Advertisement

Vegetables II pp 327-357 | Cite as

Carrot

  • Philipp W. Simon
  • Roger E. Freeman
  • Jairo V. Vieira
  • Leonardo S. Boiteux
  • Mathilde Briard
  • Thomas Nothnagel
  • Barbara Michalik
  • Young-Seok Kwon
Part of the Handbook of Plant Breeding book series (HBPB, volume 2)

Carrot is among the top-ten most economically important vegetable crops in the world, in terms of both area of production and market value (http://faostat.fao.org/faostat/; Rubatzky et al., 1999; Simon, 2000; Fontes and Vilela, 2003; Vilela, 2004). In 2005, world production approached 24 Mt on 1.1 million hectares. The total global market value of the more widely traded carrot seed crop has been estimated to be in the range of $100 million (Simon, 2000), but such estimates have little reliable data to confirm them and true value is likely much more. The development of cultivars adapted for cultivation in both summer and winter seasons on all continents has allowed a year-round availability of carrot products with relatively stable prices to consumers. Some production areas harvest crops year-round.

Keywords

Cytoplasmic Male Sterility Carrot Root Cavity Spot Wild Carrot Root Colour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamus, A., and Michalik, B. 2003. Anther cultures of carrot (Daucus carota L.). Folia Hort. 15:49-58.Google Scholar
  2. Adamus, A., A. Kielkowska, and Michalik, B. 2004. Carrot haploid production through induced parthenogenesis. In: Genetic variation for plant breeding. J. Vollmann, H. Grausgruber, and P. Ruckenbauer (eds.), BOKU, Vienna. pp. 451-454.Google Scholar
  3. Andersen, S.B., I. Christiansen, and Farestveit, B. 1990. Carrot (Daucus carota L.): In vitro production of haploids and field trials. In: Biotechnology in agriculture and forestry, v. 12. Haploids in crop improvement I. Y.P.S. Bajaj (ed.), Springer-Verlag, Berlin. p. 393-402.Google Scholar
  4. Bach, I.C., A. Olesen, and Simon, P.W. 2002. PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353-365.Google Scholar
  5. Banga, O. 1957a. Origin of the European cultivated carrot. Euphytica 6:54-63.Google Scholar
  6. Banga, O. 1957b. The development of the original European carrot material. Euphytica 6:64-76.Google Scholar
  7. Banga, O. 1963. Main types of the western carotene carrot and their origin. W.E.J. Tjeenk Willink, Zwolle, The Netherlands.Google Scholar
  8. Banga, O., J.L. Petiet, and van Bennekom, J.L. 1964. Genetical analysis of male-sterility in carrots. Euphytica 17:75-93.Google Scholar
  9. Baranska, M., H. Schulz, R. Baranski, T. Nothnagel, and Christensen, L.P. 2005. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J. Agri. Food Chem. 53:6565-6571.Google Scholar
  10. Baranska, M., R. Baranski, H. Schulz, and Nothnagel, T. 2006. Tissue specific accumulation of carotenoids in carrot roots. Planta 224:1028-1037.PubMedGoogle Scholar
  11. Baranski, R., E. Klocke, and Schumann, G. 2006. Green fluorescent protein as an efficient selection marker for Agrobacterium rhizogenes mediated carrot transformation. Plant Cell Rep. 25:190-197.PubMedGoogle Scholar
  12. Boiteux, L.S., P.T. DellaVecchia, and Reifschneider, F.J.B. 1993. Heritability estimate for resistance to Alternaria dauci in carrot. Plant Breed. 110:165-167.Google Scholar
