Vegetables II pp 221-248 | Cite as


  • Kevin M. Crosby
Part of the Handbook of Plant Breeding book series (HBPB, volume 2)

Cultivated peppers are all members of the new world genus Capsicum. Their production and consumption have steadily increased in the United States and worldwide during the 20th century due to their roles as both vegetable and spice. Just like their solanaceous cousins, tomatoes and potatoes, peppers have rapidly become an important component of diverse cuisines around the world. This is reflected in the large acreages devoted to their production in such countries as India, Mexico, China, Korea, and the United States (Table 1). In addition, interest in both sweet and pungent types of peppers is growing in many countries not traditionally associated with spicy cuisine. Protected culture has developed in northern latitude countries such as Holland and Canada and also in Mediterranean countries such as Spain and Israel, to supply the increased demand (Shaw and Cantliffe, 2003). Much of the recent attention focused on peppers can be attributed to their unique pungency, which has made them an important spice in the cuisines of various countries. The proliferation of ethnic restaurants and food products from such countries as Mexico, India and Thailand has positively influenced the demand for peppers throughout the world. Both sweet and hot peppers are processed into many types of sauces, pickles, relishes and canned products. Consumption of these condiments and snack items has surpassed tomato based condiments, such as ketchup, in the United States.


Cucumber Mosaic Virus Capsicum Annuum Tobacco Etch Virus Xanthomonas Campestris Hybrid Cultivar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, J. 1984. Peppers-the domesticated Capsicums. University of Texas Press, Austin.Google Scholar
  2. Ariyatne, I., Hobbs, H.A., Valverde, R.A., Black, L.L., and Dufresne, D.J. 1996. Resistance of Capsicum spp. genotypes to Tobacco Etch Potyvirus isolates from the western hemisphere. Plant Dis. 80: 1257-1261.Google Scholar
  3. Bassett, M. J. 1986. Breeding Vegetable Crops. Avi Publishing, Westport.Google Scholar
  4. Binzel, M.L., Sankhla, N., Joshi, S., and Sankhla, D. 1996. Induction of direct somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell Reports 15(7): 536-540.CrossRefGoogle Scholar
  5. Black, L.L., Hobbs, H.A., and Gatti, J.M. Jr. 1991. Tomato Spotted Wilt Virus resistance in Capsicum chinense PI 152225 and 159236. Plant Dis. 75: 863.Google Scholar
  6. Black, L.L., Green, S.K., Hartman, G.L., and Poulos, J.M. 1991. Pepper Diseases- A Field Guide. Asian Vegetable Research and Development Center.Google Scholar
  7. Bosland, P.W. 1993. An effective plant field-cage to increase production of genetically pure chile (Capsicum spp.) seed. HortScience 28: 1053.Google Scholar
  8. Bosland, P.W. 2000. Sources of curly top virus resistance in Capsicum. HortScience 35: 1321-1322.Google Scholar
  9. Bosland, P.W. and Votava, E.J. 2000. Peppers: Vegetable and Spice Capsicums. CABI Publishing, New York.Google Scholar
  10. Boukema, I.W. 1980. Allelism of genes controlling resistance to TMV in Capsicum L. Euphytica 29: 433-439.CrossRefGoogle Scholar
  11. Caranta, C., Thabuis, A., and Palloix, A. 1999. Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome 42: 111-1116.CrossRefGoogle Scholar
  12. Cochran, H.L. 1974. Effect of seed size on uniformity of pimiento transplants (Capsicum annuum L.) at harvest time. J. Amer. Soc. Hort. Sci. 99: 234-235.Google Scholar
  13. Coffey, M. and Miller, T. 2005. Biology and control of powdery mildew of peppers. Annual report of the California Pepper Commission. Dinuba, CA.Google Scholar
  14. Cook, A.A. and Guevara, Y.G. 1984. Hypersensitivity in Capsicum chacoense to race 1 of the bacterial spot pathogen of pepper. Plant Dis. 68: 329-330.CrossRefGoogle Scholar
  15. Cook, A.A. and Stall, R.E. 1963. Inheritance of resistance in pepper to bacterial spot. Phytopathology 53: 1060-1062.Google Scholar
  16. Cook, A.A. 1960. Genetics of resistance in Capsicum annuum to two virus diseases. Phytopathology 50: 364-367.Google Scholar
  17. Crosby, K.M., Leskovar, D.I. and Yoo, K.S. 2005a. ‘TAM Mild Habanero,’ a low pungency Habanero pepper. Hort. Sci. 40: 490-491.Google Scholar
  18. Crosby, K., Leskovar, D., and Yoo, K. 2005b. TAM ‘Dulcito’ and ‘Tropic Bell’-two new sweet peppers with enhanced beneficial phytochemical levels. HortScience 40: 1020.Google Scholar
  19. Crosby, K., Pike, L., Jifon, J., and Yoo, K. 2005c. Breeding vegetables for optimum levels of phytochemicals. Proceedings of FAV2005, Quebec City, Canada (In Press).Google Scholar
  20. Crosby, K.M. and Villalon, B. 2002. ‘TAM Mild Jalapeño II,’ a new, multiple virus resistant, mild jalapeño pepper. HortScience 37: 999-1000.Google Scholar
