Vegetables II pp 249-323 | Cite as


  • María José Díez
  • Fernando Nuez
Part of the Handbook of Plant Breeding book series (HBPB, volume 2)

The tomato belongs to the Solanaceae family along with other economically important crops such as pepper, eggplant and potato. The tomato was classified by Miller (1754) as Lycopersicon esculentum and renamed by Child (1990) and Peralta and Spooner (2006) as Solanum lycopersicum. Tomato is a diploid species with 2n = 2x = 24 chromosomes. The tomato genome is composed of approximately 950 Mb of DNA, more than 75% of which is heterochromatin and largely devoid of genes.


Quantitative Trait Locus Cucumber Mosaic Virus Lycopersicon Esculentum Tomato Yellow Leaf Curl Virus Transgenic Tomato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abushita, A.A., Hebshi, E.A., Daood, H.G., and Biacs, P.A. 1997. Determination of antioxidant vitamins in tomatoes. Food Chemistry 60:207-212.Google Scholar
  2. Acosta, J. de. 1590, ed. 1987. Historial natural y moral de las Indias. Facsimil edited by Hispano-Americana Publisher, Seville.Google Scholar
  3. Adalid, A., Roselló, S., Cebolla-Cornejo, J., and Nuez, F. 2005. Evaluation and selection of Lycopersicon accessions for their high carotenoid and vitamin C content. XV Meeting of the EUCARPIA Tomato Working Group (Bari, September 20-23, 2005): 60.Google Scholar
  4. Adalid, A., Roselló, S., and Nuez, F. 2004. Breeding tomatoes for their high nutritional value. Recent Res. Devel. Plant Sci. 2: 33-52.Google Scholar
  5. Akhilesh, T., and Gulshan, L. 2004. Studies on heterosis for quantitative and qualitative characters in tomato (Lycopersicon esculentum Mill.). Progr. Hort. 36(1): 122-127.Google Scholar
  6. Alba, R., Fei, Z., Payton, P., Liu Y., Moore, S.L., Debbie, P., Cohn, J., DAscenzo, M., Gordon, J.S., Rose, J.K.C., Martin, G., Tanksley, S.D., Bouzayen, M., Jahn, M.M., and Giovannoni, J. 2004. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. The Plant Jounal 39: 697-714.Google Scholar
  7. Alba, R., Payton, P., Fei, Z., McQuinn, R., Beddie, P., Martin, G.B., Tanksley, S.D., and Giovannoni, J. 2005. Transcriptome and selected metabolite analyzes reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17: 2954-2965.PubMedGoogle Scholar
  8. Alexander, L.J. 1963. Transfer of a dominant type of resistance to rthe four known Ohio pathogenic strains of tobacco mosaic virus (TMV), from Lycopersicon peruvianum to L. esculentum. Phytopathology 53: 869.Google Scholar
  9. Alexander, L.J., and Hoover, M.M. 1955. Disease resistance in wild species of tomato. Ohio Agricultural Experiment Station Research Bulletin: 752.Google Scholar
  10. Alvarez, M., Varela, M., and Verde, G. 1994. Effect of high temperature stress on in vitro pollen germination in tomato (Lycopersicon esculentum Mill.) Cultivos Tropicales 15(1): 61-65.Google Scholar
  11. Ammiraju, J.S.S., Veremis, J.C., Huang, X., Roberts, P.A., and Kaloshian, I. 2003. The heat-stabel root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor. Appl. Genet. 106: 478-484.PubMedGoogle Scholar
  12. Andrus, C.F., Reynard, G.B., and Wade, B.L. 1942. Relative resistance of tomato varieties, selections and crosses to defoliation by Alternaria and Stemphyllium. USDA Circular 652: 23.Google Scholar
  13. Antignus, Y., Vunsh, R., Lachman, O., Pearlsman, M., Maslenin, L., Hananya, U., and Rosner, A. 2004. Truncated Rep gene originated from Tomato yellow leaf curl virus-Israel (Mild) confers strain-specific resistance in transgenic tomato. Ann. Appl. Biol. 144: 39-44.Google Scholar
  14. Antonious, G.F., and Snyder, J.C. 2006. Natural products: repellency and toxicity of wild tomato leaf extracts to the twospotted spider mite Tetranychus urticae Koch. J. Environm. Sci. Health 41: 43-55.Google Scholar
  15. Arrillaga, I., Gil Mascarell, R., Gisbert, C., Sales, E., Montesinos, C., Serrano, R., and Moreno, V. 1998. Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Sci. 136: 219-226.Google Scholar
  16. Arya, P.S., Vidyasagar, and Singh, S.R. 1999. Effect on N, P and K on tomato seed production. Scientific Hort. 6: 89-91.Google Scholar
  17. Astua-Monge, G., Minsavage, G.V., Stall, R.E., Davis, M.J., Bonas, U., and Jones J.B. 2000a. Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol. Plant Microb. Interact. 13: 911-921.Google Scholar
  18. Astua-Monge, G., Minsavage, G.V., Stall, R.E., Vallejo, C.E., Davis, M.J., and Jones J.B. 2000b. Xv4-vrxv4: A new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lyvopersicon pennellii. Mol. Plant Microb. Interact. 12: 1346-1355.Google Scholar
  19. Atanassova, B. 1999. Functional male sterility (ps-2) in tomato (Lycopesicon esculentum Mill.) and its application in breeding and hybrid seed production. Euphytica 107: 13-21.Google Scholar
  20. Atanassova, B. 2000. Functional male sterility in tomato (Lycopersicon esculentum Mill.) and its applicability in hybrid seed production. Acta Physiol. Plantarum 22 (3): 221-225.Google Scholar
  21. Atanassova, B., and Georgiev, H. 2002. Using genic male sterility in improving hybrid seed production in tomato (Lycopersicon esculentum Mill.). Acta Hort. 579: 185-188.Google Scholar
  22. Atherton, J.G., and Rudich, J. (Eds.) 1986. The tomato Crop. A scientific basis for improvement. Chapman and Hall. London.Google Scholar
  23. Ayuso, M.C., Báguena, M., Cuartero, J., and Nuez, F. 1987. Possibilities of using the compatible form L. peruvianum PE-23 as a genetic bridge in tomato breeding. TGR Report 37: 36-37.Google Scholar
  24. Azanza, F., Kim, D., Tanksley, S.D., and Juvik, J.A. 1995. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening. Theor. Appl. Genet. 91:495-504.Google Scholar
  25. Bai, Y., van der Hulst, R., Bonnena, G., Marcel, T.C., Heijer-Dekens, F., Niks, R.E., and Lindhout, P. 2005. Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependant resistance via a different mechanism than recessive ol-2. Mol. Plant Microbe Interact. 18:354-362.PubMedGoogle Scholar
  26. Baldwin, E.A., Nisperos, M.O., and Mozonas, M.G. 1991. Quantitative analysis of flavor and other volatiles and for other constituents of two tomato varieties during ripening. J. Am. Soc. Hortic. Sci. 116: 265-269.Google Scholar
  27. Balint-Kurti, P.J., Dixon M.S., Jones, D.A., Norcott, K.A., and Jones, J.D.G. 1994. RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladosporium fulvum in tomato. Theor. Appl. Genet. 88: 691-700.Google Scholar
  28. Ballvora, A., Pierre, M., van den Ackerveken, G., Schornack, S., Rossier, O., Ganal, M., Lahaye, T., and Bonas, U. 2001. Genetic mapping and functional analysis of the tomato Bs-4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria. Mol. Plant Microbe Interact. 14: 629-638.PubMedGoogle Scholar
  29. Barba, M., Tomassoli, L., and Llardi, V. 1998. Tomato plants transgenic for resistance to cucumber mosaic virus (CMV): five years of field evaluation. Sementi Elette 44: 59-62.Google Scholar
  30. Barenjee, M.K., and Kalloo. 1987. Sources of resistance to leaf curl virus in Lycopersicon. Theor. Appl. Genet. 73: 707-710.Google Scholar
  31. Bartoszewski, G., Niedziela, A., Szwacka, M., and Niemirowicz, S.K. 2003. Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breeding 122: 347-351.Google Scholar
  32. Baxter, C.J., Carrari, F., Bauke, A., Overy, S., Hill, S.A., Quick, W.P., Fernie, A.R., and Sweetlove, L.J. 2005a. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol. 46: 425-437.PubMedGoogle Scholar
  33. Behare, J., Laterrot, H., Sarfatti, M., and Zamir, D. 1991. RFLP mapping of the Stemphyllium resistance gene in tomato. Mol. Plant-Microbe Interact. 4: 489-492.Google Scholar
  34. Beraldi, D., Picarella, M.E., Soressi, G.P., and Mazzucato, A. 2004. Fine mapping of the parthenocarphic fruti (pat) mutation in tomato. Theor. Appl. Genet. 108: 209-216.PubMedGoogle Scholar
  35. Berg, K.A., and Canessa, C.E. 1998. HPLC applications in food and nutritional analysis. pp. 753-788. In E. Katz, R. Eksteen, P. Schoenmakers and N. Miller (Eds.). Handbook of HPLC. Chromatography Science Series 78, Marcel Dekker, NY.Google Scholar
  36. Bernacchi, D., Beck-Bunn, T. Y., Lopez, J., Petiard, V., Uhlig, J., Zamir, D., and Tanksley, S.D. 1998a. Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from L. hirsutum. Theor. Appl. Genet. 97:381-397.Google Scholar
  37. Bernacchi, D., Beck-Bunn, T., Emmaty, D., Eshed, Y., Inai, S., Lopez, J., Petiard, V., Sayama, H., Uhlig, J., Zamir, D., and Tanksley, S.D. 1998b. Advanced backcross QTL analysis of tomato II. Evaluation of near isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor. Appl. Genet. 97: 170-180.Google Scholar
  38. Bernacchi, D., and Tanksley, S.D. 1997. An interspecific backcross of Lycopersicon esculentum x L. hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147: 861-877.PubMedGoogle Scholar
  39. Bernatzky, D., and Tanksley, S.D. 1986. Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112: 887-898.PubMedGoogle Scholar
  40. Berry, S.Z., and Oakes, G.L. 1987. Inheritance of resistance to Fusarium crown and root rot in tomato. HortScience 22: 110-111.Google Scholar
  41. Bishop, C.J. 1954. A Stamenless male-sterile tomato. Am. J. Bot. 41: 540-542.Google Scholar
  42. Blauth, S.L., Churchill, G.A., and Mutschler, M.A. 1998. Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennellii. Theor. Appl. Genet. 96: 458-467.Google Scholar
  43. Bonierbale, M.W., Plaisted, R.L., and Anksley, S.D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in tomato and potato. Genetics 120: 1095-1103.PubMedGoogle Scholar
  44. Bournival, B.L., Vallejos, C.E., and Scout, J.W. 1990. Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theor. Appl. Genet. 79: 641-645.Google Scholar
  45. Boutelou, CE. 1801. Tratado de la Huerta. Imprenta de Villalpaldo, Madrid.Google Scholar
  46. Bretó, M.P., Asins, M.J., and Carbonell, E.A. 1996. Salt tolerance in Lycopersicon species III. Detection of QTLs by means of molecular markers. Theor. Appl. Genet. 88: 395-401.Google Scholar
  47. Brommenschenkel, S.H., and Tankslet, S.D. 1997. Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol. Gen. Genet. 256: 121-126.Google Scholar
  48. Brunetti, A., Crespi, S., Caciagli, P., Noris, E., Accotto, G.P., Tavazza, M., and Tavazza, R. 1994. Testing for resistance to TYLCV in plants transformed with a truncated C1 gene. 1st International Symposium on Geminiviruses, El Ejido, Almería, España: 33.Google Scholar
  49. Brunetti, A., Tavazza, M., Noris, E., Tavazza, R., Caciagli, P., Ancora, G., Crespi, S., and Accotto, G.P. 1997. High expression of truncated viral Rep protein confers resistance to Tomato yellow leaf curl virus in transgenic tomato plants. Mol. Plant Microbe Interact. 10: 571-579.Google Scholar
  50. Bucheli, P., Voirol, E., Torre, R.R., Lopez, J., Rytz, A., Tanksley, S.D., Patiard, V., and de la Torre, R. 1999. Definition of nonvolatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding. J. Agr. Food Chem. 47: 659-664.Google Scholar
  51. Candolle, A. de. 1883. Origine des plants cultiveés. 10 Ed. Baillière, Paris. France.Google Scholar
  52. Cannon, O.S., and Waddoups, V. 1952. Loran Blood and VR Moscow, two new Verticillium wilt resistant tomatoes for Utah. Utah Farm and Home Sci. 13(4): 74.Google Scholar
  53. Cap, G.B., Roberts, P.A., Thomason, I.J., and Murashige, T. 1991. Embryo culture of Lycopersicon esculentum x L. peruvianum hybrid genotypes possessing heat-stable resistance to Meloidogyne incognita. J. Am. Soc. Hort. Sci. 116: 1082-1088.Google Scholar
  54. Carmi, N., Salts, Y., Dedicova, B., Shabtai, S., and Barg, R. 2003. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217: 726-735.PubMedGoogle Scholar
  55. Causse, M., Buret, M., Robini, K., and Verschave, P. 2003. Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J. Food Sci. 68: 2342-2350.Google Scholar
  56. Causse, M., Caliba-Colombani, V., Lesschaeve, I., and Buret, M. 2001. Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor. Appl. Genet. 102: 272-283.Google Scholar
  57. Causse, M., Saliba-Colombani, V., Lecompte, L., Duffe, P., Rousselle, P., Buret, M., Seymour, G.B., Napier, R.M., and White, P.J. 2002. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53: 2089-2098.PubMedGoogle Scholar
  58. Chalukova, M., and Manuelyan, H. 1991. Breeding for carotenoids pigments in tomato. In G. Kalloo (ed.) Genetic Improvement of Tomato (Monographs on Theor. Appl. Genet. 14). Springer-Verlag, Berlín.Google Scholar
  59. Chamarro, J. 2003. Anatomía y fisiología de la planta. In: F. Nuez (Ed.). El cultivo del tomate, Ediciones Mundi Prensa, Madrid.Google Scholar
  60. Channarayappa, G., Shivashankar, V., Muniyappa, V., and Frist, R.H. 1992. Resistance of Lycopersicon species to Bemisia tabaci: a tomato leaf curl virus vector. Can. J. Bot. 70: 2184-2192.Google Scholar
  61. Cheema, D.S., and Dhaliwal, M.S. 2004. Hybrid tomato breeding. J. New Seeds 6 (2/3): 1-14.Google Scholar
  62. Chen, F.Q., Foolad, M.R., Hyman, J St. Clair, D.A., and Beelaman, R.B. 1999. Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum x L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol. Breeding 5: 283-299.Google Scholar
  63. Chen, L.Z., and Taiji, A. 1996. Efficient hybridization between Lycopersicon esculentum and L. peruvianum via ‘embryo rescue’ and in vitro propagation. Plant Breeding 115: 251-256.Google Scholar
  64. Chetelat, R.T., DeVerna, J.W., and Bennett, A.B. 1995. Effect of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato. Theor. Appl. Genet. 91: 334-339.Google Scholar
  65. Chetelat, R.T., DeVerna, J.W., Klann, E., and Bennett, A.B. 1993. Sucrose accumulator (sucr), a gene controlling sugar composition in fruit of L. chmielewskii and L. hirsutum. TGR Report 43: 14-15.Google Scholar
  66. Chetelat, R.T., and Meglic, V. 1999. Mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor. Appl. Genet. 100: 232-241.Google Scholar
  67. Chetelat, R.T., and Meglic, V. 2000. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor. Appl. Genet. 100: 232-241.Google Scholar
  68. Chetelat, R.T., Meglic, V., and Cisneros, P. 2000. A genetic map of tomato based on BC1 Lycopersicon esculentum x Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154: 857-867.PubMedGoogle Scholar
  69. Chetelat, R.T., Rick, C.M., Cisneros, P., Alpert, K.B., and De Verna, J.W. 1998. Identification, transmission, and cytological behaviour of Solanum lycopersicoides Dun. monosomic alien addition lines in tomato (Lycopersicon esculentum Mill.). Genome 41: 40-50.Google Scholar
  70. Chetelat, R.T., Rick, C.M., and De Verna, J.W. 1989. Isozyme analysis, chromosome pairing, and fertility of Lycoperscion esculentum x Solanum lycopersicoides diploid backcross hybrids. Genome 32: 783-790.Google Scholar
  71. Chetelat, R.T., Cisneros, P., Stamova, L., and Rick, C.M. 1997. A male-fertile Lycopersicon esculentum x Solanum lycopersicoides hybrid enables direct backcrossing to tomato at the diploid level. Euphytica 95: 99-108.Google Scholar
  72. Child, A. 1990. A Synopsis of Solanum Subgenus Potatoe (G. Don) D’Arcy [Tuberarium (Dun.) Bitter (s.l.)]. Feddes Repert. 101: 209-235.Google Scholar
  73. Chunwongse, J., Bunn, T.B., Crossman, C., Jiang, J., and Tanksley, S.D. 1994. Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor. Appl. Genet. 89: 76-79.Google Scholar
  74. Chunwongse, J., Chunwongse, C., Black, L., and Hanson, P. 1998. Mapping of the Ph-3 gene for late blight from L. pimpinellifolium L 3708. Rep. Tomato Genet. Coop. 48: 13-14.Google Scholar
  75. Chunwongse, J., Chunwongse, C., Black, L., and Hanson, P. 2002. Molecular mapping of Ph-3 gene for late blight resistance in tomato. J. Hort. Sci. Biotechnol. 77: 281-286.Google Scholar
  76. Cillo, F., Finetti-Sialer, M.M., Papanice, M.A., and Gallitelli, D. 2004. Analysis of mechanisms involved in the Cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. Mol. Plant Microbe Interact. 17: 98-108.PubMedGoogle Scholar
  77. Clinton, S.K. 2005. Tomatoes or lycopene: a role in prostate carcinogenesis?. J. Nutr. 135 (8): 2057S-2059S.PubMedGoogle Scholar
  78. Clouse, S.D., and Gilchrist, D.G. 1987. Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f. sp. lycopersici and AAL-toxin. Phytopathology 77: 80-82.Google Scholar
  79. Coaker, G.L., and Francis, D.M. 2004. Mapping, genetic efects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor. Appl. Genet. 108: 1047-1055.PubMedGoogle Scholar
  80. Coaker, G.L., Meulia, T., Kabelka, E.A., and Francis, D.M. 2002. A QTL controlling stem morphology and vascular development in Lycopersicon esculentum x Lycopersicon hirsutum crosses is located on chromosome 2. Am. J. Bot. 89: 1859-1866. Google Scholar
  81. Corominas, J. 1990. Breve Diccionario Etimológico de la Lengua Castellana. Ed. Gredos, Madrid.Google Scholar
  82. Crispi, M.L., and Peirce, L.C. 1992. Gametophytic selection for early maturity in tomato (Lycopersicon esculentum Mill.). Angiosperm Pollen & Ovules: 370-376.Google Scholar
  83. Cuartero, J., Bolarín, M.C., Asíns, M.J., and Moreno, V. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot. 57: 1045-1058.PubMedGoogle Scholar
  84. Cuartero, J., and Férnández-Muñoz, R. 1999. Tomato and salinity. Sci. Hort. 78: 83-125.Google Scholar
  85. D’Arcy, W.G. 1972. Solanaceae studies II: Typifications of subdivisions of Solanum section Tuberarium. Ann. Missouri Bot. Gard. 59: 262-278.Google Scholar
  86. D’Arcy, W.G. 1979. The classification of the Solanaceae. In: “Hawkes, J.G.; Lester, R.N.; Skelding, A.D. (Eds.). The biology and taxonomy of the Solanaceae. Academic Press, New York & London: 3-47.Google Scholar
  87. Daunay, M.C., Maggioni, L., and Lipman, E. 2003. Solanaceae Genetic Resources in Europe. Report of the two meetings - 21 September 2001, Nijmegen, The Netherlands /22 May 2003, Skierniewice, Poland. International Plant Genetic Resources Institute, Rome, Italy.Google Scholar
  88. De Giovanni et al., C Dell’Orco, P., Bruno, A., Ciccaresse, F., Lotti, C., and Ricciardi, L. 2004. Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci. 166: 41-48.Google Scholar
  89. De Verna, J.W., Rick, C.M., Chetlat, R.T., Lanini, B.J., and Alpert, K.B. 1990. Sexual hybridization of Lycoperscion esculentum and Solanum rickii by means of a sesquidiploid bridging hybrid. PNAS 87: 9496-9490.Google Scholar
  90. Diwan, N., Fluhr, R., Eshed, Y., Zamir, D., and Tanksley, S.D. 1999. Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen Verticillium dahliae race 1. Theor. Appl. Genet. 98: 315-319.Google Scholar
  91. Doganlar, S., Frary, A., Daunay, M.C., Lester, R.N., and Tanksley, S.D. 2002a. Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189-202.PubMedGoogle Scholar
  92. Doganlar, S., Frary, A., Daunay, M.C., Lester, R.N., and Tanksley, S.D. 2002b. A comparative genetic linkage map of eggplant (Solanum melongena) and its applications for genome evolution in the Solanaceae. Genetics 161: 1697-1711.PubMedGoogle Scholar
  93. Doganlar, S., Frary, A., Daunay, M.C., Lester, R., and Tanksley, S.D. 2002c. Conservation of gene function in the Solanaceae by comparative mapping of domestication traits in eggplant. Genetics 161: 1713-1726.PubMedGoogle Scholar
  94. Doganlar, S., Dodson, J., Gabor, B., Beck-Bunn, T., Crossman, C., and Tanksley, S.D. 1998. Molecular mapping of the py-1 gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor. Appl. Genet. 97: 784-788.Google Scholar
  95. Dominguez, E., Cuartero, J., and Fernández-Muñoz, R. 2005. Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica 142: 253-263.Google Scholar
  96. Dorgan, J.F., Sowell, A., Swanson, C.A., Potischman, N., Miller, R., Schussler, N., and Stephenson, Jr. H.E. 1998. Relationships of serum carotenoids, retinol, alpha-tocopherol, and selenium with breast cancer risk: results from a prospective study in Columbia, Missouri (United States). Cancer Causes Control 9 (1): 89-97.PubMedGoogle Scholar
  97. Duffus, J.E., Liu, H.Y., and Wisler, G.C. 1996. Tomato infectious chlorosis virus. A new clostero-like virus transmitted by Trialeurodes vaporariorum. Eur. J. Plant Pathol. 102: 219-226.Google Scholar
  98. Dumas, Y., Dadomo, M., Lucca, G.D., and Grolier, P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agr. 83: 369-382.Google Scholar
  99. Egashira, H., Takahashi, S., Doi, H., Nishizawa, T., Escalante, A., Takashina, T., and Imanishi, S. 1999. Genetic analysis of sucrose-accumulating ability in Lycopersicon peruvianum. Breeding Sci. 49: 155-159.Google Scholar
  100. Ellis, P.R., and Maxon-Smith, J.W. 1971. Inheritance of resistance to potato cyst-eelworm (Heterodera rostochiensis Woll.) in the genus Lycopersicon. Euphytica 20: 93-101.Google Scholar
  101. Emmanuel, E., and Levy, A.A. 2002. Tomato mutants as tools for functional genomics. Current Opinion Plant Biol. 5: 112-117.Google Scholar
  102. Eshed, Y., Gera, G., and Zamir, D.A. 1996. A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor. Appl. Genet. 93: 877-886.Google Scholar
  103. Eshed, Y., and Zamir, D. 1994. Introgressions from Lycopersicon pennellii can improve the soluble solids yield of tomato hybrids. Theor. Appl. Genet. 88: 891-897.Google Scholar
  104. Eshed, Y., and Zamir, D. 1995. Introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics 141: 1147-1162.PubMedGoogle Scholar
  105. Esquinas-Alcázar, J., and Nuez, F. 1995. Situación taxonómica, domesticación y difusión. In: Nuez, F. (Ed.). El cultivo del tomate. Ediciones Mundi Prensa, Madrid: 14-42.Google Scholar