  13. Boiteux, L.S., J.G. Belter, P.A. Roberts, and Simon, P.W. 2000. RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor. Appl. Genet. 100:439-446.Google Scholar
  14. BoiteuxL.S., J.R. Hyman, I.C. Bach, M.E.N. Fonseca, W.C. Matthews, P.A. Roberts, and Simon, P.W. 2004. Employment of flanking codominant STS markers to estimate allelic substitution effects of a nematode resistance locus in carrot. Euphytica 136:37-44.Google Scholar
  15. Bonnet, A. 1983. Source of resistance to powdery mildew for breeding cultivated carrots. Agronomie 3:33-37.Google Scholar
  16. Borthwick, H.A., M. Phillips, and Robbins, W.W. 1931. Floral development in Daucus carota. Amer. J. Bot. 18:784-786.Google Scholar
  17. Borthwick, H.A., and Emsweller, S.L. 1933. Carrot breeding experiments. Proc. Amer. Soc. Hort. Sci. 30:531-533.Google Scholar
  18. Bradeen J.M., B.S. Vivek, and Simon, P.W. 1997. Detailed genetic mapping of the Y2 carotenoid locus in carrot. J. Appl. Genet. 38A:28-32.Google Scholar
  19. Bradeen, J.M., and Simon, P.W. 1998. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant PCR-based marker form. Theor. Appl. Genet. 97:960-967.Google Scholar
  20. Bradeen, J.M., I.C. Bach, M. Briard, V. le Clerc, D. Grzbeleus, D.A. Senalik, and Simon, P.W. 2002. Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured composition. J. Amer. Soc. Hort. Sci. 127:383-391.Google Scholar
  21. Bradeen, J.M., and Simon, P.W. 2007. Carrot. In: Genome Mapping and Molecular Breeding. Vol. 5: Vegetables. Kole C (ed). Springer, Heidelberg, Berlin, New York, Tokyo.Google Scholar
  22. Breton, D., C. Béasse, F. Montfort and Villeneuve, F. 2003. Focus on the recent evolution of soil-borne diseases of carrot in France. Proc. 30th Intl. Carrot Conf. Sept 7-10, 2003, USA.Google Scholar
  23. Buishand, J.G., and Gabelman, W.H. 1979. Investigations on the inheritance of colour and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica 28:611-632.Google Scholar
  24. Buttery, R.G., R.M. Seifert, D.G. Guadagni, D.R. Black, and Ling, L.C. 1968. Characterization of some volatile constituents of carrots. J. Agric. Food Chem. 16:1009-1015.Google Scholar
  25. Costa, C.P., H. Ikuta, L.R. Baker, and Silva, N. 1974. Resistência de campo em cenoura (Daucus carota L.) a Alternaria dauci (Kuhn) Groves & Skolko, Relatório Cient. Institut.Genét. ESALQ 8:58-60.Google Scholar
  26. Dudits, D., G. Hadlaczky, G.Y. Bajszar, C.S. Koncz, G. Lazar, and Horvath, G. 1979. Plant regeneration from intergeneric cell hybrids. Plant Sci. Lett. 15:101-112.Google Scholar
  27. Ellis, P.R., and Hardman, J.A. 1981, The consistency of the resistance to carrot fly attack at several centers in Europe, Ann. Appl. Biol. 98:491-497.Google Scholar
  28. Ellis, P.R., P.L. Saw, and Crowther, T.C. 1991. Development of carrot inbreds with resistance to carrot fly using a single seed descent programme. Ann. Appl. Biol. 119:349-357.Google Scholar
  29. Fontes, R.R., and Vilela, N.J. 2003. The current status of Brazilian crops and future opportunities. Acta Hort. 607:135-141.Google Scholar
  30. Freeman, R.E., and Simon, P.W. 1983. Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J. Amer. Soc. Hort. Sci. 108:50-54.Google Scholar
  31. Gabelman, W.H., I.L. Goldman, and Breitbach, D.W. 1994. Evaluation and selection for resistance to aster yellows in carrot (Daucus carota L.). J. Amer. Soc. Hort. Sci. 119:1293-1297.Google Scholar
  32. Geoffriau E., C. Dubois, J. Granger, and Briard, M. 2005. Characterization of carrot cultivars by spectrocolorimetry. Acta Hort. 682:1419-1426.Google Scholar
  33. Grzebelus, D, Y.Y. Yau, and Simon, P.W. 2006. Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Molec. Genet. Genom. 275:450-459.Google Scholar
  34. Hansche, P.E., and Gabelman, W.H. 1963. Digenic control of male sterility in carrots, Daucus carota L. Crop Sci. 3:383-386.CrossRefGoogle Scholar
  35. Hardegger, M., and Sturm, A. 1998. Transformation and regeneration of carrot (Daucus carota L.). Molec. Breed. 4:119-129.Google Scholar
  36. Herrmann A., W. Schulz, and Hahlbrock, K. 1988. Two alleles of the single copy chalcone synthase gene in parsley differ by a transposon-like element. Molec. Gen. Genet. 212:93-98.PubMedGoogle Scholar
  37. Heywood, V.H. 1983. Relationships and evolution in the Daucus carota complex. Israel J. Bot. 32:51-65.Google Scholar
  38. Huang, S.P. 1986. Penetration, development, reproduction and sex ratio of Meloidogyne javanica in three carrot cultivars. J. Nematol. 18:408-412.PubMedGoogle Scholar
  39. Huang, S.P., P.T. Della Vecchia, and Ferreira, P.E. 1986. Varietal response and estimates of heritability of resistance to Meloidogyne javanica in carrots. J. Nematol. 18:496-501.PubMedGoogle Scholar
  40. Ikuta, H., J.V. Vieira, and DellaVecchia, P.T. 1983. Cenoura ‘Kuronan’. Hort. Bras. 1:41. Google Scholar
  41. Imani, J., A. Berting, S. Nitsche, S. Schaefer, W. H. Gerlich, and Neumann, K.H. 2002. The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression regenerated carrot plants. Plant Cell Tissue Organ Cult. 71:157-164.Google Scholar
  42. Ipek, A., and Simon, P.W. 2006. Genetic transformation of an Ac/Ds-based transposon tagging system in carrot (Daucus carota L.). Eur. J. Hort. Sci. In pressGoogle Scholar
  43. Itoh, Y., M. Hasebe, E. Davies, J. Takeda, and Ozeki, Y. 2002. Survival of Tdc transposable elements of the En/Spm superfamily in the carrot genome. Mol Genet. Genom. 269:49-59.Google Scholar
  44. Just, B. J., C.A.F. Santos, M.E.N. Fonseca, L.S. Boiteux, B.B. Oloizia, and Simon, P.W. 2007.Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequencecharacterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor. Appl. Genet.114:693-704.PubMedGoogle Scholar
  45. Kurilich, A.C., B.A. Clevidence, S.J. Britz, P.W. Simon, and Novotny, J.A. 2005. Plasma and urine responses are lower for acylated vs. nonacylated anthocyanins from raw and cooked purple carrots. J. Agric. Food Chem. 53:6537-6542.PubMedGoogle Scholar
  46. Laferriere, L., and Gabelman, W.H. 1968. Inheritance of colour, total carotenoids, alpha-carotene, and beta-carotene in carrots, Daucus carota L. Proc. Amer. Soc. Hort. Sci. 93:408-418.Google Scholar
  47. Laufer, B. 1919. Sino-Iranica. Chicago, Field Museum of Natural Hist. Pub. 201; Anthropol. Ser. Vol. 15:451-454.Google Scholar
  48. Le Clerc V., M. Briard, and Revollon, P. 2002. Influence of number and map distribution of AFLP markers on similarity estimates in carrot. Theor. Appl. Genet. 106:157-162.PubMedGoogle Scholar
  49. Le Clerc V., M. Briard, J. Granger, and Delettre, J. 2003. Genebank biodiversity assessments regarding optimal sample size and seed harvesting techniques for the regeneration of carrot accessions. Biodiversity Conserv. 12:2227-2236.Google Scholar
  50. Le Clerc V., A. Suel, and Briard, M. 2005. Identification of duplicates for the optimization of carrot collection management. Biodiversity Conserv. 14:1211-1223.Google Scholar
  51. Linke B., 2000. Interaktion von Kern und Cytoplasma in der Blütenentwicklung bei Daucus. PhD Humboldt-Univ. Berlin, p. 122.Google Scholar
  52. Linke B., T. Nothnagel, and Börner, T. 1999. Morphological characterization of modified flower morphology of three novel alloplasmic male sterile carrot sources. Plant Breed. 118:543-548.Google Scholar
  53. Linke B., T. Nothnagel, and Börner, T. 2003. Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J. 34:27-37.PubMedGoogle Scholar
  54. Mackevic, V.I. 1929. The carrot of Afghanistan. Bull. Appl. Bot. Genet. Plant Breed. 20:517-562.Google Scholar
  55. McCollum, G.D. 1975. Interspecific hybrid of Daucus carota?x D. capillifolius. Bot. Gaz. 136:201-206.Google Scholar
  56. Michalik, B. 1971. Studia genetyczne nad męską bezpłodnością u marchwi (Daucus carota L.). Plant Breed. Acclimatization Seed Prod. 15:446-474.Google Scholar
  57. Michalik, B. 1979. Die Heterosiszüchtung von Möhren in Polen. Tag.-Ber., Akad. Landwirtsch.-Wiss.DDR, Berlin 168:389-392.Google Scholar
  58. Michalik, B., A. Zabaglo, and Zukowska, E. 1988. Nutritional value of hybrids in relation to parential lines of carrot. Plant Breed. Acclimatization Seed Prod. 32:251-254.Google Scholar
  59. Michalik, B., P.W. Simon, and Gabelman, W.H. 1992. Assessing susceptibility of carrot roots to bacterial soft rot. HortScience 27:1020-1022.Google Scholar
  60. Michalik, B., and Slęczek, S. 1997. Evaluation of Daucus carota germplasm for tolerance to Erwinia carotovora. J. Appl. Genet. 38A:86-90.Google Scholar
  61. Molldrem, K.L., Jialiang Li, P.W. Simon, and Tanumihardjo, S.A. 2004. Lutein and ß-carotene from lutein-containing yellow carrots are bioavailable in humans. Amer. J. Clin. Nutrit. 80:131-136.Google Scholar
  62. Morelock, T.E., P.W. Simon, and Peterson, C.E. 1996. Wisconsin Wild: Another petaloid male-sterile cytoplasm for carrot. HortScience 31:887-888.Google Scholar
  63. Nakajima, Y., T. Yamamoto, T. Muranaka, and Oeda, K. 2001. A novel orfB-related gene of carrot mitochondrial genomes that is associated with homeotic cytoplasmic male sterility (CMS). Plant Molec. Biol. 46:99-107.Google Scholar
  64. Nicolle, C., G. Simon, E. Rock, P. Amouroux, and Remesy, C. 2004. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J. Amer. Soc. Hort. Sci. 129:523-529.Google Scholar
  65. Niemann M., L. Westphal, and Wricke, G. 1997, Analysis of microsatellite markers in carrot (Daucus carota L. sativus). J. Appl. Genet. 38A:20-27.Google Scholar
  66. Nothnagel, T. 1992. Results in the development of alloplasmic carrots (Daucus carota var. sativus Hoffm). Plant Breed. 109:67-74.Google Scholar
  67. Nothnagel T., P. Straka. and Linke, B. 2000. Male sterility in populations of Daucus and the development of alloplasmic male sterile carrot lines. Plant Breed. 119, 145-152.Google Scholar
  68. Nothnagel, T., and Straka, P. 2003. Inheritance and mapping of a yellow leaf mutant of carrot (Daucus carota). Plant Breed.122, 339-342.Google Scholar
  69. Nothnagel T., R. Ahne, and Straka, P. 2005. Morphology, inheritance and mapping of a compressed lamina mutant of carrot. Plant Breed. 124, 481-486.Google Scholar
  70. Pawelec A., C. Dubourg, and Briard, M. 2006. Evaluation of carrot resistance to Alternaria Leaf Blight in controlled environments. Plant Path. 55:68-72.Google Scholar
  71. Peterson, C.E., and Simon, P.W. 1986. Carrot breeding. In: Breeding vegetable crops. M.J. Bassett: (ed.) AVI, Westport, CN. pp. 321-356.Google Scholar
  72. Robison, M.M., and Wolyn, D.J. 2006. A 60 kDa COX1 protein in mitochondria of carrot irrespective of the presence of C-terminal extensions in the cox1 reading frames. Molec. Genet. Genom. 275:68-73.Google Scholar
  73. Ronfort J., P. Saumitou-Laprade, J. Cuguen, and Couvet, D. 1995. Mitochondrial DNA diversity and male sterility in natural populations of Daucus carota ssp carota L. Theor. Appl. Genet. 91:150-159.Google Scholar
  74. Rubatzky, V.E., C.F. Quiros, and Simon, P.W. 1999. Carrots and related vegetable Umbelliferae. CABI Publ., New York.Google Scholar
  75. Sáenz Laín, C. 1981. Research on Daucus L. (Umbelliferae). Anal. Jardin Bot. Madrid 37:481-533.Google Scholar
  76. Santos, C.A.F., and Simon, P.W. 2002. QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Molec. Genet. Genom. 268:122-129.Google Scholar
  77. Santos, C.A.F., and Simon, P.W. 2004. Merging carrot linkage groups based on conserved dominant AFLP markers in F2 populations. J. Amer. Soc. Hortic. Sci. 129:211-221.Google Scholar
  78. Scheike A. 1992. Molekulare Aspekte der cytoplasmatisch männlichen Sterilität bei der Möhre Daucus carota L. PhD Univ. Tübingen., p.77.Google Scholar
  79. Scheike, R., E. Gerold, A. Brennicke, M. Mehring-Lemper, and Wricke, G. 1992. Unique patterns of mitochondrial genes, transcripts and proteins in different male-sterile cytoplasms of Daucus carota. Theor. Appl. Genet. 83:419-427.Google Scholar
  80. Schulz, B., L. Westphal, and Wricke, G. 1994. Linkage groups of isozyme, RFLP and RAPD markers in carrot (Daucus carota L. sativus). Euphytica 74:67-76.Google Scholar
  81. Shinohara, S. 1984. Introduction and variety development in Japan. In: Vegetable seed production technology of Japan elucidated with respective variety development histories, particulars. Volume 1. Published by: Shinohara’s Authorized Agricultural Consulting Engineer Office 4-7-7, Tokyo. pp. 273-282.Google Scholar
  82. Simon, P.W. 1992. Genetic improvement of vegetable carotene content. In: Biotechnology and nutrition: Proc. Third Int. Symp. D.D. Bills and S.-D. Kung (eds.), Butterworth-Heinemann, London. pp 291-300.Google Scholar
  83. Simon, P.W. 1996. Inheritance and expression of purple and yellow storage root colour in carrot. J. Hered. 87:63-66.Google Scholar
  84. Simon, P.W. 2000. Domestication, historical development, and modern breeding of carrot. Plant Breed. Rev. 19:157-190.Google Scholar
  85. Simon, P.W., C.E. Peterson, and Lindsay, R.C. 1980. Genetic and environmental influences on carrot flavour. J. Amer. Soc. Hort. Sci. 105:416-420.Google Scholar
  86. Simon, P.W., C.E. Peterson, and Lindsay, R.C. 1982. Genotype, soil, and climate effects on sensory and objective components of carrot flavour. J. Amer. Soc. Hort. Sci. 107:644-648.Google Scholar
  87. Simon, P.W., and Wolff, X.Y. 1987. Carotenes in typical and dark orange carrots. J. Agric. Food Chem. 35:1017-1022.Google Scholar
  88. Simon, P.W., X.Y. Wolff, C.E. Peterson, D.S. Kammerlohr, V.E. Rubatzky, J.O. Strandberg, M.J. Basset, and White, J.M. 1989. High carotene mass carrot population. HortScience 24:174.Google Scholar
  89. Simon, P.W., and Strandberg, J.O. 1998. Diallel analysis of resistance in carrot to Alternaria leaf blight. J. Amer. Soc. Hort. Sci. 123:412-415.Google Scholar
  90. Simon, P.W., W.C. Matthews, and Roberts, P.A. 2000. Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor. Appl. Genet. 100:735-742.Google Scholar
  91. Simon, P.W., and Goldman, I.L. 2006. Carrot. In: Genetic Resources, Chromosome Engineering, and Crop Improvement Series, Volume 3. CRC Press, Boca Raton, Florida, pp. 497-517.Google Scholar
  92. Stein M., and Nothnagel, T. 1995. Some remarks on carrot breeding (Daucus carota ssp. sativus Hoffm.). Review. Plant Breed. 114, 1-11.Google Scholar
  93. Steinborn R., B. Linke, T. Nothnagel and Börner, T. 1995. Inheritance of chloroplast and mitochondrial DNA in alloplasmic forms of the genus Daucus. Theor. Appl. Genet. 91: 632-638.Google Scholar
  94. Steward, F.C., M.O. Mapes, A.E. Kent, and Holsten, R.D. 1964. Growth and development of cultured plant cells. Science 143:20-27.PubMedGoogle Scholar
  95. Stommel, J.R., and Simon, P.W. 1989. Phenotypic recurrent selection and heritability estimates for total dissolved solids and sugar type in carrot. J. Amer. Soc. Hort. Sci. 114:695-699.Google Scholar
  96. Strandberg, J.O. 1988. Establishment of Alternaria leaf blight on carrots in controlled environments. Plant Dis. 72:522-526.Google Scholar
  97. Strandberg, J.O., M.J. Bassett, C.E. Peterson, and Berger, R.D. 1972. Sources of resistance to Alternaria dauci. HortScience 7:345.Google Scholar
  98. Suenaga, L. 1991. Basic studies on transfer of cytoplasmic male sterility by means of cytoplasmic hybridization in carrot. J. Fac. Agric. Hokkaido Univ. 65:62-118.Google Scholar
  99. Surles, R.L., Ning Weng, P.W. Simon, and Tanumihardjo, S.A. 2004. Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota L.) of various colours. J. Agric. Food Chem. 52:3417-3421.PubMedGoogle Scholar
  100. Szklarczyk, M. 1997. Unique features of carrot mtDNAs from CMS and mantainer lines. J. Appl. Genet. 38A: 42-56.Google Scholar
  101. Szklarczyk, M., M. Oczkowski, H. Augustyniak, T. Börner, B. Linke, and Michalik, B. 2000. Organisation and expression of mitochondrial atp9 genes from CMS and fertile carrots. Theor. Appl. Genet. 100:263-270.Google Scholar
  102. Thompson, D.J. 1962. Studies on the inheritance of male-sterility in the carrot, Daucus carota L. Proc. Amer. Soc. Hort. Sci. 78:332-338.Google Scholar
  103. Umiel, N., and Gabelman, W.H. 1972. Inheritance of root colour and carotenoid synthesis in carrot, Daucus carota, L.: Orange vs. red. J. Amer. Soc. Hort. Sci. 97:453-460.Google Scholar
  104. Van Sluys, M.A., and Tempe, J. 1989. Behavior of the maize transposable element Activator in Daucus carota. Molec. Gen. Genet. 219:313-319.Google Scholar
  105. Vieira, J.V., P.T. Della Vecchia, and Ikuta, H. 1983. Cenoura ‘Brasília’. Horticultura Brasileira 1:42.Google Scholar
  106. Vieira, J.V., V.W.D. Casali, J.C. Milagres, A.A. Cardoso, and Regazzi, A.J. 1991. Heritability and genetic gain for resistance to leaf blight in carrot (Daucus carota L.) populations evaluated at different times after sowing. Rev. Brasil. Genet. 14:501-508.Google Scholar
  107. Vieira, J.V., P. S. Ritschel, J.M. Charchar, M. M. Lana, D.B. Lima, C. A. Lopes, and Moita, A. 2000. Melhoramento de cenoura para regiões tropicais. Biotecnologia Ciência & Desenvolvimento 2: 18-21.Google Scholar
  108. Vieira J.V., F.A.S. Aragão, and Boiteux, L.S. 2003. Heritability and gain from selection for field resistance against multiple root-knot nematode species (Meloidogyne incognita race 1 and M. javanica) in carrot. Euphytica 130:11-16.Google Scholar
  109. Vieira J.V., J.B.C. Silva, J.M. Charchar, F.V. Resende, M.E.N. Fonseca, A.M. Carvalho, and Machado, C.M.M. 2005a. Esplanada: cultivar de cenoura de verão para fins de processamento. Horticultura Brasileira 23:851-852.Google Scholar
  110. Vieira J.V., J.M. Charchar, L.S. Boiteux, E.T. Caixeta, and Cruz, C.D. 2005b. Nível de resistência de cenoura derivada da cultivar Alvorada a infecção por treze populações de Meloidogyne. Horticultura Brasileira 23 (supplement): 421-422.Google Scholar
  111. Vilela N.J. 2004. Cenoura: um alimento nobre na mesa popular. Horticultura Brasileira 22: cover article.Google Scholar
  112. Vivek, B.S., and Simon, P.W. 1999. Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor. Appl. Genet. 99:58-64.Google Scholar
  113. Wang, M., and Goldman, I. 1996. Resistance to root knot nematode (Meloidogyne hapla Chitwood) in carrot is controlled by two recessive genes. J. Hered. 87:119-123.Google Scholar
  114. Welch, J.E., and Grimball, E.L. 1947. Male sterility in carrot. Science 106:594.PubMedGoogle Scholar
  115. Westphal, L., and Wricke, G. 1991. Genetic and linkage analysis of isozyme loci in Daucus carota L. Euphytica 56:259-267.Google Scholar
  116. Westphal L., and Wricke, G. 1997. Construction of a linkage map of Daucus carota L. sativus and its application for the mapping of disease resistance and restorer genes. J. Appl. Genet. 38A:13-19.Google Scholar
  117. Wolyn, D.J., and Chahal, A. 1998. Nuclear and cytoplasmic interactions for petaloid male-sterile accessions of wild carrot (Daucus carota L.). J. Amer. Soc. Hort. Sci. 123:849-853.Google Scholar
  118. Yau, Y.Y., K. Santos, and Simon, P.W. 2005. Molecular tagging and selection for sugar type in carrot roots using co-dominant, PCR-based markers. Mol. Breeding 16:1-10.Google Scholar
  119. Żukowska, E., B. Czeladzka, and Zabagło, A. 1997. Differences in macroelements and nitrates content in roots of some carrot genotypes. J. Appl. Genet. 32A:153-159.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Philipp W. Simon
    • 1
  • Roger E. Freeman
    • 2
  • Jairo V. Vieira
    • 3
  • Leonardo S. Boiteux
    • 3
  • Mathilde Briard
    • 4
  • Thomas Nothnagel
    • 5
  • Barbara Michalik
    • 6
  • Young-Seok Kwon
    • 7
  1. 1.USDA-ARS Vegetable Crops Research Unit Department of HorticultureUniversity of WisconsinMadisonUSA
  2. 2.Nunhems USABrooksUSA
  3. 3.National Center for Vegetable Crops Research (CNPH)Empresa Brasileira de Pesquisa Agropecuária (Embrapa Vegetable Crops)Brazil
  4. 4.Genetic and Horticulture Research UnitINHAngers cedex 01France
  5. 5.Federal Center for Breeding Research on Cultivated Plants, Institute of Horticultural CropsBAZQuedlinburgGermany
  6. 6.Department of Genetics, Plant Breeding and Seed ScienceAgricultural University of KrakówKrakówPoland
  7. 7.Horticultural Breeding LaboratoryNational Institute of Highland Agriculture RDADoam, Pyongchang, KangwonKorea

Personalised recommendations