  21. Daubeze, A.M., Hennart, J.W., and Palloix, A. 1995. Resistance to Leveillula taurica in pepper (Capsicum annuum) is oligogenically controlled and stable in Mediterranean regions. Plant Breeding 114: 327-332.CrossRefGoogle Scholar
  22. Desphande, A.A., Anand, N., Pathak, C.S., and Sridhar, T.S. 1985. New sources of powdery mildew resistance in Capsicum spp. Capsicum Newsl. 4: 75-76.Google Scholar
  23. Dogimont, C., Palloix, A., Daubeze, A.M., Marchoux, G., Gebre-Selassie, K., and Pochard, E. 1996. Genetic analysis of broad spectrum resistance to potyviruses using doubled haploid lines of pepper (Capsicum annuum L.). Euphytica 88: 231-239.CrossRefGoogle Scholar
  24. Drug information online. 2006.
  25. Fehr, W.R. 1987. Principles of cultivar development. Macmillian, London.Google Scholar
  26. Fery, R.L., and Thies, J.A. 2006. Notice of Release of ‘Tigerpaw-Nr’, a Root-Knot Nematode Resistant, Habanero-Type Pepper. USDA, Agricultural Research Service, Cultivar Release. January 9, 2006.Google Scholar
  27. Fery, R.L., Dukes, P.D., Sr., and Thies, J.A. 1998. ‘Carolina Wonder’ and ‘Charleston Belle’: Southern root-knot nematode resistant bell peppers. HortScience 33:900-902.Google Scholar
  28. Fery, R.L., Dukes, P.D., and Ogle, W.L. 1986. ‘Carolina Cayenne’ pepper. HortScience 21: 330.Google Scholar
  29. George, R.A.T. 1985. Vegetable Seed Production. Longman Press, Essex.Google Scholar
  30. Godinez-Hernandez, Y., Anaya-Lopez, J.L., Diaz-Plaza, R., Gonzalez-Chavira, M., Torres-Pacheco, I., Rivera-Bustamante, R.F., and Guevara-Gonzalez, R.G. 2001. Characterization of resistance to Pepper Huasteco Geminivirus in chilli peppers from Yucatan, Mexico. HortScience 36: 139-142.Google Scholar
  31. Gonzalez, J. 2003. The inheritance and genetic relationships of the resistance to Phytophthora capsici in two chile pepper (Capsicum annuum) genotypes. M.Sc. Thesis, Texas A&M University, College Station.Google Scholar
  32. Green, S.K. and Kim, J.S. 1991. Characterization and control of pepper viruses: a literature review. AVRDC, Shanhua, Taiwan.Google Scholar
  33. Greenleaf, W.H. 1986. Pepper breeding. In: Basset, M.J. (ed) Breeding Vegetable Crops. AVI Publishing Co., Westport, Connecticut. pp. 67-134.Google Scholar
  34. Greenleaf, W.H., Martin, J.A., Lease, J.G., Sims, E.T., and van Blaricom, L.O. 1970. Greenleaf Tabasco, a new tobacco etch virus resistant Tabasco pepper variety (Capsicum frutescens L.). Leafl.-Ala. Agric. Exp. Stn. 81: 1-10.Google Scholar
  35. Greenleaf, W.H. 1956. Inheritance of resistance to tobacco etch virus in Capsicum frutescens and in Capsicum annuum. Phytopathology 46: 371-375.Google Scholar
  36. Grube, R.C., Blauth, J.R., Arnedo, M.S., Caranta, C, and Jahn, M.K. 2000. Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum. Theor. Appl. Genet. 101: 852-859.CrossRefGoogle Scholar
  37. Grube, R.C., Zhang, Y., Murphy, J.F., Loaiza-Figueroa, F., Lackney, V.K., Provvidenti, R., and Jahn, M.K. 2000. New source of resistance to Cucumber mosaic virus in Capsicum frutescens. Plant Dis. 84: 885-891.CrossRefGoogle Scholar
  38. Hare, W.W. 1966. New pimiento is resistant to nematodes. Mississippi Farm Res. 29(2): 1-8.Google Scholar
  39. Hare, W.W. 1957. Inheritance of resistance to root knot nematodes in pepper. Phytopathology 47: 455-459.Google Scholar
  40. Hernandez, H.H. and Smith, P.G. 1985. Inheritance of mature fruit colour in Capsicum annuum L. The Journal of Heredity 76: 211-213.Google Scholar
  41. Hibberd, A.M., Basset, M.J., and Stall, R.E. 1987. Allelism tests of three dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology 77: 1304-1307.CrossRefGoogle Scholar
  42. Holmes, F.O. 1937. Inheritance of resistance to tobacco mosaic disease in the pepper. Phytopathology 27: 637-642.Google Scholar
  43. Howard, L.R., Talcott, S.T., Brenes, C.H. and Villalon, B. 2000. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agr. Food Chem. 48: 1713-1720.CrossRefGoogle Scholar
  44. IBPGR. 1983. Genetic resources of Capsicum: a global plan of action. International Board for Plant Genetic Resources, Rome.Google Scholar
  45. Jahn, M., Paran, I., Hoffman, K., Radwanski, E.R., Livingstone, K.D., Grube, R.C., Aftergoot, E., Lapidot, M., and Moyer, J. 2000. Genetic mapping of the Tsw locus for resistance to the Tospovirus tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol. Plant-Microbe Interact. 13: 673-682.CrossRefPubMedGoogle Scholar
  46. Ito, K., Nakazato, T., Yamamoto, K., Miyakawa, Y., Yamada, T., Hozumi, N., Segawa, K., Ikeda, Y., and Kizaka, M. 2004. Induction of Apoptosis in Leukemic Cells by Homovanillic Acid Derivative, Capsaicin, through Oxidative Stress. Cancer Research 64, 1071-1078.CrossRefPubMedGoogle Scholar
  47. Jordan, T., Romer, P., Meyer, A., Szcznesny, R., