phase. Enz. Micro. Technol., 23,511–517.CrossRefGoogle Scholar
  52. Meijer, M.M.C., Boonstra, J., Verkleij, A.J., & Verrips, C.T. (1998) Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J. Biol. Chem., 273, 24102–24107.CrossRefGoogle Scholar
  53. Moreno-Arribas, M.V., & Polo, M.C. (2005) Winemaking biochemistry and microbiology: current knowledge and future trends. Crit. Rev. Food Sci. Nutr., 45, 265–286.CrossRefGoogle Scholar
  54. Mortimer, R., & Polsinelli, M. (1999). On the origin of wine yeast. Res. Microbiol., 150, 199–204.CrossRefGoogle Scholar
  55. Nakagawa, Y., Sakumoto, N., Kaneko, Y., & Harashima, S. (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem. Biophys. Res. Comm., 291, 707–713.CrossRefGoogle Scholar
  56. Nes, D.W., Janssen, G.G., Crumley, F.G., Kalinowska, M., & Akihisa, T. (1993) The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Arch. Biochem. Bioph., 300, 724–733.CrossRefGoogle Scholar
  57. Neuberg, C. (1946). The Biochemistry of Yeast. Ann. Rev. Biochem., 15, 435–472.CrossRefGoogle Scholar
  58. Ough, C.S., (1964). Fermentation rates of juice.I. Effects of temperature and composition on white juice fermentation rates. Am. J. Enol. Vitic., 15, 167–177.Google Scholar
  59. Pasteur, L. (1861) Influence de l’oxygène sur le développement de la levûre et la fermentation alcoolique. Bulletin de la Société de Paris (Résumé de Séance du 28 juin 1861), 79–80.Google Scholar
  60. Peynaud, E., & Domercq, S. (1959) A review of microbiological problems in winemaking in France. Am. J. Enol. Vitic., 1, 69–77.Google Scholar
  61. Polakis, E.S., Bartley, W., & Meek, G.A. (1965) Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem. J., 97, 298–302.Google Scholar
  62. Pretorius, I.S. (2000) Tailoring wine yeast for the new millennium: novel approcaches to the ancient art of winemaking. Yeast, 16, 675–729.CrossRefGoogle Scholar
  63. Pretorius, I.S., Van der Westhuizen, T.J., & Augustyn, O.P.H. (1999) Yeast biodiversity in vineyards and wineries and its importante to the South African wine industry. S. Afr. J. Enol. Vitic., 20, 61–74.Google Scholar
  64. Prior, B.A., & Hohmann, S. (1996) Glycerol production and osmoregulation. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 313–338). Boca Raton: CRC Press.Google Scholar
  65. Quinn, A.J., & Chapman, D. (1980) The dynamics of membrane structure. CRC Crit. Rev. Biochem., 8, 1–117.CrossRefGoogle Scholar
  66. Racker, E. (1974) History of the Pasteur effect and its pathobiology. Mol. Cell. Biochem., 5, 17–23.CrossRefGoogle Scholar
  67. Ratledge, C., & Evans, C.T. (1989) Lipids and their metabolism. In A.H. Rose & J.S. Harrison (Eds.), The Yeasts (2nd ed.), Vol 3 (pp. 367–455). London: Academic Press.Google Scholar
  68. Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000a) Chemical nature, origins and consequences of the main organoleptic defects. In P. Ribéreau-Gayon (Ed.), Handbook of Enology, Vol 2, (pp. 209–253). Chichester: John Wiley & sons, Ltd.Google Scholar
  69. Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000b) Conditions of yeast development. In P. Ribéreau-Gayon (Ed.), Handbook of Enology, Vol 2, (pp. 75–107). Chichester: John Wiley & sons, Ltd.Google Scholar
  70. Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000c) Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In P. Ribéreau-Gayon (Ed.), Handbook of Enology, Vol 1, (pp. 51–74). Chichester: John Wiley & sons, Ltd.Google Scholar
  71. Rodríguez, S., Sánchez, A., Martínez, J.M., Prieto, J.A., & Randez, F. (2007) Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress. Appl. Environm. Microbiol., 73, 110–116.CrossRefGoogle Scholar
  72. Romano, P., & Suzzi, G. (1993) Sulfur dioxide and wine microorganisms. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 373–393). Reading: Harwood Academic.Google Scholar
  73. Rozès, N. (1992) Contribution à l’étude du métabolisme lipidique de Saccharomyces cerevisiæ. Application à la différenciation des levures de vin. Thèse de Doctorat de l’Université de Bordeaux II, Bordeaux, France.Google Scholar
  74. Sablayrolles, J.M., & Barre, P. (1986) Evaluation des besoins en oxygen de fermentations alcooliques en conditions oenologiques silées. Sci. Aliments, 6, 373–383.Google Scholar
  75. Sablayrolles, J.M., Dubois, C., Manginot, C., Roustan, J.L., & Barre, P. (1996). Efectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck fermentation. J. Fermen. Bioeng., 82, 377–381CrossRefGoogle Scholar
  76. Salmon, J.M., Vezinhet, F., & Barre, P. (1987) Anabolic role of L-malic acid in Saccharomyces cerevisiae in anaerobiosis during alcoholic fermentation. FEMS Microbiol. Lett., 42, 213–220.Google Scholar
  77. Sapis-Domerq, S. (1980) Étude de l’influence des produits de traitement de la vigne sur la microflore des raisins et des vins. Conn. Vigne Vin, 14, 155–181.Google Scholar
  78. Schaaf-Gersteenschaläger, I., & Miosga, T. (1996) The pentose phosphate pathway. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 271–284). Boca Raton: CRC Press.Google Scholar
  79. Taylor, W.H. (1957) Formol Titration: An evaluation of its various modifications. Analyst, 82, 488–498.CrossRefGoogle Scholar
  80. Thurston, P.A., Taylor, R., & Ahvenainen, J. (1981). Effects of linoleic acid supplements on the synthesis by yeast of lipids and acetate esters. J. Inst. Brew., 87, 92–95.Google Scholar
  81. Torrija, M.J., Beltrán, G., Novo, M.T., Poblet, M., Guillamón, J.M., Mas, A., & Rozès, N. (2003) Effect of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol., 85, 127–136.CrossRefGoogle Scholar
  82. Weber, F.J., & Bont, J.A.M., (1996) Adaptation mechanisms of microrganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta, 1286, 225–245.Google Scholar
  83. Zamora, F. (2004) Las paradas de fermentación. Enólogos, 29, 28–32.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fernando Zamora
    • 1
  1. 1.Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de TarragonaUniversitat Rovira i VirgiliSpain

Personalised recommendations