  106. FAOSTAT. 2005. Statistical Database.
  107. Farrar, R.RJr, and Kennedy, G.G. 1991. Insect and mite resistance in tomato. In: G. Kalloo (Ed.) Genetic Improvement of Tomato. Monographs on Theoretical and Applied Genetics 14, Springer-Verlag, Berlin.Google Scholar
  108. Fauquet, C.M., and Stanley, J. 2005. Revising the way we conceive and name viruses below the species level: A review of geminivirus taxonomy calls for new standardized isolate descriptors. Arch. Virology, 150: 2151-2179.Google Scholar
  109. Fedorowicz, O., Bartoszewski, G., Kaminska, M., Stoeva, P., and Niemirowicz-Szczytt, K. 2005. Pathogen derived resistance to tomato spotted witl virus in trangenic tomato and tobacco plants. J. Am. Soc. Hort. Sci. 130: 218-224.Google Scholar
  110. Fei, Z., Tang, X., Alba, R.M., and Giovannoni, J.J. 2006. Tomato expression database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res. 34: D766-760.PubMedGoogle Scholar
  111. Fei, Z., Tang, X., Alba, R.M., White, J.A., Ronning, C.M., Martin, G.B., Tanksley, S.D., and Giovannoni, J.J. 2004. Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 40: 47-59.PubMedGoogle Scholar
  112. Fernández-Muñoz, R., Dominguez, E., and Cuartero, J. 2000. A novel source of resistance to the two-spotted spider mite in Lycopersicon pimpinellifolium (Jusl.) Mill.; its genestic as affected by interplot interference. Euphytica 111: 169-173.Google Scholar
  113. Fernández-Muñoz, R., González-Fernández, J.J., and Cuartero, J. 1995. Variability of pollen tolerance to low temperatures in tomato and related wild species. J. Hort. Sci. 70: 41-49.Google Scholar
  114. Fernández-Muñoz, R., Salinas, M., Alvarez, M., and Cuartero, J. 2003. Inheritance of resistance to two-spotted spider mite and glandular leaf trichomes in wild tomato Lycopersicon pimpinellifolium (Jusl.) Mill. J. Am. Soc. Hort. Sci. 128: 188-195.Google Scholar
  115. Fernández-Ruiz, V., Sánchez-Mata, M.C., Cámara, M., Torija, M.E., Roselló, S., and Nuez, F. 2002. Lycopene as a bioactive compound in tomato fruits. Symposium on “Dietary Phytochemicals and Human Health”. The Phytochemical Soc. of Europe. Salamanca, April 2002: 193-194.Google Scholar
  116. Fery, R.L., and Kennedy, G.G. 1983. Inheritance of a factor in Lycopersicon hirsutum f. glabratum conditioning resistance to the tobacco hornworm. HortScience 18: 169.Google Scholar
  117. Fery, R.L., and Kennedy, G.G. 1987. Genetic analysis of 2-tridecanone concentration, leaf trichome characteristics, and tobacco hornworm resistance in Lycopersicon. J. Am. Soc. Hort. Sci. 112: 886-891.Google Scholar
  118. Fery, R.L., Kennedy, G.G., and Sorenson, C.E. 1984. Genetic analysis of 2-tridecanone concentration and resistance to the tobacco hornworm (Manduca sexta) and the Colorado potato beetle (Leptintarsa decemlineata) in Lycopersion species. HortScience 19: 562.Google Scholar
  119. Ficcadenti, N., Sestili, S., Pandolfini, T., Cirillo, C., Rotino, G.L., and Spena, A. 1999. Genetic engineering of parthenocarpy fruit development in tomato. Mol. Breeding 5: 463-470.Google Scholar
  120. Foolad, M.R. 1997. Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breeding 116: 53-58.Google Scholar
  121. Foolad, M.R. 1999. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42: 727-734.Google Scholar
  122. Foolad, M.R., and Chen, F.Q. 1999. RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor. Appl. Genet. 99: 235-243.Google Scholar
  123. Foolad, M.R., Chen, F.Q., and Lin, G.Y. 1998. RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor. Appl. Genet. 97: 1133-1144.Google Scholar
  124. Foolad, M.R., Ntahimpera, N., Christ, B.J., and Lin, G.Y. 2000. Comparison between field, greenhouse, and detached-leaflet evaluations of tomato germplasm for early blight resistance. Plant Dis. 84: 967-972.Google Scholar
  125. Foolad, M.R., and Sharma, A. 2005. Molecular markers as selection tools in tomato breeding. Acta Hort. 695: 225-240.Google Scholar
  126. Foolad, M.R., Sharma, A., Ashrafi, H., and Lin, G. 2005. Genetics of early blight in tomato. Acta Hort. 695: 397-406.Google Scholar
  127. Foolad, M.R., Stoltz, T., Dervinis, C., Rodriguez, R.L., and Jones, R.A. 1997. Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol. Breeding 3: 269-277.Google Scholar
  128. Foolad, M.R., Zhang, L., Khan, A., Niño-Liu, D., and Lin, G.Y. 2002. Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum x L. hirsutum cross. Theor. Appl. Genet. 104: 945-958.PubMedGoogle Scholar
  129. Foolad, M.R., Zhang, L., and Lin, G.Y. 2001. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44: 444-454.PubMedGoogle Scholar
  130. Fos, M., and Nuez, F. 1997. Expression of genes associated with natural parthenocarpy in tomato ovaries. J. Plant Physiol. 151: 235-238.Google Scholar
  131. Fos, M., Nuez, F., and García-Martínez, J.L. 2000. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol. 122: 471-479.PubMedGoogle Scholar
  132. Fos, M., Proaño, K., Alabadi, D., Nuez, F., Carbonell, J., and García-Martínez, J.L. 2003. Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovaries. Plant Physiol. 131: 359-366.PubMedGoogle Scholar
  133. Fos, M., Proaño, K., Nuez, F., and García-Martínez, J.L. 2001. Role of giberellins in parthenocarpic fruti development induced by the genetic system pat-3/pat-4 in tomato. Physiol. Plant. 111: 545-550.PubMedGoogle Scholar
  134. Fournier, P. 1947-1948. Plantes Médicinales et Vénéneuses de France. 3 vols. Paul Lechevalier, Paris.Google Scholar
  135. Francis, D.M., Kabelka, E., Bell, J., Franchino, B., and D.St. Clair, 2001. Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Dis. 85: 1171-1176.Google Scholar
  136. Francis, D.M., Miller, A.R., Chen, Z., Bongue-Bartelsman, A.M., and Barringer, C.A. 2005. State of the art of genetics and breeding of processing tomato: a comparison of selection based on molecular markers, biochemical pathway, and phenotype for the improvement of fruit color and juice viscosity. Acta Hort. 615: 273-282.Google Scholar
  137. Frary, A., Fulton, T.M., Zamir, D., and Taknsley, S.D. 2004. Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor. Appl. Genet. 108:485-496.PubMedGoogle Scholar
  138. Fraser, P.D., Romer, S., Shipton, C.A., Mills, P.B., Kiano, J.W., Misawa, N., Drake, R.G., Schuch, W., and Bramley, P.M. 2002. Evaluation of transgenic tomato plants expressing and additional phytoene synthase in a fruit-specific manner. PNAS 99:1092-1097.PubMedGoogle Scholar
  139. Fraser, P.D., Romer, S., Kiano, J.W., Shipton, C.A., Mills, P.B., Drake, R., Schuch, W., and Bramley, P.M. 2001. Elevation of carotenoids in tomato by genetic manipulation. J. Sci. Food Agr. 81: 822-827.Google Scholar
  140. French, C.J., Bouthillier, M., Bernardy, M., Ferguson, G., Sabourin, M., Johnson, R.C., Masters, C., Godkin, S., and Mumford, R. 2001. First report of pepino mosaic virus in Canada and the United States. Plant Dis. 85: 1121.Google Scholar
  141. Friedmann, M., Lapidot, M., Cohen, S., and Pilowsky, M. 1998. A novel source of resistance to Tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J. Am. Soc. Hort. Sci. 123: 1004-1007.Google Scholar
  142. Fulton, T.M., Beck-Bunn, T., Emmatty, D., Eshed, Y., Lopez, J., Petiard, V., Uhlig, J., Zamir, D., and Tanksley, S.D. 1997. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparison with QTLs found in other wild species. Theor. Appl. Genet. 95: 881-894.Google Scholar
  143. Fulton, T.M., Bucheli, P., Voirol, E., Lopez, J., Petiard, V., and Tanksley, S.D. 2002a. Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127: 163-177.Google Scholar
  144. Fulton, T.M., Grandillo, S., Beck-Bunn, T., Fridman, E., Frampton, A., Lopez, J., Petiard, V., Uhlig, J., Zamir, D., and Tanksley, S.D. 2000. Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross. Theor. Appl. Genet. 100 (7): 1025-1042.Google Scholar
  145. Fulton, T.M., Van der Hoeven, R., Eannetta, N.T., and Tanksley, S.D. 2002b. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14: 1457-1467.PubMedGoogle Scholar
  146. Gal-On, A., Wolf, D., Wang, Y.Z., Faure, J.E., Pilowsky, M., and Zelcer, A. 1998. Transgenic resistance to cucumber mosaic virus in tomato: Blocking of long-distance movement of the virus in lines harbouring a defective viral replicase gene. Phytopathology 88: 1101-1107.PubMedGoogle Scholar
  147. Galiana-Balaguer, L., Roselló, S., Herrero-Martínez, J.M., Maqueira, A., and Nuez, F. 2001. Determination of l-Ascorbic acid Lycopersicon frutis by capillary zone Electrophoresis. Anal. Biochem. 296: 218-224.PubMedGoogle Scholar
  148. Ganal, M.W., Simon, R., Brommonschenkel, S., Tanksley, S.D., and KumarA. 1995. Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol. Plant-Microbe Interact. 8: 886-891.PubMedGoogle Scholar
  149. Ganal, M., Sotirova, V., and Griesbach, E. 1999. Quantitative resistance in the host/ pathogen system tomato/Clavibacter michiganensis subsp. michiganensis. Beitrage zur Zuchtingsforschung Bundesanstalt fur Zuchtingsforschung an Kulturplflanen 5: 66-67.Google Scholar
  150. Gardner, R.G. 1993a. ‘Mountain Belle’ cherry tomato; NC 1C and NC 2C cherry tomato breeding lines. HortScience 28: 349-350.Google Scholar
  151. Gardner, R.G. 1993b. ‘Mountain Gold’ tomato. HortScience 28: 348-349.Google Scholar
  152. Gardner, R.G. 2006a. ‘Mountain Crest’ hybrid tomato and its parent line, NC1 rinEC. HortScience 41: 261-262.Google Scholar
  153. Gardner, R.G. 2006b. ‘Plum Crimson’ hybrid tomato and its parents, NC EBR-7 and NC EBR-8. HortScience 41: 259-260.Google Scholar
  154. Gardner, R.G., and Shoemaker, P.B. 1999. ‘Mountain Supreme’ early blight-resistant hybrid tomato and its parents NC EBR-3 and NC EBR-4 tomato breeding lines. HortScience 34: 745-746.Google Scholar
  155. Garvey, T.C., and Hewitt, J.D. 1992. Use of molecular markers to locate quantitative trait loci linked to high soluble solids content in a hybrid of lycopersicon cheesmanii. J. Am. Soc. Hort. Sci. 113497-499Google Scholar
  156. Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeter, B., Schachtschabel, U., Kaufman, H., Thompson, R.D., Bonierbale, M.W., Ganal., M.W., Tanksley, S.D., and Salamini, F. 1991. RFLP maps of potato and their alignment with the homeologous tomato genome. Theor. Appl. Genet. 83: 49-57.Google Scholar
  157. Georgiev, H., and Atanassova, B. 1977. Manifestation of exserted stigma in F1 tomato hybrids. Genet. Plant Breeding 10(4): 266-271.Google Scholar
  158. Gerard, J. 1597. The Herball or General Historie of Plantes, First Edition London. Herbarium of the New York Botanical Garden, New York, NY.Google Scholar
  159. Gidoni, D., Fuss, E., Burbidge, A., Speckmann, G.J., James, S., Nijkamp, D., Mett, A., Feiler, J., Smoker, M., de Vroomen, MJ., Leader, D., Liharska, T., Groenendijk, J., Coppoolse, E., Smith, J.J., Levin, I., de Both, M., Schuch, W., Jones, J.D., Taylor, I.B., Theres, K., and van Haaren, M.J. 2003. Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol. Bio. 51: 83-98.Google Scholar
  160. Giordano, L.B., Boiteux, L.S., Santos, J.R.M., Charchar, J.M., and Lopes, C.A. 1997. ‘T x 401-08’: linhagen de tomate para processamento industrial, com resistencia multipla a doencas. Horticultura Brasileira 15(2): 123-126.Google Scholar
  161. Giovannoni, J. 2001. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiol. Plant Mol. Biol. 52: 725-749.Google Scholar
  162. Gisbert, C., Rus, A.M., Bolarín, M.C., Coronado, J.M., Arrillaga, I., Montesinos, C., Caro, M., Serrano, R., and Moreno, V. 2000. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol. 123: 393-402.PubMedGoogle Scholar
  163. Goldman, Y.L., Paran, Y., and Zamir, D. 1995. Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum x Lycopersicon cheesmanii cross. Theor. Appl. Genet. 90: 925-932.Google Scholar
  164. Gonsalves, C., Xue, B., Pang, S.Z., Provvidenti, R., Slightom, J.L., and Gonsalves, D. 1996. Breeding transgenic tomatoes for resistance to tomato spotted wilt virus and Cucumber mosaic virus. Acta Hort. 431: 442-448.Google Scholar
  165. Gorman, S.W., and McCormick, S. 1997. Male sterility in tomato. Crit. Rev. Plant. Sci. 16(1): 31-35.Google Scholar
  166. Gould, W.A. 1983. Tomato Production, Processing and Quality Evaluation, 2ed. AVI Publishing Company, Inc. Westport, CT. pp. 3-50.Google Scholar
  167. Gradziel, T.M., and Robinson, R.W. 1989. Solanum lycopersicoides gene introgression to tomato, Lycoperscion esculentum, through the systematic avoidance and suppression of breeding barriers. Sex. Plant Reprod. 2: 43-52.Google Scholar
  168. Gragera, J. 2006. Mejora de la calidad en el tomate para industria. En: “Llácer, G.; Díez, M.J.; Carrillo, J.M.; Badenes, M.L. (Eds.). Mejora Genética de la Calidad en Plantas”. Editorial de la Universidad Politécnica de Valencia, Valencia: 299-332.Google Scholar
  169. Gragera, J., Rodríguez, A., and Cuartero J. 2002. Desarrollo de un programa de mejora del contenido en sólidos solubles del tomate para industria. Actas de Horticultura 34: 415-420.Google Scholar
  170. Grandillo, S., and Tanksley, S.D. 1996. QTL analysis of horticultural traits differentianting the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 92: 935-951.Google Scholar
  171. Grandillo, S., Zamir, D., and Tanksley, S.D. 1999. Genetic improvement of processing tomatoes: a 20 years perspectiva. Euphytica 110: 85-97.Google Scholar
  172. Griffiths P.D. 1998. Inheritance and linkage of geminivirus resistance genes derived from Lycopersicon chilense Dunal in tomato (Lycopersicon esculentum Mill) Ph.D. Diss., University of Florida, Gainesville.Google Scholar
  173. Grube, R.C., Radwanski, E.R., and Jahn, M. 2000. Comparative genetcis of disease resistance within the Solanaceae. Genetics 155: 873-887.PubMedGoogle Scholar
  174. Hall, T.J. 1980. Resistance at the Tm-2 locus in the tomato to Tomato mosaic virus. Euphytica 29: 189-197.Google Scholar
  175. Hamilton, E.E. 1976. What the New World economy gave toe old. In: First Images of America: The impact of the New World on the Old. Chiapeli (ed.), vol 2. University of California Press, Los Angeles, pp. 853-884.Google Scholar
  176. Hanson, P.M., Bernacchi, D., Green, S., Tanksley, S.D., Muniyappa, V., Padmaja, A.S., Chen, H.M., Kuo, G., Fang, D., and Chen, J.T. 2000. Mapping a wild tomato introgression associated with Tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Am. Soc. Hort. Sci. 125: 15-20.Google Scholar
  177. Hanson, P.M., Green, S.K., and Kuo, G. 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Rept. Tomato Genet. Coop. 56: 17-18.Google Scholar
  178. Hartman, J.B., and D.A.St. Clair, 1998. Variation for insect resistance and horticultural traits in tomato inbred backcross populations derived from Lycopersicon pennellii. Crop Sci. 38:1501-1508.CrossRefGoogle Scholar
  179. Hernández, F 1790, ed. 1942. Historia de lkas Plantas de Nueva España. Universidad Autónoma de México. México.Google Scholar
  180. Hewitt, J.D., Garvey, T.C., Nevins, D.J., and Jones, R.A. 1987. Wild sources of high soluble solids in tomato. pp. 45-54. In D.J. Nevins and R.A. Jones (Eds.). Tomato Biotechnology. Alan R. Liss, NY.Google Scholar
  181. Ho, J.Y., Weide, R., Ma, H.M., Wordragen, M.F. van, Lambert, K.N., Koornneef, M., Zabel, P., and Williamson, V.M. 1992. The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant J. 2: 971-982.PubMedGoogle Scholar
  182. Huang, C.C., Cui, Y.Y., Weng, C.R., Zabel, P., and Lindhout, P. 2000. Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor. Appl. Genet. 101: 918-924.Google Scholar
  183. Hunziker, A.T. 1979. South American Solanaceae: a synopsic survey. In: “Hawkes, J.G., Lester, R.N., Skelding, A.D. (Eds.). The Biology and Taxonomy of the Solanaceae. Academic Press, New York & London.Google Scholar
  184. Hurst, S., Slade, A., Facciotti, D., Steine, M., Loeffer, D., McGuire, C., Barrios, C., and Vafeados, D. 2006. A reverse genetic approach to tomato crop improvement using the non-transgenic technology, TILLING. Abstract of the 6th International Solanaceae Conference (July, 23-27, Madison, Wisconsin): 454.Google Scholar
  185. Ji, Y., and Chetelat, R.T. 2003. Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor. Appl. Genet. 106: 979-989.PubMedGoogle Scholar
  186. Ji, Y., Pertuzé, R., and Chetelat, R.T. 2004. Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades. Chromosome Res. 12: 107-116.PubMedGoogle Scholar
  187. Jones, D.A., Dickinson, M.J., Balint-Kurti, P.J., Dixon, M.S., and Jones, J.D.G. 1993. Two complex resistance loci revealed in tomato by classical and RFLP mapping of Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Mol. Plant Microbe Interact. 6: 348-357.Google Scholar
  188. Jones, R.A.C., Koenig, R., and Lesemann, D.E. 1980. Pepino mosaic virus, a new potexvirus from pepino Solanum muricatum. Ann. Appl. Biol. 94: 61-68.Google Scholar
  189. Jones, J.B., Lazy, G.H., Bouzar, H., Stall, R.E., and Schaad, N.W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27: 755-762.PubMedGoogle Scholar
  190. Jones, C.M., Mes, P.Myers. 2003. Characterization and inheritance of the Anthocyanin fruit (Aft) Tomato. J. Heredity 94: 449-456.Google Scholar
  191. Jones, J.B., Momol, M.T., Obradovic, A., Balogh, B., and Olson, S.M. 2005. Bacterial spot management on tomatoes. Acta Hort. 695: 119-124.Google Scholar
  192. Jones, J.B., Stall, R.E., and Bouzar, H. 1998. Diversity among Xanthomonas pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 36: 41-58.PubMedGoogle Scholar
  193. Jongedijk, E., Tigellar, H., Van Roekel, J.S.C., Bres-Vloermans, S.A., Van de Elzen, P.J.M., Cornelissen, B.J.C., and Melchers, L.S. 1995. Synergistic activity of chitinases and β1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85: 173-180.Google Scholar
  194. Kabelka, E., Franchino, B., and Francis, D.M. 2002. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92: 504-510.PubMedGoogle Scholar
  195. Kabelka, E., Yang, W., and Francis, D. 2004. Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum the interaction of loci. J. Am. Soc. Hort. Sci. 129: 250-257.Google Scholar
  196. Kalloo, G. 1991. Genetic Improvement of Tomato. Monographs on Theoretical and Applied Genetics 14. Spribger-Verlag, Berlin.Google Scholar
  197. Kaniewski, W., Ilardi, V., Tomassoli, L., Mitsky, T., Layton, J., and Barba, M. 1999. Extreme resistance to cucumber mosaic virus (CMV) in transgenic tomato expressing one or two viral coat proteins. Mol. Breeding 5: 111-119.Google Scholar
  198. Kasrawi, M.A. 1989. Inheritance of resistance to tomato yellow leaf curl virus (TYLCV) in Lycopersicon pimpinellifolium. Plant Dis. 73: 435-437.Google Scholar
  199. Kawabe, K., Iwasaki, M., Hayano-Saito, Y., Honda, Y., Yoshida, K., and Maoka, T. 2002. Virus resistance in transgenic tomato expressing satellite RNA of Cucumber mosaic virus I: Genetical aspects and virus resistance. Res. Bull. Hokkaido National Agric. Exp. Sta. 177: 37-53.Google Scholar
  200. Kawchum, L.M., Lynch, D.R., Hachey, J., Bains, P.S., and Kulscar, F. 1994. Identification of a co-dominant amplified polymorphic DNA marker linked to the verticillium wilt resistance gene in tomato. Theor. Appl. Genet. 89: 661-664.Google Scholar
  201. Kerr, E.A., Patrick, Z.A., and Bailey, D.L. 1971. Resistance in tomato species to new races of leaf mold (Cladosporium fulvum Cke). Hort. Res. 11: 84-92.Google Scholar
  202. Kesavan, V., and Choudhuri, B. 1977. Screening for resistance to Fusarium wilt of tomato. Sabrao J. 9: 57-65.Google Scholar
  203. Knaap, M., Mugada, D.A., and Agong, S.G. 2003. Screening tomato (Lycopersicon esculentum Mill.) accessions for resistance to the twospotted mite Tetranychus urticae Koch: population growth studies. Insect Sci. Applications 23: 15-19.Google Scholar
  204. Ku, H.M., Vision, T., Liu, J., and Tanksley, S.D. 2000. Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97: 9121-9126.PubMedGoogle Scholar
  205. Kunik, T., Salomon, R., Zamir, D., Navot, N., Zeidan, M., Michelson, I., Gafni, Y., and Czosnek, H. 1994. Transgenic tomato plants expressing the Tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12: 500-505.PubMedGoogle Scholar
  206. Kuti, J.O., Konuru, H.B. 2005. Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. J. Sci. Food. Agric. 85: 2021-2026.Google Scholar
  207. Lapidot, M., and Friedmann, M. 2002. Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140: 109-127.Google Scholar
  208. Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., and Pilowsky, M. 1997. Comparison of resistance level to Tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81: 1425-1428.Google Scholar
  209. Lapidot, M., Friedmann, M., Pilowsky, M., and Cohen, S. 2001. Development of a universal scale for evaluation of TYLCV-resistance level in tomato plants. Tomato Breeders Round Table, Antigua, Guatemala.Google Scholar
  210. Lapidot, M., Goldray, O., Ben-Joseph, R., Cohen, S., Friedmann, M., Shlomo, A., Nahon, S., Chen, L., and Pilowsky, M. 2000. Breeding tomatoes for resistance to Tomato yellow leaf curl virus. EPPO Bull. 30: 317-321.Google Scholar
  211. Lapushner, D., and Frankel, R. 1979. Rationale and practice of tomato F1 hybrid breeding and seed production. In: Bianchi A. (Ed.) Monographic di Genetica Agraria IV. Roma pp. 259-273.Google Scholar
  212. Laterrot, H. 1973. Resistance de la tomato au virus de la mosaique du tobac. Difficulties rencontrees pour la selection de varieties resistant. Ann. Amel. Plant 23: 287-313.Google Scholar
  213. Laterrot, H. 1978. Résistance aux maladies. B. Pyrenochaeta lycopersici. Rapport d’Activite INRA Station d’Ameloration des Plantes Maraicheres, 1977-1978: 102-103.Google Scholar
  214. Laterrot, H. 1992. Resistance genitors to Tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl Newsl. 1: 2-4.Google Scholar
  215. Laterrot, H. 1995. Breeding network to create tomato varieties resistant to Tomato yellow leaf curl virus (TYLCV). Fruits 50 (6): 439-444.Google Scholar
  216. Laterrot, H. 2000. Disease resistance in tomato: practical situation. Acta Physiol. Plant. 22: 328-331.Google Scholar
  217. Laterrot, H., and Pecaut, P. 1969. Gene Tm2 new source. Tomato Genet. Coop. Repts. 19: 13-14.Google Scholar
  218. Laterrot, H., and Rat, B. 1981. Efficacy of the Canadian source of resistance to Pseudomonas tomato. In: Philouze, J. (ed). Genetics and Breeding of Tomato. Proceedings of the Eucarpia Tomato Working Group, May 1981, Avignon, Francia: 257-266.Google Scholar
  219. Lawson, D.M., Lunde, C.F., and Mutschler, M.A. 1997. Marker-assisted transfer of acylsugars-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycoperssicon esculentum. Mol. Breeding 3: 307-317.Google Scholar
  220. Lecomte, L., Hospital, F., Buret, M., and Causse, M. 2004. Recent advances in molecular Breeding: the example of tomato breeding for flavor traits. Acta Hort. 637: 231-242.Google Scholar
  221. Légnani, R., Gebre-Selassie, K., Nono Wondim, R., Gognalons, P., Moretti, A., Laterrot, H., and Marchoux, G. (1995) Evaluation and inheritance of the Lycopersicon hirsutum resistance against potato virus Y. Euphytica 86: 219-226.Google Scholar
  222. Lester, R.N. 1991. Evolutionary relationships of tomato, potato, pepino and wild species of Lycopersicon and Solanum. In: “Hawkes, J.G.; Lester, R.N.; Nee, M.; Estrada, N. (Eds.). Solanaceae III: Taxonomy, Chemistry, Evolution. Royal Botanic Garden, Kew”: 283-301.Google Scholar
  223. Levesque, H., Vedel, F., Mathieu, C., and Courcel, A.G.L. 1990. Identification of a short rDNA spacer sequence highly specific of a tomato line containing Tm-1 gene introgressed from Lycopersicon hirsutum. Theor. Appl. Genet. 80: 602-608.Google Scholar
  224. Lindhout, P. 2005. Genetics and Breeding. In: Heuvelink, E (Ed). Tomatoes. CABI Publishing. Oxfordshire.Google Scholar
  225. Ling, K., and Carpenter, L. 2005. Pepino mosaic virus, an emerging disease in greenhouse tomato production worldwide: is seed responsible? Acta Hort. 695: 43-0.Google Scholar
  226. Livingstone, K.D., Lackney, V.K., Blauth, J.R., van Wijk, R., and Jahn, M.K. 1999. Genome mapping in Capsicum and the evolution of genome structure n the Solanaceae. Genetics 152: 1183-1202.PubMedGoogle Scholar
  227. López, C., Soler, S., and Nuez, F. 2005. Comparison of the complete sequences of three different isolates of Pepino mosaic virus: Size variability of the TGBp3 protein between tomato and L. peruvianum isolates. Arch. Virol. 150: 619-627.PubMedGoogle Scholar
  228. Los Rios, G 1592, ed. 1991. Agricultura de Jardines. Facsímile Edition of the Real Jardín Botánico de Madrid.Google Scholar
  229. Luckwill, L.C. 1943. The genus Lycopersicon: An historical, biological, and taxonomical survey of the wild and cultivated tomatoes. Aberdeen Univ. Stud. 120: 1-44.Google Scholar
  230. Maas, E.V. 1986. Salt tolerance of plants. Appl. Agric. Res. I: 12-16.Google Scholar
  231. Maliepaard, C., Bas, N., vanHeusden, S., Kos, J., Pet, G., Verkerk, R., Vrielink, R., Zabel, P., and Lindhout, P. 1995. Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greehouse whitefly) resistance in an F2 from Lycopersicon esculentum x L. hirsutum f. glabratum. Heredity 75: 425-433.Google Scholar
  232. Mapelli, S., Frova, C., Torti, G., and Soressi, G.P. 1978. Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol. 19: 1281-1288.Google Scholar
  233. Marshall, J.A., Knapp, S., Davey, M.R., Power, J.B., Cocking, E.C., Bennett, M.D., and Cox, A.V. 2001. Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor. Appl. Genet. 103: 1216-1222.Google Scholar
  234. Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D., and Tanksley, S.D. 1993a. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432-1436.PubMedGoogle Scholar
  235. Martin, G.B., De Vicente, M.C., and Tanksley, S.D. 1993b. High-resolution linkage analysis and physical characterization of the Pto bacterial resistance locus in tomato. Mol. Plant-Microbe Interact. 6: 26-34.Google Scholar
  236. Martin, G.B., William, J.G.K., and Tanksley, S.D. 1991. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and nearisogenic lines. Proc. Natl. Acad. Sci. USA 88: 2336-2340.PubMedGoogle Scholar
  237. Mattioli, P.A. 1544. Di Pedacio Dioscoride Anazrbeo libri cinque della historia, et materia medicinale tordote in lengua volgare Italiana. Venecia, Italy.Google Scholar
  238. Mazzucato, A., Testa, G., Biancari, T., and Soressi, G.P. 1999. Effect of gibberellic acid treatments, environmental conditions, and genetic background on the exprerssion of the parthenocapic fruit mutation in tomato. Protoplasma 208: 18-25.Google Scholar
  239. McGarvey, P.B., Montasser, M.S., and Kaper, J.M. 1994. Transgenic tomato plants expressing satellite RNA are tolerant to some strains of cucumber mosaic virus. J. Am. Soc. Hort. Sci. 119: 642-647.Google Scholar
  240. Meissner, R., Chague, V., Zhu, Q., Emmanuel, E., Elkind, Y., and Levy, A.A. 2000. A high throughput system for transposson tagging and promoter trapping in tomato. Plant J. 22: 265-274.PubMedGoogle Scholar
  241. Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y., and Levy, A.A. 1997. A new model system for tomato genetics. Plant J. 12: 1465-1472.Google Scholar
  242. Mesbah, L.A., Kneppers, R.J.A., Takken, F.L.W., Laurent, P., Hille, J., and Nijkamp, H.J.J. 1999. Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycoperscion esculentum). Mol. Gen. Genet. 261: 50-57.PubMedGoogle Scholar
  243. Messeguer, R., Ganel, M., de Vicente, M.C., Young, N.D., Bolkar, H., and Tanksley, S.D. 1991. High resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato. Theor Appl. Genet. 82: 529-536.Google Scholar
  244. Miller, P. 1754. The Gardener’s Dictionary, Abridged 4th ed. London. John and James Rivington.Google Scholar
  245. Minsavage, G.V., Dahlbeck, D., Whalen, M.C., Kearney, B., Bonas, U., Staskawicz, B.J., and Stall, R.E. 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Mol. Plant-Microbe Interact. 3: 41-47.Google Scholar
  246. Moghaieb, R.E.A., Tanaka, N., Saneoka, H., Hussein, H.A., Yousef, S.S., Ewada, M.A.F., Aly, M.A.M., and Fujita, K. 2000. Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Sci. Plant Nutr. 46: 873-883.Google Scholar
  247. Momotaz, A., Scott, J.W., and Schuster, D.J. 2005. Searching for silverleaf whitefly and begomovirus resistance genes from Lycopersicon hirsutum accession LA1777. Acta Hort 695: 417-422.Google Scholar
  248. Monforte, A.J., Asins, M.J., and Carbonell, E.A. 1996. Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor. Appl. Genet. 93: 765-772.Google Scholar
  249. Monforte, A.J., Asins, M.J., and Carbonell, E.A. 1997a. Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis?. Theor. Appl. Genet. 95: 284-293.Google Scholar
  250. Monforte, A.J., Asins, M.J., and Carbonell, E.A. 1997b. Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantotative trait loci detection: consttutive and response QTLs. Theor. Appl. Genet. 95: 706-713.Google Scholar
  251. Monforte, A.J., Asins, M.J., and Carbonell, E.A. 1999. Salt tolerance in Lycopersicon species. VII: Pleiotropic action of genes controlling earliness. Theor. Appl. Genet. 98: 593-601.Google Scholar
  252. Monforte, A.J., and Tanksley, S.D. 2000a. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43: 803-813.PubMedGoogle Scholar
  253. Monforte, A.J., and Tanksley, S.D. 2000b. Fine mapping of a quantitative trait local (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor. Appl. Genet. 100: 471-479.Google Scholar
  254. Montes, S., and Aguirre, J.R. 1992. Tomate de cascara (Physalis philadelphica). In: “Hernández, J.E.; León, J (Eds.). Cultivos Marginados. Otra Perspectiva de 1492. FAO. Roma”: 115-120.Google Scholar
  255. Monti, M.M., Valanzoulo, S., Cassani, G., and Colombo, M. 1999. Transgenic tomatoes expressing a cucumber mosaic virus satellite RNA: field testing and analysis of satellite RNA spread. J. Plant Pathol. 81: 113-122.Google Scholar
  256. Moore, S., Payton, P., Wright, M., Tanksley, S.D., and Giovannoni, J. 2005. Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J. Exp. Bot. 56: 2885-2895.PubMedGoogle Scholar
  257. Moore, S., Vrebalov, J., Payton, P., and Giovannoni, J. 2002. Use of genomics tools to isolate key ripening genes and analyze fruit maturation in tomato. J. Exp. Bot. 53: 2023-2030.PubMedGoogle Scholar
  258. Moreau, P., Thoquet, P., Olivier, J., Laterrot, H., and Grimsley, N. 1998. Genetic mapping of the Ph-2, a single locus controlling partial resistance to Phythopthora infestans in tomato. Mol.. Plant-Microbe Interact. 11: 259-268.Google Scholar
  259. Mueller, L.A., Solow, T.H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C., Wright, M.H., Ahrens, R., Wang, Y., Herbst, E.V., Keyder, E.R., Menda, N., Zamir, D., and Tanskley, S.D. 2005. The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiol. 138: 1310-1317.PubMedGoogle Scholar
  260. Muigai, S.G., Bassett, M.J., Schuster, D.J., and Scott, J.W. 2003. Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica 31: 1-12.Google Scholar
  261. Muigai, S.G., Schuster, D.J., Snyder, J.C., Scott, J.W., Bassett, M.J., and McAuslane, H.J. 2002. Mechanisms of resistance in Lycopersicon germplasm to the whitefly Bemisia argentifolii. Phytoparasitica 30: 347-360.Google Scholar
  262. Müller, C.H. 1940. A Revision of the Genus Lycopersicon. U.S.D.A. Misc. Publ. 382: 1-28 + 10 pl.Google Scholar
  263. Mumford, R.A., and Metcalfe, E.J. 2001. The partial sequencing of the genomic RNA of a UK isolate of Pepino mosaic virus and the comparison of the coat protein sequence with other isolates from Europe and Peru. Arch. Virol. 146: 245-2460.Google Scholar
  264. Murphy, J.F., Sikora, E.J., Sammons, B., and Kaniewski, W.K. 1998. Performance of transgenic tomatoes expressing cucumber mosaic virus CP gene under epidemic conditions. HortScience 33: 1032-1035.Google Scholar
  265. Mutschler, M.A., Wolfe, D.W., Cobb, E.D., and Yourstone, K.S. 1992. Tomato fruit quality and shelf life in hybrids heterozygous for the alc ripening mutant. HortScience 27: 352-355.Google Scholar
  266. Mysore, K.S., Tuori, R.P., and Martin, G.B. 2001. Arabidopsis genome sequence as a tool for functional genimocs in tomato. Genome Biol. 2: 1003.1-1003.4.Google Scholar
  267. Nash, A.F., and Gardner, R.G. 1988. Tomato early blight resistance in a breeding line derived from Lycopersicon esculentum PI126445. Plant Dis. 72: 206-209. 2003.Google Scholar
  268. Nervo, G., Cirillo, C., Accotto, G.P., and Vaira, A.M. 2003. Characterisation of two tomato lines highly resistant to TSWV folowing transformation with the viral nucleoprotein gene. J. Plant Pathol. 85: 139-144.Google Scholar
  269. Nguyen, V.O., Ashcroft, W.J., Jones, K. H., and Mc Glasson, W.B. 1991. Evaluation of F1 hybrids incorporating the rin (ripening inhibitor) gene to improve the storage life and fruit quality of fresh market tomatoes (Lycopersicon esculentum Mill.). Austr. J. Exp. Agr. 31: 407-413.Google Scholar
  270. Nienhuis, J., Helentjaris, T., Slocum, M., Roggero, B., and Schaefer, A. 1987. Restriction-Fragment-Length-Polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci. 27: 797-803.CrossRefGoogle Scholar
  271. Nuez, F. (Ed.) 1995. El cultivo del tomate. Mundi Prensa, Madrid, Spain.Google Scholar
  272. Nuez, F., and Carrillo, J.M. (Eds.). 2000. Los Marcadores Genéticos en la Mejora Vegetal. Universidad Politécnica de Valencia, Valencia, Spain.Google Scholar
  273. Nuez, F., Costa, J., and Cuartero, J. 1986. Genetics of the parthenocarpy for tomato varieties “Sub Arctic Plenty”, “75/59” and Severinin”. Z. Pflanzenzücht 96: 200-206.Google Scholar
  274. Nunome, T., Fukumoto, F., Terami, F., Hanada, K., and Iría, M. 2002. Development of breeding materials of transgenic tomato plants with a truncated replicase gene of cucumber mosaic virus for resistance to the virus. Breeding Sci. 52: 219-223.Google Scholar
  275. Oeller, P.W., Wong, L.M., Taylor, L.P., Pike, D.A., and Theologis, A. 1991. Reversible inhibition of tomato fruit senescence by antisense 1-aminocyclopropane 1-carboxylate synthase. Science 254: 437-439.PubMedGoogle Scholar
  276. Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S., Zamir, D., and Fluhr, R. 1997. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9: 521-532.PubMedGoogle Scholar
  277. Pan, Q., Lui. Y.S., Budai-Hadrian, O., Sela., M., Carmel-Coren, L., Zamir, D., and Fluhr, R. 2000. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155: 309-322.PubMedGoogle Scholar
  278. Paran, I. 2004. Marker-assisted utilization of exotic germplasm. In Nguyen, T. and Blum, A. (Eds). Physiology and Biotechnology Integration for Plant Breeding. Kekker, Ed. New York, USA. 453-469.Google Scholar
  279. Paran, I., Ben Chaim, A., Ziger, S., Borovsky, Y., Rao, G.U., and Zamir, D. 2004. Comparative QTL mapping of fruit weight and shape in pepper and tomato.. XIIth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant May 2004, Noordwijkerhout, The Netherlands: 239-242.Google Scholar
  280. Parrella, G., Hochu, I., Gebre-Selassie, K., Gognalons, P., Moreti, A., Marchoux, G., and Caracta, C. 2000. Molecular tagging of the Am gene from Lycopersicon hirsutum f. glabratum PI 134417 using AFLP markers. Acta Physiol. Plant. 22 (3): 291-293.Google Scholar
  281. Parrella, G., Laterrot, H., Selassie, K.G., and Marchoux, G. 1998. Inheritance of resistance to alfalfa mosaic virus in Lycopersicon hirsutum f. glabratum PI 134417. J. Plant Pathol. 80 (3): 241-243.Google Scholar
  282. Parrella, G., Ruffel, S., Moretti, A., Morel, C., Palloix, A., and Caranta, C. 2002. Recessive resistance genes against potyviruses are localized in colinear regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor. Appl. Genet. 105: 855-861.PubMedGoogle Scholar
  283. Paterson, A.H., Damon, S., Hewitt, J.D., Zamir, D., Rabinowitch, H.D., Lincoln, S.E., Lander, E.S., and Tanksley, S.D. 1991. Mendelian factor underlying quantitative traits in tomato: Comparison across species, generations and environments. Genetics 127: 181-197.PubMedGoogle Scholar
  284. Paterson, A.H., DeVerna, J.W., Lanini, B., and Tanksley, S.D. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735-742.PubMedGoogle Scholar
  285. Pelham, J. 1966. Resistance in tomato to tobacco mosaic virus. Euphytica 15: 258-267.Google Scholar
  286. Peñarrubia, L., Kim, R., Giovannoni, J., Kim, S.H., and Fischer, R.L. 1992. Production of the sweet protein monellin in transgenic plants. Bio/Tecnology 10: 561-564.Google Scholar
  287. Peralta, I.E., Knapp, S., and Spooner, D.M. 2005. New species of wild tomatoes (Solanum Section Lycopersicon: Solanaceae) from Northern Peru. Syst. Bot. 30: 424-434.Google Scholar
  288. Peralta, I.E., Knapp, S., and Spooner, D.M. 2006. The taxonomy of tomatoes. A revision of wild tomatoes (Solanum L. section Lycopersicon (Mill.) Wettst.) and their outgroup relatives (Solanum sections Juglandifolium (Rydb.) Child and Lycopersicoides (Child) Peralta). Monogr. Syst. Bot. Missouri Bot. Garden: (in press).Google Scholar
  289. Peralta, I.E., and Spooner, D.M. 2000. Classification of wild tomatoes: a review. Kurtziana 28: 45-54.Google Scholar
  290. Peralta, I.E., and Spooner, D.M. 2001. Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon. Am. J. Bot. 88: 1888-1902.Google Scholar
  291. Peralta, I.E., and Spooner, D.M. 2005. Relationships and morphological characterisation of wild tomatoes (Solanum L. Section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Monogr. Syst. Bot. Missouri Bot. Garden: 227-257.Google Scholar
  292. Pérez de Castro, A., Díez, M.J., and Nuez, F. 2005. Evaluation of breeding tomato lines partially resistant to Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus derived from Lycopersicon chilense. Can. J. Plant Pathol. 27: 268-275.Google Scholar
  293. Pérez de Castro, A., Díez, M.J., and Nuez, F. 2007a. Inheritance of tomato yellow leaf curl virus (TYLCV) resistance derived from Solanum pimpinellifolium UPV16991. Plant Dis., in press.Google Scholar
  294. Pérez de Castro, A., Blanca, J.M., Díez, M.J., and Nuez, F. 2007b. Identification of a CAPS marker tightly linked to the tomato yellow leaf curl disease resistance gene Ty-2 in tomato. Eur. J. Plant Pathol. 117:347-356.Google Scholar
  295. Pertuzé, R.A., Ji, Y., and Chetelat, R.T. 2002. Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome 45: 1003-1012.PubMedGoogle Scholar
  296. Pertuzé, R.A., Ji, Y., and Chetelat, R.T. 2003. Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato. Theor. Appl. Genet. 107: 1391-1401.PubMedGoogle Scholar
  297. Philouze, J. 1976. Les hybrids de la tomato. Pepinierist Hortc. Maraich. 164: 13-18.Google Scholar
  298. Philouze, J., and Maisonneuve, B. 1978. Breeding tomatoes for their ability to set fruit at low temperatures. In: Genotype and Environment in Glasshpuse Tomato Breeding. Proc. Eucarpia Tomato Working Group, 16-20 May 1978, Leningrad: 54-62.Google Scholar
  299. Picken, A.J.F. 1984. A review of pollination and fruit set in the tomato (Lycopersicon esculentum?Mill.) J. Hort. Sci. 59: 1-13.Google Scholar
  300. Picó, B., Díez, M.J., and Nuez, F. 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. - A review. Sci. Hort. 67: 151-196.Google Scholar
  301. Picó, B., Díez, M.J., and Nuez, F. 1998. Evaluation of whitefly -mediated inoculation techniques to screen Lycopersicon esculentum and wild relatives for resistance to tomato yellow leaf curl virus. Euphytica 101: 259-271.Google Scholar
  302. Picó, B., Ferriol, M., Díez, M.J., and Nuez, F. 1999. Developing tomato breeding lines resistant to Tomato yellow leaf curl virus. Plant Breeding 118: 537-542.Google Scholar
  303. Picó, B., Herráiz, J., and Nuez, F. 2000. L. chilense-derived bridge lines for introgressing peruvianum traits in esculentum genome. TGC Report 50: 30-32.Google Scholar
  304. Picó, B., Herraiz, J., Ruiz, J.J., and Nuez, F. 2002. Widening the genetic basis of virus resistance in tomato. Sci. Hort. 94:73-89.Google Scholar
  305. Picó, B., Sifres, A., Elia, M., Díez, M.J., and Nuez, F. 2000. Searching new resistance sources to tomato yellof leaf curl virus within a highly variable wild Lycopersicon genetic pool. Acta Physiol. Plant. 22: 344-350.Google Scholar
  306. Pierce, L.C. 1971. Linkage test with Ph conditioning resistance to race 0. Rpt. Tomato Genet. Coop. 21: 30.Google Scholar
  307. Pilowsky, M., and Cohen, S. 1990. Tolerance to Tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis. 74: 248-250.Google Scholar
  308. Pilowsky, M., and Cohen, S. 2000. Screening additional wild tomatoes for resistance to the whitefly-borne Tomato yellow leaf curl virus. Acta Phisiol. Plant. 22: 351-353.Google Scholar
  309. Pineda, B. 2005. Análisis functional de diversos genes relacionados con la tolerancia a la salinidad y el estrés hídrico en plantas transgénicas de tomate (Lycopersicon esculentum Mill.) PhD Thesis. Universidad Politécnica de Valencia.Google Scholar
  310. Pitblado, R.E., and MacNeill, B.H. 1983. Genetic basis of resistance to Pseudomonas syringae pv. tomato in field tomatoes. Can. J. Plant Pathol. 5: 251-255.Google Scholar
  311. Poysa, V. 1990. The development of bridge lines for interspecific gene transfer between Lycopersicon esculentum and L. peruvianum. Theor. Appl. Genet. 79: 187-192.Google Scholar
  312. Prince, J.P., Pochard, E., and Tanksley, S.D. 1993. Construction of a molecular linkage map of pepper and a comparison of syntheny with tomato. Genome 36: 404-417.PubMedGoogle Scholar
  313. Qu, S., Coaker, G., Francis, D., Zhou, B., and Wang, G.L. 2003. Development of a new transformation-competent artificial chromosome (TAC) vector and construction of tomato and rice TAC libraries. Mol. Breeding 12: 297-308.Google Scholar
  314. Quer, J. 1762-84. Flora Española o Historia de las Plantas que se Crían en España. VI vols. Ibarra, Madrid.Google Scholar
  315. Resende, J.T.V., Maluf, W.R., Cardoso, M.G., Nelson, D.L., and Faria, M.V. 2002. Inheritance of acylsugars contents in tomatoes derived from an interspecific cross with the wild tomato Lycopersicon pennellii and their effect on spider mite repellence. Genet. Mol. Res. 1: 106-116.PubMedGoogle Scholar
  316. Resende, J.T.V., Maluf, W.R., Faria, M.V., Pfann, A.Z., and Rodrigues do Nascimento, I. 2006. Acylsugars in tomato leaflets confer resistance to the South American tomato pinworm, Tuta absoluta Meyr. Sci. Agric. 63: 20-25.Google Scholar
  317. Rick, C.M. 1951. Hybrids between Lycopersicon esculetum Mill. and Solanum lycopersicoides. Dun. Proc. Natl. Acad. Sci. USA 37: 741-744.Google Scholar
  318. Rick. C.M. 1971. The tomato Ge locus: linkage relations and geographic distribution of alleles. Genetics 67: 75-85.PubMedGoogle Scholar
  319. Rick, C.M. 1973. Potential genetic resources in tomato species: Clues from observations in native habitats. In: A.M. Srb (Editor), Genes, Enzymes and Populations. Plenum, New York. pp. 255-269.Google Scholar
  320. Rick, C.M. 1976. Tomato (family Solanaceae). In: Simmonds, N.W. (eds.). Evolution of Crop Plants, Longman Publication: 268-273.Google Scholar
  321. Rick, C.M. 1978. The Tomato. Sci. Am. 239: 76-87.Google Scholar
  322. Rick, C.M. 1983. Crossability between L. esculentum and a new race of L. peruvianum. TGC Rpt. 33: 13.Google Scholar
  323. Rick, C.M., and Fobes, J.F. 1975. Allozyme variation in the cultivated tomato and closely related species. Bull. Torrey Bot. Club 102: 376-384.Google Scholar
  324. Rick, C.M., and Robinson, J. 1951. Inherited defects of floral structure affecting fruitfulness in Lycopersicon esculentum. Am. J. Bot. 38: 639-652.Google Scholar
  325. Rick, C.M., Zobel, R.W., and Fobes, J.F. 1974. Four peroxidase loci in red-fruited tomato species: genetics and geographic distribution. Proc. Natl. Acad. Sci. USA 71: 835-839.PubMedGoogle Scholar
  326. Rodríguez-Demorizi, E. 1942. Relaciones Históricas de Santo Domingo. Editora Montalvo, Ciudad Trujillo, República Dominicana.Google Scholar
  327. Rosati, C., Aquilani, R., Sridhar, D., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B., and Giuliano, G. 2000. Metabolic engineering of beta -carotene and lycopene content in tomato fruit. Plant J. 24: 413-419.PubMedGoogle Scholar
  328. Roselló, S., Galiana-Balaguer, L., Herrero-Martínez, J.M., Maquieira, A., and Nuez, F. 2002. Simultaneous quantification of the main organic acids and carbohydrates involved in tomato flavorur using capillary zone electrophoresis. J. Sci. Food Agr. 82: 1101-1106.Google Scholar
  329. Roselló, S., Galiana-Balaguer, L., and Nuez, F. 2000. Sources of high soluble solids and vitamin C content from Lycopersicon pimpinellifolium are interesting in breeding for internal quality of fresh market tomato. Tomato Genet. Coop. Rpt. 50: 33-34.Google Scholar
  330. Roselló, S., and Nuez, F. 2006. Mejora de la calidad en el tomate para fresco. In: Díez, M.J.; Carrillo, J.M.; Bádenes, M. and Llácer, G., (Eds.) Mejora Genética de la Calidad. Universidad Politécnica de Valencia, Valencia, Spain: 333-359.Google Scholar
  331. Rotino, G.L., Acciarri, N., Sabatini, E., Mennella, G., Lo Scalzo, R., Maestrelli, A., Molesini, B., Pandolfini, T., Scalzo, J., Mezzetti, B., and Spena, A. 2005. Open field trial of genetically modifies parthenocarpic tomato: seedless and fruit quality. BCM Biotechnol. 5: 32.Google Scholar
  332. Ruiz, H. 1952. Relación Histórica del Viaje, que Hizo a los Reynos de Perú y Chile el Botánico D. Hipólito Ruiz en el Año de 1777 Hasta el de 1788, en Cuya Época Regresó a Madrid. 2 Edición enmendada y completada por el Dr. Jaime Jaramillo Arago. Real Academia de las Ciencias Exactas, Físicas y Naturales, Madrid, Spain.Google Scholar
  333. Rus, A.M., Estañ, M.T., Gisbert, C., García-Sogo, B., Serrano, R., Caro, M., Moreno, V., and Bolarín, M.C. 2001. Expressing the yeast HAL1 gene in tomato increases fruti yield and enhances K+/Na+ selectivity under salt stress. Plant, Cell Environ. 24: 875-880.Google Scholar
  334. Sacks, E.J., and St. Clair, D.A. 1996. Cryogenic storage of tomato pollen: effect on fecundity. HortScience 31 (3): 447-448.Google Scholar
  335. Sahagún, B de. 1988. Historia General de las Cosas de Nueva España. 2nd Vol. Alianza Editorial. Madrid.Google Scholar
  336. Saito, Y., Komari, T., Masuta, C., Hayashi, Y., Kumashiro, T., and Takanami, Y. 1992. Cucumber mosaic virus tolerant transgenic tomato plants expressing a satellite RNA. Theor. Appl. Genet. 83: 679-683.Google Scholar
  337. Saliba-Colombani, V., Causse, M., Langlois, D., Philouze, J., and Buret, M. 2001. Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor. Appl. Genet. 102: 259-272.Google Scholar
  338. Salmeron, J.M., Oldroyd, G.E.D., Rommens, C.M.T., Scofield, S.R., Kin, H.S., Lavelle, D.T., Dahlbeck, D., and Staskawicz, B.J. 1996. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell Cambridge 86(1): 123-133.PubMedGoogle Scholar
  339. Sandbrink, J.M., van Ooijen, J.W., Purimahua, C.C., Vrielink, M., Verkerk, R., Zabel, P., and Lindhout, P. 1995. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theor. Appl. Genet. 90: 444-450.Google Scholar
  340. Saranga, Y., Cahaner, A., Zamir, D., Marani, A., and Rudich, J. 1992. Breeding tomatoes for salt tolerance: inheritance of salt tolerance and related traits in interspecific populations. Theor. Appl. Genet. 84: 390-396.Google Scholar
  341. Saranga, Y., Zamir, D., Marani, A., and Rudich, J. 1991. Breeding tomatoes for salt tolerante: field evaluation of Lycopersicon germplasm for yield and dry-matter production. J. Am. Soc. Hort. Sci. 116: 1067-1071.Google Scholar
  342. Sarfatti, M., Katan, J., Fluhr, R., and Zamir, D. 1989. An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor. Appl. Genet. 78: 755-759.Google Scholar
  343. Sarfatti, M., Abu-Abied, M., Katan, J., and Zamir, D. 1991. RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor. Appl. Genet. 80: 22-26.Google Scholar
  344. Sauer, J.D. 1993. Historical Geography of Crop Plants. A Select Roster. CRC Press, Boca Raton, USA.Google Scholar
  345. Schroeder, S. 1993. Sunseeds: The challenge of breeding processing tomatoes. In: “Yoder, J (Ed.). Molecular Biology of Tomato. Fundamental Advances and Crop Improvement. Technomic Publishing Co., Lancaster-Basel”: 5-12.Google Scholar
  346. Schuch, W., Kanczler, J., Robertson, D., Hobson, G., Tucker, G., Grierson, D., Bright, S., and Bird, C. 1991. Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. HortScience 26: 1517-1520.Google Scholar
  347. Scott, J.W. 1996. Tomato improvement for bacterial disease resistance for the tropics: a contemporary basis and future prospects. Proc. 1st Intl. Symposium on Tropical Tomato Diseases, Recife, Pernanbuco, Brazil, 21-22 November 1996: 117-123.Google Scholar
  348. Scott, J.W. 1999. Tomato plants heterozygous for fusarium wilt race 3 resistance develop larger fruit than homozygous resistant plants. Proc. Fla. State Hort. Soc. 112: 305-307.Google Scholar
  349. Scott, J.W. 2005. Perspectives on tomato disease resistance breeding: past, present and future. Acta Hort. 695: 217-224.Google Scholar
  350. Scott, J.W., and Jones, J.P. 1989. Monogenic resistance in tomato to Fusarium oxysporum f. sp. Lycopersici race 3. Euphytica 40: 49-53.Google Scholar
  351. Scott, J.W., Stevens, M.R., Barten, J.H.M., Thome, C.R., Polston, J.E., Schuster, D.J., and Serra, C.A. 1996. Introgression of resistance to whitefly-transmitted geminiviruses from Lycopersicon chilense to tomato. In: Taxonomy, Biology, Damage, Control and Management Bemisia: 1995, pp. 357-367.Google Scholar
  352. Ed D. Gerling, Andover, Hants, UK. Scott, J.W., Wang, J.F., and Hanson, P.M. 2005. Breeding tomatoes for resistance to bacterial wilt, a global view. Acta Hort. 695: 161-172.Google Scholar
  353. Seeman, B.C. 1853. Flora of the Isthmus of Panama. XIII-L: 57-274.Google Scholar
  354. Segal, G., Sarfatti, M., Schaffer, M.A., Ori, N., Zamir, D., and Fluhr, R. 1992. Correlation of genetic and physical structure in the region surrounding the I2 Fusarium oxysporum resistance locus in tomato. Mol. Gen. Genet. 213: 179-185.Google Scholar
  355. Seguí-Simarro, J.M., and Nuez, F. (2005). Meiotic metaphase I to telophase II is the most responsive stage of microspore development for induction of androgenesis in tomato (Solanum Lycopersicum). Acta Physiol. Plant. 27: 675-685.Google Scholar
  356. Sheehy, R.E., Kramer, M., and Hiatt, W.R. 1988. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc. Natl. Acad. Sci. USA 85: 8805-8809.PubMedGoogle Scholar
  357. Shtereva, L.A., Zagorska, N.A., Dimitrov, B.D., Kruleva, M.M., and Oanh, H.K. 1998. Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Repts. 18: 312-317.Google Scholar
  358. Simons, G., Groenedinjk, J., Wijbrandi, J., Reijans, M., Groenen, J., Diergaarde, P., Van der Lee, T., Bleeker, M., Onstenk, J., de Both, M., Haring, M., Mes, J., Cornelissen, B., Zabeau, M., and Vos, P. 1998. Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10: 1055-1066.PubMedGoogle Scholar
  359. Singh, S., and Sawhney, V.K. 1998. Abscisic acid in a male sterile tomato mutant and its regulation by low temperature. J. Exp. Bot. 49: 199-203.Google Scholar
  360. Smith, P.G. 1944. Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hort. Sci. 44: 413-416.Google Scholar
  361. Smith, C.S.J., Watson, C.F., Ray, J., Bird, C.R., Morris, P.C., Schuch, W., and Grierson, D. 1988. Antisense RNA inhibition of polygalacturonase gene exporession in transgenic tomatoes. Nature 334: 724-726.Google Scholar
  362. Snyder, J.C., Thacker, R.R., and Zhang, X.M. 2005. Genetic transfer of a twospotted spider mite (Acari: Tetranychidae) repellent in tomato hybrids. J. Econ. Entomol. 98: 1710-1718.PubMedGoogle Scholar
  363. Soler, S., López, C., Cebolla-Cornejo, J., and Nuez, F. 2006. Sources of resistance to Pepino mosaic virus (PepMV) in tomato. HortScience: (in press).Google Scholar
  364. Soler, S., López, C., Díez, M.J., Pérez de Castro, A., and Nuez, F. 2005. Association of Pepino mosaic virus with tomato collapse. J. Phytopathol. 153: 464-469.Google Scholar
  365. Soler, S., Prohens, J., Díez, M.J., and Nuez, F. 2002. Natural occurrence of Pepino mosaic virus in Lycopersicon species in the Central and Southern Peru. J. Phytopathol. 150: 49-53.Google Scholar
  366. Soost, R.K. 1959. Tobacco mosaic resistance. TGC Report 9: 46.Google Scholar
  367. Soressi, G.P., and Salamini, F. 1975. A mono-Mendelian gene inducing parthenocaepic fruit set. Rep. Tomato Genet. Coop. 25: 22.Google Scholar
  368. Speirs, J., Lee, E., Holt, K., Kim, Y.D., Scott, N.S., Loveys, B., and Schuch, W. 1998. Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiology 117: 1047-1058.PubMedGoogle Scholar
  369. Spooner, D.M., Anderson, G.J., and Jansen, R.K. 1993. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am. J. Bot. 80: 676-688.Google Scholar
  370. Spooner, D.M., Peralta, I.E., and Knapp, S. 2005. Comparison of AFLPs with other markers ofr phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.)Wettst.]. Taxon 54: 43-61.Google Scholar
  371. Stall, R.E. 1995. Xanthomonas campestris pv. vesicatoria. pp. 167-181. In: Pathogenesis and Host Specificity in Plant Diseases. Histopathological, Biochemical, Genetic and Molecular Basis. U.S. Singh, R.P. Singh abd K. Kohmoto, eds. Elsevier Science, New York.Google Scholar
  372. Stamova, B.S., and Chetelat, R.T. 2000. Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor. Appl. Genet. 101: 527-537.Google Scholar
  373. Stamova, L., and Yordanov, M. 1990. Lv as a symbol of the gene controlling resistance to Leveillula taurica. Tomato Gen. Coop. Rept. 40: 36.Google Scholar
  374. Staniaszek, M., Marczewski, W., Habdas, H., and Potaczek, H. 2000. Identification of RAPD marker linked to the ps gene and their usefulness for purity determination of breeding lines and F1 tomato hybrids. Acta Phisiol. Plant. 22: 303-305.Google Scholar
  375. Stevens, M.R., Lamb, E.M., and Rhoads, D.D. 1995. Mapping the Sw-5 locus for Tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyzes. Theor. Appl. Genet. 90: 451-456.Google Scholar
  376. Stevens, M. A., and Rick, C.M. 1986. Genetics and Breeding. In: Atherton, J.G. and Rudich, J. (Eds.). The Tomato Crop. A Scientific Basis for Crop Improvement. Chapman and Hall. London.Google Scholar
  377. Stommel, J.R., Tousignant, M.E., Wai, T., Pasini, R., and Kaper, J.M. 1998. Viral satellite RNA expression in transgenic tomato confers filed tolerance to cucumber mosaic virus. Plant Dis. 82: 391-396.Google Scholar
  378. Sun, H.J., Uchii, S., Watanabe, S., and Ezura, H. 2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47: 426-431.PubMedGoogle Scholar
  379. Tabaeizadeh, Z., Agharbaoui, Z., Harrak, H., and Poysa, V. 1999. Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Repts. 19: 197-202.Google Scholar
  380. Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153-14158.PubMedGoogle Scholar
  381. Tanksley, S.D. 1993. Linkage map of the tomato (Lycoperscion esculentum) (2N= 24). In: S.J. O’Brian (ed.) Genetics Maps: Locus Maps of Complex Genomes, Cold Spring Harbor Laboratory Press, Cold Spring Harbors, N.Y. pp. 6.3-6.15.Google Scholar
  382. Tanksley, S.D., Bernatzky, R., Lapitan, N.L., and Prince, J.P. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA 85: 6419-6423.PubMedGoogle Scholar
  383. Tanksley, S.D., and Costello, W. 1991. The size of the L. pennellii chromosome 7 segment containing the I-3 gene in tomato breeding lines measured by RFLP probing. Rpt. Tomato Genet. Coop. 41: 60.Google Scholar
  384. Tanksley, S.D., Ganal, M.W., Prince, J.P., de-Vicente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Roder, M.S., Wing, R.A., Wu, W., and Young, N.D. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141-1160.PubMedGoogle Scholar
  385. Tanksley, S.D., Grandillo, S., Fulton, T.M., Zamir, D., Eshed, Y., Petiard, V., Lopez, J., and Beck-Bunn, T. 1996. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92: 213-224.Google Scholar
  386. Tanksley, S.D., and McCouch, S.R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063-1066.PubMedGoogle Scholar
  387. Tanksley, S.D., and Nelson, J.C. 1996. Advenced Backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92: 191-203.Google Scholar
  388. Taylor, I.B. 1986. Biosystematics of the tomato. In: J.G.AthertonJ. Rudich (Editors). The Tomato Crop: A Scientific Basis for Improvement. Chapman and Hall. London.Google Scholar
  389. Termolino, P., Cammareri, M., Massarelli, I., Raimondi, G., Giovannoni, J., Maggio, A., and Grandillo, S. 2006. Physiological and molecular response to salt stress in Solanum lycopersicum. Abstract of the 6th International Solanaceae Conference (July, 23-27,Madison, Wisconsin): 217.Google Scholar
  390. Thomas, B.R., and Pratt, D. 1981. Efficient hybridization between Lycopersicon esculentum and L. peruvianum via embryo callus. Theor. Appl. Genet. 59: 215-219.Google Scholar
  391. Thorup, T.A., Tanyolac, B., Livingstone, K.D., Popovsky, S., Paran, I., and Jahn, M. 2000. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. USA 97: 11192-11197.Google Scholar
  392. Tieman, D.M., and Klee, H. 1999. Differential expresión of two novel members of the tomato ethylene-receptor family. Plant Physiol. 120: 165-172.PubMedGoogle Scholar
  393. Tronikova, E. 1962. New type of functional male sterility in tomato. Ved Prace Vysk Ust Rostl Vyr Praha-Ruzine 6: 29-39.Google Scholar
  394. Ultzen, T., Gielen, J., Venema, F., Westerbroek, A., de Haan, P., Tan, M.L., Schram, A., van Grinsven, M., and Goldbach, R. 1995. Resistance to tomato spotted wilt virus in transgenic tomato hybrids. Euphytica 85: 159-168.Google Scholar
  395. Vakaluonakis, D.J., Laterrot, H., Moretti, A., Ligoxigakis, E.K., and Smardas, K. 1997. Linkage between Frl (Fusarium oxysporum f. sp. radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato. (Lycopersicon esculentum). Ann. Appl. Biol. 130: 319-323.Google Scholar
  396. Van der Beek, J.G., Pet, G., and Lindhout, P. 1994. Resistance to powdery mildew (Oidium lycopersicum) in Lycopersicum hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome 6. Theor. Appl. Genet. 89: 467-473.Google Scholar
  397. Van der Beek, J.G., Verkerk, R., Zabel, P., and Lindhout, P. 1992. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor. Appl. Genet. 94: 196-112.Google Scholar
  398. Van der Biezen, E.A., Glagotskaya, T., Overdiun, B., Nijkamp, H.J.J., and Hille, J. 1995. Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici in Lycopersicon pennellii. Mol. Gen Genet. 247: 453-461.PubMedGoogle Scholar
  399. Van der Hoeven, R., Monforte, A.J., Breeden, D., and Tanksley, S.D., and Steffens, J.C.2000. Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12: 2283-2294.PubMedGoogle Scholar
  400. Van der Hoeven, R., Ronning, C., Giovannoni, C., Martín, G., and Tanksley, S. 2002. Deductions about the number, organization and evolution of genes in the tomato genome based on analysis of a large EST collection and selective genomic sequencing. Plant Cell 14: 1441-1456.PubMedGoogle Scholar
  401. Van der Vlught, R.A.A., Stijger, C.C.M.M., Verhoeven, J.Th.J., and Lesemann, D.E. 2000. First report of pepino misaic virus on tomato. Plant Dis. 84:103.Google Scholar
  402. Van Heusden, A.W., Koornneef, M., Voorrips, R.E., Bruggenmann, W., Pet, G., Vrielink-van-Ginkel, R., Chen, X., and Lindhout, P. 1999. Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis subsp. michiganensis. Theor. Appl. Genet. 99: 1068-1074.Google Scholar
  403. Varma, A., and Malathi, V.G. 2003. Emerging geminivirus problems: A serious treta to crop production. Ann. Appl. Biol. 142: 145-164.Google Scholar
  404. Vázquez de Espinosa, A. 1948. Compendio y Descripción de las Indias Occidentales. Transcrito del manuscrito original por Charles Upson Clark, Smithsonian Miscenalleous Collection. Vol 108. Washington D.C., USA.Google Scholar
  405. Velasco, J. de. 1927. Historia del Reino de Quito en la América Meridional Escrita por Don Juan de Velasco, Nativo del Mismo Reino. Año de 1789. Tomo I, Parte 1. Imprenta Nacional, Quito, Ecuador.Google Scholar
  406. Venema, J.H., Villerius, L., and Van Hassel, P.R. 2000. Effect of acclimation to suboptimal temperature on chilling-induced photodamage: comparison between a domestic and high-altitude wild Lycopersicon species. Plant Sci. 152: 153-163.Google Scholar
  407. Veremis, J.C., van Heusden, A.W., and Roberts, P.A. 1999. Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor. Appl. Genet. 98: 274-280.Google Scholar
  408. Verhoeven, J.Th.J., van der Vlugt, R.A.A., and Roenhorst, J.W. 2003. High similarity between tomato isolates of Pepino mosaic virus suggests a common origin. Eur. J. Plant Pathol. 109: 419-425.Google Scholar
  409. Vidasky, F., and Czosnek, H. 1998. Tomato breeding lines resistant and tolerant to Tomato yellow leaf curl virus issued from Lycoperscon hirsutum. Phytopathology 88: 910-914.Google Scholar
  410. Vidasky, F., Leviatov, S., Milo, J., Rabinowitch, H.D., Kedar, N., and Czosnek, H. 1998. Response to tolerant breeding lines of tomato, Lycoperscion esculentum, originating from three different sources (L. peruvianum, L. pimpinellifolium and L. chilense) to early controlled inoculation by Tomato yellow leaf curl virus (TYLCV). Plant Breeding 117: 165-169.Google Scholar
  411. Villareal, R.L. 1980. Tomato in the Tropics. Westview Press, Inc. Colorado.Google Scholar
  412. Wang, J.F., Hanson, P., and Barnes, J.A. 1998. Worlwide evaluation of an international set of resistance sources to bacterial wilt in tomato. P. 269-275. In: P. Prior, C. Allen and J. Elphinstone (eds.), Bacterial Wilt Disease: Molecular and Ecological Aspects, Springer-Verlag, Berlin.Google Scholar
  413. Wang, J.F., Oliver, J., Thoquet, P., Mangin, B., Sauviac, L., and Grimsley, N.H. 2000. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled by a major strain-specific locus. Mol. Plant-Microbe Interact. 13: 6-13.PubMedGoogle Scholar
  414. Wann, E.V., Jourdain, E.L., Pressey, R., and Lyon, B.G. 1985. Effect of mutant genotypes “hp og” and “dg og” on tomato fruit quality. J. Am. Soc. Hort. Sci. 110: 212-215.Google Scholar
  415. Wehrhahm, C., and Allard, R.W. 1965. The detection and measurement of the effects of individual genes in the inheritance of a quantitative character in wheat. Genetics 51:109-119.Google Scholar
  416. Williams, D.E. 1990. A review of resources for the study of nahuatl plant classification. Adv. Econ Bot. 8: 249-270.Google Scholar
  417. Williams, W.G., Kennedy, G.G., Yamamoto, R.T., Thacker, J.D., and Bordner, J. 1980. 2-tridecanone, naturally occurring insecticide from the wild tomato Lycoeprsicon hirsutum f. glabratum. Science 207: 888-889.PubMedGoogle Scholar
  418. Williamson, V.M., Ho, J.Y., Wu, F.F., Miller, N., and Kaloshian, I. 1994. A PCR-based marker tightly linked to the nematode resistance gene Mi in tomato. Theor. Appl. Genet. 87: 757-763.Google Scholar
  419. Wisler, G.C., Li, R.H., Liu, H.Y., Lowry, D.S., and Duffus, J.E. 1998. Tomato chlorosis virus: a new whitefly-transmitted, phloem-limited, bipartite closterovirs of tomato. Phytopathology 88: 402-409.PubMedGoogle Scholar
  420. Wu, G.S., Shortt, B.J., Lawrence, E.B., Leon, J., Fitzsimmons, K.C., Levine, E.B., Raskin, I., and Shah, D.M. 1997. Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol. 115: 427-435.PubMedGoogle Scholar
  421. Xue, B., Gonsalves, C., Provvidenti, R., Slightom, J.L., Fuchs, M., and Gonsalves, D. 1994. Development of transgenic tomato expressing a high level of resistance to cucumber mosaic virus strains of subgroups I and II. Plant Dis. 78: 1038-1041.Google Scholar
  422. Yaghoobi, J., Kaloshian, I., Wen, Y., and Williamson, V.M. 1995. Mapping of a new nematode resistance locus in Lycopersicon peruvianum. Theor. Appl. Genet. 91: 457-464.Google Scholar
  423. Yamamoto, N., Tsugane, T., Watanabe, M., Yano, K., Maeda, F., Kuwata, C., Torki, M., Ban, Y., Nishimura, S., and Shibata, D. 2005. Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertion/deletions in tomato cultivars. Gene 356: 127-134.PubMedGoogle Scholar
  424. Yang, W., Bai, X., Eaton, C., Kabelka, E., Eaton, C., Kamoun, S., van der Knaap, E., and Francis, D. 2004. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol. Breeding 14: 21-34.Google Scholar
  425. Yang, Y., Sherwood, T.A., Patte, C.P., Hiebert, E., and Polston, J.E. 2004. Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94: 490-496.PubMedGoogle Scholar
  426. Yates, H.E., Frary, A., Doganlar, S., Frampton, A., Eannetta, N.T., Uhlig, J., and Tanksley, S.D. 2004. Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135: 283-296.Google Scholar
  427. Yogeesha, H., Nagaraja, A., and Shama, S.P. 1999. Pollination studies in hybrid seed production. Seed Sci. Technol. 27: 115-122.Google Scholar
  428. Yong, J.G., Jin, D., Weng, M., T, G.B., and Wang, B. 1999. Transformation and expression of trichosanthin gene in tomato. Acta Bot. Sinica 41: 334-336.Google Scholar
  429. Yousef, G.G., and Juvik, J.A. 2001. Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solids. Theor. Appl. Genet. 103: 1022-1027.Google Scholar
  430. Zagorska, N.A., Shtereva, A., Dimitrov, B.D., and Kruleva, M.M. (1998). Induced androgenesis in tomato (Lycopersicon esculentum Mill.) - I. Influence of genotype on androgenetic ability. Plant Cell Repts. 17: 968-973.Google Scholar
  431. Zagorska, N.A., Shtereva, L.A., Kruleva, M.M., Sotirova, V.G., Baralieva, D.L., and Dimitrov, B.D. (2004). Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Repts. 22: 449-456.Google Scholar
  432. Zamir, D., Bendavid, T.S., Rudich, J., and Juvik, J.A. 1984. Frequency distributions and linkage relationships of 2-tridecanone in interspecific segregating generations of tomato. Euphytica 33: 481-488.Google Scholar
  433. Zamir, D., Michelson, I.E., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., van Oss, H., Kedar, N., Rabinowitch, H.D., and Czosnek, H. 1994. Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146.Google Scholar
  434. Zamir, D., Tanksley, S.D., and Jones, R.A. 1982. Haploid selection for low temperature tolerance of tomato pollen. Genetics 101: 129-137.PubMedGoogle Scholar
  435. Zhang, H.X., and Blumwald, E. 2001. Transgenic salt-tolerance tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol. 19: 765-768.Google Scholar
  436. Zhang, Y., and Stommel, J.R. 2000. RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence beta-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill). Theor. Appl. Genet. 100: 368-375.Google Scholar
  437. Zhang, Y., and Stommel, J.R. 2001. Development of SCAR and CAPS markers linked to the Beta gene in tomato. Crop Sci. 41: 1602-1608.CrossRefGoogle Scholar
  438. Zhu, H., Zang, H., Mao, K., Yang, Z., and Wang, A.Y. 2002. Effects of timing of artificial pollination and frequency on hybrid seed production of tomato. J. Yunnan Agric. Univ. 17 (3): 217-219.Google Scholar
  439. Zinder, J.C., Guo, Z.H., Thacker, R., Goodman, J.P., and Stpyrek, J. 1993. 2,3-Dihydrofarnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider-mites. J. Chem. Ecol. 19: 2981-2997.Google Scholar
  440. Zygier, S., Chaim, A.B., Efrati, A., Kaluzky, G., Borovsky, Y., and Paran, I. 2005. QTLs mapping for fruit size and shape in chromosome 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor. Appl. Genet. 111: 437-445.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • María José Díez
    • 1
  • Fernando Nuez
    • 1
  1. 1.Instituto de Conservación y Mejora de la Agrodiversidad ValencianaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations