Advertisement

Background

  • Eric Setton
  • Bernd Girod

Abstract

The purpose of the work presented in this book is to analyze and improve the performance of video streaming systems operating in bandwidth-constrained networks. In particular, we consider low-latency applications where a source is serving a single receiver or where video is multicast to a population of peers. Our work builds upon recent advances which have focused on providing better compression efficiency, on increasing the robustness of video streaming systems, and on building efficient multicast architectures or peer-to-peer systems. In the following, we present an overview of the state-of-the-art in these areas.

Keywords

Video Code Video Streaming Forward Error Correction Multicast Tree Error Concealment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Peer-to-peer in 2005,” Online report, available at http://www.cachelogic.com/research/2005_slide07.php, seen on Apr.2nd 2006.
  2. 2.
    Advanced Video Coding for Generic Audiovisual services, ITU-T Recommendation H.264 - ISO/IEC 14496-10(AVC), ITU-T and ISO/IEC JTC 1, 2003.Google Scholar
  3. 3.
    ITU-T, Video Codec for Audiovisual Services at px64 kbit/s, ITU-T Recommendation H.261, Version 1: Nov. 1990; Version 2: Mar. 1993.Google Scholar
  4. 4.
    ISO/IEC JTC 1, ”Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s Part 2: Video,” ISO/IEC 11172-2 (MPEG-1), Mar. 1993.Google Scholar
  5. 5.
    ITU-T and ISO/IEC JTC 1, Generic coding of moving pictures and associated audio information Part 2: Video, ITU-T Recommendation H.262 ISO/IEC 13818-2 (MPEG-2), Nov. 1994.Google Scholar
  6. 6.
    ITU-T, Video coding for low bit rate communication, ITUT Recommendation H.263; version 1, Nov. 1995; version 2, Jan. 1998; version 3, Nov. 2000.Google Scholar
  7. 7.
    ISO/IEC JTC1, Coding of audio-visual objects Part 2: Visual, ISO/IEC 14496-2 (MPEG-4 visual version 1), April 1999; Amendment 1 (version 2), February, 2000; Amendment 4 (streaming profile), January, 2001.Google Scholar
  8. 8.
    Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and Communications. Prentice Hall, New Jersey, 2001.Google Scholar
  9. 9.
    A. Luthra, G. Sullivan, and T. Wiegand (Eds.), “Special Issue on the H.264/AVC Video Coding Standard,” IEEE Circuits and Systems Magazine, vol. 13, no. 7, Jul. 2003.Google Scholar
  10. 10.
    J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video Coding with H.264/AVC: Tools, Performance, and Complexity,” IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp. 7–28, Jan. 2004.CrossRefGoogle Scholar
  11. 11.
    B. Erol, A. Dumitras, F. Kossentini, A. Joch, and G. Sullivan, MPEG-4, H.264/AVC, and MPEG-7: New Standards for the Digital Video Industry, in Handbook of image and video processing, 2nd Ed.Academic Press, 2005.Google Scholar
  12. 12.
    S. Srinivasan, P. Hsu, T. Holcomb, K. Mukerjee, S. Regunathan, B. Lin, J. Liang, M.-C. Lee, and J. Ribas-Corbera, “Windows Media Video 9: Overview and Applications,” Signal Processing: Image Communications, vol. 19, no. 9, pp. 851–875, Oct. 2004.Google Scholar
  13. 13.
    G. Srinivasan and S. Regunathan, “An overvriew of VC-1,” Proc. of SPIE, Visual Communications and Image Processing, Beijing, China, vol. 5960, pp. 720–728, Jul. 2005.Google Scholar
  14. 14.
    L. Yu, F. Yi, J. Dong, and C. Zhang, “Overview of AVS-video: Tools, Performance and Complexity,” Proc. of SPIE, Visual Communications and Image Processing, Beijing, China, vol. 5960, pp. 679–689, Jul. 2005.Google Scholar
  15. 15.
    T. Wedi and H. Musmann, “Motion- and Aliasing-Compensated Prediction for Hybrid Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 577–586, Jul. 2003.CrossRefGoogle Scholar
  16. 16.
    D. Marpe, H. Schwarz, and T. Wiegand, “Context-Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636, Jul. 2003.CrossRefGoogle Scholar
  17. 17.
    “H.264/AVC Reference Software,” http://iphome.hhi.de/suehring/tml/download/, seen on Aug. 28 2005.
  18. 18.
    G. Sullivan and T. Wiegand, “Video Compression - From Concepts to the H.264/AVC Standard,” Proc. of the IEEE, Special Issue on Advances in Video Coding and Delivery, vol. 93, no. 1, pp. 18–31, Jan. 2005.Google Scholar
  19. 19.
    G. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions,” SPIE Annual Conference on Applications of Digital Image Processing XXVII, Special Session on Advances in the New Emerging Standard H.264/AVC, pp. 454–474, Aug. 2004.Google Scholar
  20. 20.
    H. Schwarz, D. Marpe, and T. Wiegand, “MCTF and Scalability Extension of H.264/AVC,” Proc. Picture Coding Symposium (PCS 2004), San Francisco, CA, USA, Dec. 2004.Google Scholar
  21. 21.
    H. Schwarz, “SNR-Scalable Extension of H.264/AVC,” Proc. IEEE Int. Conference on Image Processing (ICIP), Singapore, Oct. 2004.Google Scholar
  22. 22.
    B. Girod, “The E.ciency of Motion-Compensating Prediction for Hybrid Coding of Video Sequences,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 7, pp. 1140–1154, Aug. 1987.CrossRefGoogle Scholar
  23. 23.
    B. Girod, “Motion-Compensating Prediction with Fractional Pel Accuracy,” IEEE Transactions on Communications, vol. 41, pp. 604–612, Apr. 1993.CrossRefGoogle Scholar
  24. 24.
    B. Girod, “E.ciency Analysis of Multi-Hypothesis Motion-Compensated Prediction for Video Coding,” IEEE Trans. Image Processing, vol. 9, no. 2, pp. 173– 183, Feb. 2000.CrossRefGoogle Scholar
  25. 25.
    M. Flierl and B. Girod, “Multihypothesis Motion Estimation for Video Coding,” Proc. of the Data Compression Conference, Snowbird, USA, Mar. 2001.Google Scholar
  26. 26.
    M. Flierl, “Multihypothesis Motion-Compensated Prediction with Forward Adaptive Hypothesis Switching,” Proc. Picture Coding Symposium, Seoul, Korea, Apr. 2001.Google Scholar
  27. 27.
    M. H. Flierl, Video Coding with Superimposed Motion-Compensated Signals, Ph.D. Dissertation, University of Erlangen, 2003.Google Scholar
  28. 28.
    G. Cook, J. Prades-Nebot, and E. Delp, “Rate-Distortion Bounds for Motion- Compensated Rate Scalable Video Coders,” Proc. Int. Conference on Image Processing (ICIP), Singapore, pp. 3121–3124, Oct. 2004.Google Scholar
  29. 29.
    J. Prades-Nebot, G. Cook, and E. Delp, “Analysis of the E.ciency of SNRScalable Strategies for Motion Compensated Video Coders,” Proc. Int. Conference on Image Processing (ICIP), Singapore, pp. 3109–3112, Oct. 2004.Google Scholar
  30. 30.
    Z. He and S. Mitra, “A Uni.ed Rate-Distortion Analysis Framework for Transform Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 12, pp. 1221–1236, dec 2001.CrossRefGoogle Scholar
  31. 31.
    K. Stuhlmüller, N. Färber, M. Link, and B. Girod, “Analysis of Video Transmission over Lossy Channels,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 1012–32, June 2000.CrossRefGoogle Scholar
  32. 32.
    R. Zhang, S. Regunathan, and K. Rose, “End-to-end Distortion Estimation for RD-based Robust Delivery of Pre-compressed Video,” Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, Nov. 2001.Google Scholar
  33. 33.
    G. Cote, S. Shirani, and F. Kossentini, “Optimal Mode Selection And Synchronization For Robust Video Communication Over Error-Prone Networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 952– 956, Jun. 2000.CrossRefGoogle Scholar
  34. 34.
    Y. Eisenberg, F. Zhai, C. Luna, T. Pappas, R. Berry, and A. Katsaggelos, “Variance-Aware Distortion Estimation for Wireless Video Communications,” Proc. Int. Conference on Image Processing (ICIP), Barcelona, Spain, vol. 1, pp. 89–92, Sep. 2003.Google Scholar
  35. 35.
    Y. Liang, J. Apostolopoulos, and B. Girod, “Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter?” Proc. IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hong Kong, China.Google Scholar
  36. 36.
    J. Chakareski, J. Apostolopoulos, W. t. Tan, S. Wee, and B. Girod, “Distortion Chains for Predicting for Video Distortion for General Loss Patterns,” Proc. IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, Canada, May 2004.Google Scholar
  37. 37.
    W. Zhu, M.-T. Sun, L.-G. Chen, and T. Sikora (Eds.), “Special Issue on Advances in Video Coding and Delivery,” Proc. of the IEEE, vol. 93, no. 1, Jan. 2005.Google Scholar
  38. 38.
    W. Zeng, K. Nahrstedt, P. Chou, A. Ortega, P. Frossard, and H. Yu (Eds.), “Special issue on streaming media,” IEEE Transactions on Multimedia, vol. 6, no. 2, Apr. 2004.CrossRefGoogle Scholar
  39. 39.
    B. Girod, M. Kalman, Y. Liang, and R. Zhang, “Advances in Channel-adaptive Video Streaming,” Wireless Communications and Mobile Computing, vol. 6, no. 2, pp. 549–552, Sep. 2002.Google Scholar
  40. 40.
    M. Civanlar, A. Luthra, S. Wenger, and W. Zhu (Eds.), “Special Issue on Streaming Video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, Mar. 2001.CrossRefGoogle Scholar
  41. 41.
    J. Apostolopoulos and M. Conti (Eds.), “Special Issue on Multimedia over Broadband Wireless Networks,” IEEE Networks, vol. 20, no. 2, pp. 1721–1737, Mar. 2006.CrossRefGoogle Scholar
  42. 42.
    B. Girod, I. Lagenduk, Q. Zhang, and W. Zhu (Eds.), “Special Issue on Advances inWireless Video,” IEEE Wireless Communications, vol. 12, no. 4, Aug. 2005.CrossRefGoogle Scholar
  43. 43.
    R. Chandramouli, R. Shorey, P. Srimani, X. Wang, and H. Yu (Eds.), “Special Issue on Recent Advances in Wireless Multimedia,” Journal on Selected Areas in Communications, vol. 21, no. 10, pp. 1721–1737, Dec. 2003.CrossRefGoogle Scholar
  44. 44.
    Y. Wang and Q.-F. Zhu, “Error Control and Concealment for Video Communication: a Review,” Proc. of the IEEE, vol. 86, no. 5, pp. 974–997, May 1998.Google Scholar
  45. 45.
    Y. Wang, S. Wenger, J. Wen, and A. Katsaggelos, “Error Resilient Video Coding Techniques,” IEEE Signal Processing Magazine, vol. 17, no. 4, pp. 61–82, Jul. 2000.CrossRefGoogle Scholar
  46. 46.
    B. Girod and N. Färber, Wireless Video, in A. Reibman, M.-T. Sun (Eds.), Compressed Video over Networks,. Marcel Dekker, 1999.Google Scholar
  47. 47.
    S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 645–656, Jul. 2003.CrossRefGoogle Scholar
  48. 48.
    S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for Di.erentiated Services,” IETF RFC 2475, Dec. 1998.Google Scholar
  49. 49.
    R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSer- Vation Protocol (RSVP),” IETF RFC 2205, Sep. 1997.Google Scholar
  50. 50.
    G. Cote and F. Kossentini, “Optimal Intra Coding of Blocks for Robust Communication over the Internet,” Signal Processing: Image Communication, vol. 15, no. 1-2, pp. 25–34, Sep. 1999.CrossRefGoogle Scholar
  51. 51.
    R. Zhang, S. Regunathan, and K. Rose, “Video Coding with Optimal Inter/Intra-Mode Switching for Packet Loss Resilience,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 966–976, Jun. 2000.CrossRefGoogle Scholar
  52. 52.
    T. Stockhammer, M. Hannuksela, and T. Wiegand, “H.264/AVC in Wireless Environments,” IEEE Transactions on Circuits and Systems, vol. 13, no. 7, pp. 657–673, Jul. 2003.Google Scholar
  53. 53.
    S. Lin, S. Mao, and Y. Wang, “A Reference Picture Selection Scheme for Video Transmission over Ad Hoc Networks using Multiple Paths,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME), Tokyo, Japan, Aug. 2001.Google Scholar
  54. 54.
    Y. J. Liang, M. Flierl, and B. Girod, “Low Latency Video Transmission over Lossy Packet Networks using Rate-Distortion Optimized Reference Picture Selection,” Proc. Int. Conference on Image Processing (ICIP), Rochester, USA, pp. 181–184, Sep. 2002.Google Scholar
  55. 55.
    Y. Liang, E. Setton, and B. Girod, “Network-Adaptive Video Communication Using Packet Path Diversity and Rate-Distortion Optimized Reference Picture Selection,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 41, no. 3, Nov. 2005.Google Scholar
  56. 56.
    W. Tu and E. Steinbach, “Proxy-Based Reference Picture Selection for Real- Time Video Transmission Over Mobile Networks,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME), Amsterdam, The Netherlands, pp. 309–312, Jul. 2005.Google Scholar
  57. 57.
    E. Setton, Y. Liang, and B. Girod, “Adaptive Multiple Description Video Streaming over Multiple Channels with Active Probing,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME), Baltimore, USA, vol. 1, pp. 509–512, Jul. 2003.Google Scholar
  58. 58.
    Y. Liang and B. Girod, “Low-latency Streaming of Pre-Encoded Video Using Channel-Adaptive Bitstream Assembly,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME), Lausanne, Switzerland, pp. 873–876, Jul. 2002.Google Scholar
  59. 59.
    E. Setton, A. Shionozaki, and B. Girod, “Real-time Streaming of Prestored Multiple Description Video with Restart,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME), Taipe, Taiwan, vol. 2, pp. 1323–1326, jul 2004.Google Scholar
  60. 60.
    H.-K. Cheung, Y.-L. Chan, and W.-C. Siu, “Reference Picture Selection in an Already MPEG Encoded Bitstream,” Proc. IEEE Int. Conference on Image Processing (ICIP), Genoa, Italy, vol. 1, pp. 793–796, Sep. 2005.Google Scholar
  61. 61.
    A. Albanese, J. Blömer, J. Edmonds, M. Luby, and M. Sudan, “Priority Encoding Transmission,” IEEE Trans. Information Theory, vol. 42, pp. 1737–1744, Nov. 1996.MATHCrossRefGoogle Scholar
  62. 62.
    U. Horn, K. Stuhlmüller, M. Link, and B. Girod, “Robust Internet Video Transmission Based on Scalable Coding and Unequal Error Protection,” Signal Processing: Image Communication, vol. 15, no. 1-2, pp. 77–94, Sep. 1999.CrossRefGoogle Scholar
  63. 63.
    A. Mohr, E. Riskin, and R. Ladner, “Unequal Loss Protection: Graceful Degradation of Image Quality over Packet Erasure Channels through Forward Error Correction,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 819–829, Jun. 2000.CrossRefGoogle Scholar
  64. 64.
    W. Zhu, Q. Zhang, and Y.-Q. Zhang, “Network-Adaptive Rate Control with Unequal Loss Protection for Scalable Video over Internet,” Proc. Int. Symp. Circuits and Systems, Sydney, Australia, May 2001.Google Scholar
  65. 65.
    R. Puri and K. Ramchandran, “Multiple Description Source Coding through Forward Error Correction Codes,” Proc. IEEE Asilomar Conf. Signals, Systems, and Computers, Asilomar, USA, vol. 1, pp. 342–246, Oct. 1999.Google Scholar
  66. 66.
    D. Turner and K. Ross, “Optimal Streaming of Layered-Encoded Multimedia Presentations,” Proc. IEEE Int. Conf. on Multimedia and Expo (ICME), New York, USA, Jul. 2000.Google Scholar
  67. 67.
    T. Tian, A. Li, J. Wen, and J. Villasenor, “Prority Dropping in Network Transmission of Scalable Video,” Proc. IEEE Int. Conf. on Image Processing (ICIP), Vancouver, Canada, vol. 3, pp. 400–403, Oct. 2000.Google Scholar
  68. 68.
    S. Dumitrescu, Z. Wang, and X. Wu, “Globally Optimal Uneven Error- Protected Packetization of Scalable Code Streams,” Proc. of the Data Compression Conference, Snowbird, USA, pp. 73–82, Sep. 2002.Google Scholar
  69. 69.
    J. Boyce, “Packet Loss Resilient Transmission of MPEG Video over the Internet,” Signal Processing: Image Communication, vol. 15, no. 1-2, pp. 7–24, Sep. 1999.CrossRefGoogle Scholar
  70. 70.
    M. Hannuksela, Y.-K. Wang, and M. Gabbouj, “Isolated Regions in Video Coding,” IEEE Trans. on Multimedia, vol. 6, no. 2, pp. 259–267, Apr. 2004.CrossRefGoogle Scholar
  71. 71.
    P. Baccichet, S. Rane, A. Chimienti, and B. Girod, “Robust Low-Delay Video Transmission using H.264/AVC Redundant Slices and Flexible Macroblock Ordering,” Proc. IEEE Int. Conference on Image Processing (ICIP), to appear, Oct. 2007.Google Scholar
  72. 72.
    S. Wicker, Error Control Systems for Digital Communication and Storage. Prentice Hall, 1995.Google Scholar
  73. 73.
    B. Dempsey, J. Liebeherr, and A. Weaver, “On Retransmission-Based Error Control for Continuous Media Tra.c in Packet-Switching Networks,” Computer Networks and ISDN Systems Journal, vol. 28, no. 5, pp. 719–736, Mar. 1996.CrossRefGoogle Scholar
  74. 74.
    C. Papadopoulos and G. Parulkar, “Retransmission-Based Error Control for Continuous Media Applications,” Proceedings of the Sixth International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV), Zushi, Japan, pp. 5–12, Jul. 1996.Google Scholar
  75. 75.
    M. Podolsky, S. McCanne, and M. Vetterli, “Soft ARQ for Layered Streaming Media,” Tech. Rep. UCB/CSD-98-1024, University of California, Computer Science Division, Berkeley, Nov. 1998.Google Scholar
  76. 76.
    Z. Miao and A. Ortega, “Optimal Scheduling for Streaming of Scalable Media,” Proc. IEEE Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, USA, vol. 2, pp. 1357–1362, Nov. 2000.Google Scholar
  77. 77.
    P. Chou and Z. Miao, “Rate-Distortion Optimized Streaming of Packetized Media,” Microsoft Research Technical Report MSR-TR-2001-35, Feb. 2001.Google Scholar
  78. 78.
    P. Chou, “Rate-Distortion Optimized Streaming of Packetized Media,” IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 390–404, Apr. 2006.CrossRefGoogle Scholar
  79. 79.
    M. Kalman, P. Ramanathan, and B. Girod, “Rate-Distortion Optimized Streaming with Multiple Deadlines,” Proc. Int. Conference on Image Processing (ICIP), Barcelona, Spain, vol. 5, pp. 3145–3148, Sep. 2003.Google Scholar
  80. 80.
    J. Chakareski, P. Chou, and B. Girod, “Rate-Distortion Optimized Streaming from the Edge of the Network,” Proc. IEEE Fifth Workshop on Multimedia Signal Processing (MMSP), St. Thomas, Virgin Islands, Dec. 2002.Google Scholar
  81. 81.
    J. Chakareski and B. Girod, “Rate-distortion Optimized Media Streaming with Rich Requests,” Proc. Packet Video Workshop, Irvine, USA, Dec. 2004.Google Scholar
  82. 82.
    M. Röder, J. Cardinal, and R. Hamzaoui, “On the Complexity of Rate- Distortion Optimal Streaming of Packetized Media,” Proc. Data Compression Conference, Snowbird, USA, Mar. 2004.Google Scholar
  83. 83.
    S. Wee,W. Tan, J. Apostolopoulos, and M. Etoh, “Optimized Video Streaming for Networks with Varying Delay,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME), Lausanne, Switzerland, Aug. 2002.Google Scholar
  84. 84.
    J. Chakareski, J. Apostolopoulos, S. Wee, W. Tan, and B. Girod, “Rate- Distortion Hint Tracks for Adaptive Video Streaming,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 10, pp. 12571269, Oct. 2005.CrossRefGoogle Scholar
  85. 85.
    M. Kalman and B. Girod, “Rate-Distortion Optimized Video Streaming with Multiple Deadlines for Low Latency Applications,” Proc. Packet Video Workshop, Irvine, USA, Dec. 2004.Google Scholar
  86. 86.
    M. Kalman, “Rate-distortion Optimized Video Streaming Using Conditional Packet Delay Distributions,” Proc. IEEE Int. Workshop on Multimedia Signal Processing (MMSP), Siena, Italy, Sep. 2004.Google Scholar
  87. 87.
    J. Chakareski and B. Girod, “Rate-Distortion Optimized Packet Scheduling and Routing for Media Streaming with Path Diversity,” Proc. IEEE Data Compression Conference, Snowbird, USA, Apr. 2003.Google Scholar
  88. 88.
    R. Thoma and M. Bierling, “Motion Compensated Interpolation Considering Covered and Uncovered Background,” Signal Processing: Image Communication, vol. 1, no. 2, pp. 192–212, Oct. 1989.CrossRefGoogle Scholar
  89. 89.
    J. K. Su and R. Mersereau, “Motion-Compensated Interpolation of Untransmitted Frames in Compressed Video,” Proc. 30th Asilomar Conf. on Signals Systems and Computers, Asilomar, USA, pp. 100–104, Nov. 1996.Google Scholar
  90. 90.
    P. Csillag and L. Boroczky, “Enhancement of Video Data using Motion- Compensated Postprocessing Techniques,” Proc. Int. Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, vol. 4, pp. 2897–2900, Apr. 1997.Google Scholar
  91. 91.
    E. Quacchio, E. Magli, G. Olmo, P. Baccichet, and A. Chimienti, “Enhancing Whole-Frame Error Concealment with an Intra Motion Vector Estimator in H.264/AVC,” Proc. Int. Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, pp. 329–332, Mar. 2005.Google Scholar
  92. 92.
    G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, and Y. Reznik, “Video Coding for Streaming Media Delivery on the Internet,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 269–281, Mar. 2001.CrossRefGoogle Scholar
  93. 93.
    M. Allman, V. Paxson, and W. R. Stevens, “TCP Congestion Control,” RFC 2581, Apr. 1999.Google Scholar
  94. 94.
    M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP Friendly Rate Control (TFRC): Protocol Speci.cation,” RFC 3448, Jan. 2003.Google Scholar
  95. 95.
    D. Bansal and H. Balakrishnan, “Binomial Congestion Control,” Proc. IEEE INFOCOM, Anchorage, USA, Apr. 2001.Google Scholar
  96. 96.
    H. Balakrishnan and R. Katz, “Explicit Loss Noti.cation and Wireless Web Performance,” Proc. Globecom, Sydney, Australia, Nov. 1998.Google Scholar
  97. 97.
    M. Sharma, D. Katabi, R. Pan, and B. Prabhakar, “A General Multiplexed ECN Channel and its use for Wireless Loss Noti.cation,” Proc. ACM SIGCOMM, Karlsruhe, Germany, Aug. 2003.Google Scholar
  98. 98.
    A. Markopoulou, E. Setton, M. Kalman, and J. Apostolopoulos, “Wise Video: Improving Rate-controlled Video Streaming Using in-band Wireless Loss Noti .cation,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME), Taipei, Taiwan, Jul. 2004.Google Scholar
  99. 99.
    M. Chen and A. Zakhor, “Rate Control for Streaming Video over Wireless,” Proc. Infocom, Hong-Kong, China, Mar. 2004.Google Scholar
  100. 100.
    H. Kanakia, P. Mishra, and A. Reibman, “An Adaptive Congestion Control Scheme for Real Time Packet Video Transport,” IEEE/ACM Transactions on Networking, vol. 3, no. 6, pp. 671–682, Dec. 1995.CrossRefGoogle Scholar
  101. 101.
    J. Webb and K. Oehler, “A Simple Rate-Distortion Model, Parameter Estimation, and Application to Real-Time Rate Control for DCT-Based Coders,” Proc. Int. Conference on Image Processing (ICIP), Santa Barbara, USA, vol. 2, pp. 13–16, oct 1997.Google Scholar
  102. 102.
    K. H. Yang, A. Jacquin, and N. Jayant, “A Normalized Rate-Distortion Model for H.263-Compatible Codecs and its Application to Quantizer Selection,” Proc. Int. Conference on Image Processing, Santa Barbara, USA, vol. 2, pp. 41–44, oct 1997.CrossRefGoogle Scholar
  103. 103.
    L.-J. Lin and A. Ortega, “Bit-Rate Control using Piecewise Approximated Rate-Distortion Characteristics,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 446–459, aug 1998.CrossRefGoogle Scholar
  104. 104.
    J. Ribas-Corbera and S. Lei, “Rate Control in DCT Video Coding for Low- Delay Communications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 1, pp. 172–185, feb 1999.CrossRefGoogle Scholar
  105. 105.
    Z. Li, F. Pan, K. Lim, X. Lin, and S. Rahardja, “Adaptive Rate Control for H.264,” Proc. IEEE Int. Conference on Image Processing (IEEE), Singapore, pp. 745–748, Oct. 2004.Google Scholar
  106. 106.
    K. Lee, R. Puri, T. Kim, K. Ramchandran, and V. Bharghavan, “An Integrated Source Coding and Congestion Control Framework for Video Streaming in the Internet,” Proc. of the IEEE INFOCOM, Tel Aviv, Israel, Mar. 2000.Google Scholar
  107. 107.
    N. Feamster, D. Bansal, and H. Balakrishnan, “On the Interactions Between Layered Quality Adaptation and Congestion Control for Video Streaming,” Proc. 11th Int. Packet Video Workshop, Kyongju, Korea, May 2001.Google Scholar
  108. 108.
    T. Schierl and T. Wiegand, “H.264/AVC Rate Adaption for Internet Streaming,” Proc. Int. Packet Video Workshop, Irvine, USA, Dec. 2004.Google Scholar
  109. 109.
    T. Nguyen and J. Ostermann, “Streaming and Congestion Control using Scalable Video Coding Based on H.264/AVC,” Proc. 15th Int. Packet Video Workshop, Hangzhou, China, pp. 749–754, Apr. 2006.Google Scholar
  110. 110.
    I. Ahmad, X.Wei, Y. Sun, and Y.-Q. Zhang, “Video Transcoding: an Overview of Various Techniques and Research Issues,” IEEE Transactions on Multimedia, vol. 7, no. 5, pp. 793–804, Oct. 2005.CrossRefGoogle Scholar
  111. 111.
    W. Tan and G. Cheung, “SP-Frame Selection for Video Streaming over Burstloss Networks,” Proc. IEEE Int. Symposium on Multimedia, Irvine, USA, Dec. 2005.Google Scholar
  112. 112.
    J. Chakareski and B. Girod, “Rate-Distortion Optimized Video Streaming Over Internet Packet Traces,” Proc. IEEE Int. Conference on Image Processing (ICIP), Genoa, Italy, vol. 2, pp. 161–164, Sep. 2005.Google Scholar
  113. 113.
    T. Stockhammer, M. Walter, and G. Liebl, “Optimized H. 264-Based Bitstream Switching for Wireless Video Streaming,” Proc. IEEE Int. Conference on Multimedia and Expo, Amsterdam, Netherlands, pp. 1396–1399, Jul. 2005.Google Scholar
  114. 114.
    D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris, “The Case for Resilient Overlay Networks,” Proc. of the 8th Annual Workshop on Hot Topics in Operating Systems, Elmau, Germany, May 2001.Google Scholar
  115. 115.
    J. G. Apostolopoulos, “Reliable Video Communication over Lossy Packet Networks using Multiple State Encoding and Path Diversity,” Proc. of SPIE Conference on Visial Communicatins and Image Processing (VCIP), San Jose, USA, pp. 392–409, Jan. 2001.Google Scholar
  116. 116.
    V. Goyal, “Multiple Description Coding: Compression Meets the Network,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 74–93, Sep. 2001.CrossRefGoogle Scholar
  117. 117.
    Y. Wang, S. Panwar, S. Lin, and S. Mao, “Wireless Video Transport using Path Diversity: Multiple Description vs. Layered Coding,” Proc. IEEE Int. Conference on Image Processing (ICIP), Rochester, USA, pp. 21–24, Sep. 2002.Google Scholar
  118. 118.
    A. Majumdar, R. Puri, and K. Ramchandran, “Distributed Multimedia Transmission from Multiple Servers,” Proc. IEEE Int. Conference on Image Processing (ICIP), Rochester, USA, pp. 177–180, Sep. 2002.Google Scholar
  119. 119.
    S. Mao, S. Lin, S. Panwar, Y. Wang, and E. Celebi, “Video Transport over Ad Hoc Networks: Multistream Coding with Multipath Transport,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 10, pp. 1721–1737, Dec. 2003.CrossRefGoogle Scholar
  120. 120.
    A. Begen, Y. Altunbasak, O. Ergun, and M. Ammar, “Multipath Selection for Multiple Description Video Streaming over Overlay Networks,” Signal Processing: Image Communcation, vol. 20, no. 1, pp. 39–60, Jan. 2005.CrossRefGoogle Scholar
  121. 121.
    J. Apostolopoulos, “Error Resilient Video Compression via Multiple State Streams,” Proc. Int. Workshop on Very Low Bitrate Video Coding (VLBV’99), Kyoto, Japan, pp. 168–171, Oct. 1999.Google Scholar
  122. 122.
    S. Ekmekci and T. Sikora, “Unbalanced Quantized Multi-State Video Coding: Potentials,” IEEE Picture Coding Symposium, San Francisco, USA, Dec. 2004.Google Scholar
  123. 123.
    V. Goyal and J. Kovacevic, “Generalized Multiple Description Coding with Correlated Transforms,” IEEE Transactions on Information Theory, vol. 47, no. 6, pp. 2199–2224, Sep. 2001.MATHCrossRefMathSciNetGoogle Scholar
  124. 124.
    I. Bajic and J. Woods, “Domain-based Multiple Description Coding of Images and Video,” Proc. of SPIE Conference on Visial Communicatins and Image Processing (VCIP), San Jose, USA, pp. 124–135, Jan. 2002.Google Scholar
  125. 125.
    S. Lin and Y. Wang, “Analysis and Improvement of Multiple Description Motion Compensation Video Coding for Lossy Packet Networks,” Proc. IEEE Int. Conference on Image Processing (ICIP), Rochester, USA, pp. 185–188, Sep. 2002.Google Scholar
  126. 126.
    T. Petrisor, C. Tillier, B. Pesquet-Popescu, and J.-C. Pesquet, “Redundant Multiresolution Analysis for Multiple Description Video Coding,” Proc. of the IEEE Int. Workshop on Multimedia Signal Processing (MMSP), Siena, Italy, Sep. 2004.Google Scholar
  127. 127.
    I. Radulovic and P. Frossard, “Multiple Description Image Coding with Block-Coherent Redundant Dictionaries,” Proc. of Picture Coding Symposium, Hangzhou, China, Apr. 2006.Google Scholar
  128. 128.
    J. Chakareski and B. Girod, “Server Diversity in Rate-Distortion Optimized Media Streaming,” Proc. IEEE Int. Conference on Image Processing (ICIP), Barcelona, Spain, Sep. 2003.Google Scholar
  129. 129.
    J. Chakareski, E. Setton, Y. Liang, and B. Girod, “Video Streaming with Diversity,” Proc. IEEE Int. Conference on Multimedia and Expo, Baltimore, USA, vol. 1, pp. 9–12, Jul. 2003.Google Scholar
  130. 130.
    J. Chakareski, S. Han, and B. Girod, “Layered Coding vs.Multiple Descriptions for Video Streaming over Multiple Paths,” Multimedia Systems, Springer, online journal publication: Digital Object Identifier (DOI) 10.1007/s00530-004- 0162-3, Jan. 2005.Google Scholar
  131. 131.
    T. Nguyen and A. Zakhor, “Distributed Video Streaming over the Internet,” Proc. of SPIE Conference on Multimedia Computing and Networking, San Jose, USA, Jan. 2002.Google Scholar
  132. 132.
    D. Jurca and P. Frossard, “Media-Speci.c Rate Allocation in Multipath Networks,” Signal Processing Institute Technical Report - TR-ITS-2005.032, Mar. 2006.Google Scholar
  133. 133.
    T. Nguyen and A. Zakhor, “Distributed Video Streaming with Forward Error Correction,” Proc. of Packet Video Workshop, Pittsburg, USA, Apr. 2002.Google Scholar
  134. 134.
    T. Nguyen, “Path Diversity with Forward Error Correction (PDF) System for Packet Switched Networks,” Proc. INFOCOM, San Francisco, USA, vol. 3, pp. 663–672, Apr. 2003.Google Scholar
  135. 135.
    X. Zhu, E. Setton, and B. Girod, “Congestion-Distortion Optimized Video Transmission over Ad Hoc Networks,” Signal Processing: Image Communications, no. 20, pp. 773–783, Sep. 2005.Google Scholar
  136. 136.
    E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod, “Cross-Layer Design of Ad Hoc Networks for Real-Time Video Streaming,” Wireless Communications Magazine, vol. 12, no. 4, pp. 59–65, Aug. 2005.CrossRefGoogle Scholar
  137. 137.
    S. Mao, S. Lin, S. Panwar, and Y. Wang, “A Multipath Video Streaming Testbed for Ad Hoc Networks,” Proc. of the Fall IEEE Vehicular Technology Conference, Orlando, Florida, Oct. 2003.Google Scholar
  138. 138.
    W. Wei and A. Zakhor, “Multipath Unicast and Multicast Video Communication over Wireless Ad Hoc Networks,” Proc. of IEEE/ACM BroadNets, pp. 496–505, Oct. 2004.Google Scholar
  139. 139.
    S. Deering, “Multicast Routing in a Datagram Internetwork,” Ph.D. thesis, Stanford University, Dec. 1991.Google Scholar
  140. 140.
    X. Li, M. Ammar, and S. Paul, “Video Multicast over the Internet,” IEEE Networks, vol. 13, no. 2, pp. 46–60, Mar. 1999.CrossRefGoogle Scholar
  141. 141.
    J. Liu, B. Li, and Y.-Q. Zhang, “Adaptive Video Multicast over the Internet ,” IEEE Transactions on Multimedia, vol. 10, no. 1, pp. 22–33, Jan. 2003.CrossRefMathSciNetGoogle Scholar
  142. 142.
    S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-Driven Layered Multicast,” Proc. of ACM SIGCOMM, Stanford, USA, no. 117-130, Aug. 1996.Google Scholar
  143. 143.
    J. Apostolopoulos, W. Tan, and S.Wee, Video Streaming: Concepts, Algorithms and Systems, in Handbook of Video Databases. CRC Press, 2003.Google Scholar
  144. 144.
    R. Kermode, “Scoped Hybrid Automatic Repeat Request with Forward Error Correction,” Proc. of ACM SIGCOMM, Vancouver, Canada, no. 278-289, Sep. 1998.Google Scholar
  145. 145.
    L. Rizzo and L. Vicisano, “A Reliable Multicast Data Distribution Protocol Based on Software FEC Techniques,” Proc. of HPCS, Chalkidiki, Greece, Jun. 1997.Google Scholar
  146. 146.
    P. Chou, A. Mohr, A. Wang, and S. Mehrotra, “FEC and Pseudo-ARQ for Receiver-driven Layered Multicast of Audio and Video,” Proc. Data Compression Conference, Snowbird, USA, pp. 440–449, Mar. 1999.Google Scholar
  147. 147.
    W. Tan and A. Zakhor, “Video Multicast using Layered FEC and Scalable Compression,” IEEE Transactions on Circuits and Systems on Video Technology, vol. 11, no. 3, pp. 373–387, Mar. 2001.CrossRefGoogle Scholar
  148. 148.
    “Akamai,” http://www.akamai.com, seen on Oct. 5 2006.
  149. 149.
    “Limelight,” http://www.limelight.com, seen on Oct. 5 2006.
  150. 150.
    “VitalStream,” http://www.vitalstream.com, seen on Oct. 5 2006.
  151. 151.
    L. Kontothanassisy, R. Sitaramanz, J. Weinz, D. Hongz, R. Kleinberg, B. Mancusoz, D. Shawz, and D. Stodolsky, “A Transport Layer for Live Streaming in a Content Delivery Network,” Proc. of the IEEE, vol. 92, no. 9, pp. 1408–1419, Sep. 2004.CrossRefGoogle Scholar
  152. 152.
    L. Qiu, V. Padmanabhan, and G. Voelker, “On the Placement of Web Server Replicas,” Proc. INFOCOM, New York, USA, pp. 1587–1596, Dec. 2001.Google Scholar
  153. 153.
    T. P.-C. Chen and T. Chen, “Second-Generation Error Concealment for Video Transport over Error Prone Channels,” Proc. Int. Conference on Image Processing (ICIP), Rochester, USA, Sep. 2002.Google Scholar
  154. 154.
    J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On Multiple Description Streaming Media Content Delivery Networks,” Proc. INFOCOM, New York, USA, pp. 1736–1745, Jun. 2002.Google Scholar
  155. 155.
    M. Karlsson, C. Karamanolis, and M. Mahalingam, “A Framework for Evaluating Replica Placement Algorithms,” HPL Technical Report HPL-2002-219. available at http://www.hpl.hp.com/personal/Magnus_Karlsson/index.html.
  156. 156.
    S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, “Construction of an E.cient Overlay Multicast Infrastructure for Real-Time Applications,” Proc. INFOCOM, San Francisco, USA, Jun. 2003.Google Scholar
  157. 157.
    J. Jannotti, D. Gi.ord, K. Johnson, M. Kaashoek, and J. O. Jr., “Overcast: Reliable Multicasting with an Overlay Network,” USENIX Symposium on Operation Systems Design and Implementation, San Diego, USA, Oct. 2000.Google Scholar
  158. 158.
    Y. Chawathe, “Scattercast: an Adaptable Broadcast Distribution Framework,” Multimedia Systems, vol. 9, no. 1, pp. 104–118, Jul. 2003.CrossRefGoogle Scholar
  159. 159.
    D. Anderson and J. Kubiatowicz, “The Worldwide Computer,” Scientific American, vol. 286, no. 3, pp. 28–35, Mar. 2002.CrossRefGoogle Scholar
  160. 160.
    “Top Sourceforge Downloads,” http://sourceforge.net/top/.
  161. 161.
    “BitTorrent Protocol Speci.cation,” http://www.bittorrent.org/protocol.html, seen on Apr. 20 2007.
  162. 162.
    D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA-1),” RFC 3174, Sep. 2001.Google Scholar
  163. 163.
    S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of Peerto- Peer File Sharing Systems,” Proc. Multimedia Computing and Networking (MMCN’02), San Jose, CA, USA, Jan. 2002.Google Scholar
  164. 164.
    F. Bustamante and Y. Qiao, “Friendships that Last: Peer Lifespan and its Role in P2P Protocols,” Proc. Intl. Workshop on Web Content Caching and Distribution, Hawthorne, NY, USA, Oct. 2003.Google Scholar
  165. 165.
    J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent P2P Filesharing System: Measurements and Analysis,” 4th International Workshop on Peer-to-Peer Systems (IPTPS), Ithaca, NY, USA, Feb. 2005.Google Scholar
  166. 166.
    G. Neglia, G. Reina, H. Zhang, D. Towsley, A. Venkataramani, and J. Danaher, “Availability in BitTorrent Systems,” Proceedings of IEEE Infocom, Anchorage, AK, USA, May 2007.Google Scholar
  167. 167.
    K. Sripanidkulchai, “The Popularity of Gnutella Queries and Its Implications on Scalability,” Technical report, Carnegie Mellon University, Feb. 2001.Google Scholar
  168. 168.
    Y. Tian, D. Wu, and K.-W. Ng, “Modeling, Analysis and Improvement for Bittorrent-Like File Sharing Networks,,” Proc. IEEE INFOCOM, Barcelona, Spain, Apr. 2006.Google Scholar
  169. 169.
    J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran, “On the Role of Helpers in Peer-to-Peer File Download Systems: Design, Analysis and Simulation,” Proc. of the Sixth International Workshop on Peer-to-Peer Systems, Feb. 2007.Google Scholar
  170. 170.
    S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A Scalable Content-Addressable Network,” Proc. of ACM SIGCOMM, San Diego, USA, pp. 161–172, Aug. 2001.Google Scholar
  171. 171.
    I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications,” Proc. of ACM SIGCOMM, San Diego, USA, pp. 149–160, Aug. 2001.Google Scholar
  172. 172.
    J. Liebeherr, M. Nahas, and W. Si, “Application-layer Multicasting with Delaunay Triangulations Overlays,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp. 1472–1488, Oct. 2002.CrossRefGoogle Scholar
  173. 173.
    M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Proximity Neighbor Selection in Tree-Based Structured Peer-to-Peer Overlays,” Technical report MSRTR-2003-52. Google Scholar
  174. 174.
    K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao, “Distributed Object Location in a Dynamic Network ,” Theory of Computing Systems, no. 37, pp. 405–440, Mar. 2004.Google Scholar
  175. 175.
    P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based on the xor metric,” In Proceedings of IPTPS02, Cambridge, MA, USA, Mar. 2002.Google Scholar
  176. 176.
    M. Castro, M. Costa, and A. Rowstron, “Debunking Some Myths About Structured and Unstructured Overlays,” Proceedings of the 2nd Symposium on Networked Systems Design and Implementation, Boston, MA, USA, May 2005.Google Scholar
  177. 177.
    S. Sheu, K. Hua, andW. Tavanapong, “Chaining: a Generalized Batching Technique for Video-on-Demand Systems,” Proc. IEEE Int. Conference Multimedia Computing and Systems, Ottawa, Canada, pp. 110–117, Jun. 1997.Google Scholar
  178. 178.
    Y. Cui, B. Li, and K. Nahrstedt, “Layered Peer-to-Peer Streaming,” Proc. NOSSDAV’03, Monterey, USA, pp. 162–171, Jun. 2003.Google Scholar
  179. 179.
    Y. Cui, “oStream: Asynchronous Streaming Multicast in Application-Layer Overlay Networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 1, Jan. 2004.CrossRefGoogle Scholar
  180. 180.
    Z. Xiang, Q. Zhang, W. Zhu, Z. Zhang, and Y.-Q. Zhang, “Peer-to-Peer Based Multimedia Distribution Service,” IEEE Transactions on Multimedia, vol. 6, no. 2, pp. 343–355, Apr. 2004.CrossRefGoogle Scholar
  181. 181.
    X. Xu, Y. Wang, S. Panwar, and K. Ross, “A Peer-to-Peer Video-on-Demand System using Multiple Description Coding and Server Diversity,” Proc. IEEE Int. Conference on Image Processing (ICIP), Singapore, vol. 3, pp. 1759–1762, Oct. 2004.Google Scholar
  182. 182.
    Y. Chu, S. Rao, S. Seshan, and H. Zhang, “A Case for End System Multicast,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp. 1456–1471, Oct. 2002.CrossRefGoogle Scholar
  183. 183.
    S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application Layer Multicast,” Proc. ACM SIGCOMM, Pittsburgh, USA, pp. 205–217, Aug. 2002.Google Scholar
  184. 184.
    D. Tran, K. Hua, and T. Do, “ZIGZAG: An E.cient Peer-to-Peer Scheme for Media Streaming,” Proc. IEEE INFOCOM, San Francisco, USA, vol. 2, pp. 1283–1292, Mar. 2003.Google Scholar
  185. 185.
    Y. Chu, A. Ganjam, T. Ng, S. Rao, K. Sripanidkulchai, J. Zhan, and H. Zhang, “Early Experience with an Internet Broadcast System Based on Overlay Multicast,” Proc. USENIX Annual Technical Conference, Boston, MA, USA, pp. 1283–1292, Jun. 2004.Google Scholar
  186. 186.
    Y. Zhu, B. Li, and J. Guo, “Multicast with Network Coding in Application- Layer Overlay Networks,” IEEE Journal on Selected Areas in Communications, vol. 1, no. 22, pp. 107–120, Jan. 2004.CrossRefGoogle Scholar
  187. 187.
    X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet/CoolStreaming: A Datadriven Overlay Network for Live Media Streaming,” Proc. IEEE Infocom, Miami, USA, Feb. 2005.Google Scholar
  188. 188.
    M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang, “A Peer-to-Peer Network for Live Media Streaming using a Push-Pull Approach,” Proc. ACM Int. Conference on Multimedia, pp. 287–290, Nov. 2005.Google Scholar
  189. 189.
    M. Zhang, “Large-Scale Live Media Streaming over Peer-to-Peer Networks through Global Internet,” Proc. ACM Int. Conference on Multimedia, P2PMMS Workshop, pp. 21–28, Nov. 2005.Google Scholar
  190. 190.
    B. Ford, P. Sisuresh, and D. Kegel, “Peer-to-Peer Communication across Network Address Translators,” Proc. USENIX Annual Technical Conference, Anaheim, CA, USA, pp. 179–192, Apr. 2005.Google Scholar
  191. 191.
    A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig, “NATBLASTER: Establishing TCP Connections Between Hosts behind NATs,” Proc. ACM SIGCOMM, Asia Workshop, Beijing, China, Apr. 2005.Google Scholar
  192. 192.
    J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple Traversal of User Datagram Protocol (UDP) through Network Address Translators (NATs), RFC 3489,” Mar. 2003.Google Scholar
  193. 193.
    J. Rosenberg, C. Huitema, and R. Mahy, “Traversal using Relay NAT (TURN), Internet Draft,” Oct. 2003.Google Scholar
  194. 194.
    J. Rosenberg, “Interactive Connectivity Establishment (ICE): a Methodology for Network Address Translator (NAT) Traversal for Multimedia Session Establishment Protocols, Internet Draft,” Feb. 2004.Google Scholar
  195. 195.
    M. Bansal and A. Zakhor, “Path Diversity for Overlay Multicast Streaming,” Proc. Packet Video Worshop, Irvine, CA, USA, Dec. 2004.Google Scholar
  196. 196.
    V. Padmanabhan, H. Wang, and P. Chou, “Resilient Peer-to-Peer Streaming,” IEEE Int. Conference on Network Protocols, Atlanta, USA, Nov. 2003.Google Scholar
  197. 197.
    V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distributing Streaming Media Content Using Cooperative Networking,” Proc. NOSSDAV’ 02, Miami, USA, May 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Streaming Media Systems GroupHewelett-Packard LaboratoriesPalo AltoUSA
  2. 2.Department of Electrical EngineeringInformation Systems LaboratoryStanfordUSA

Personalised recommendations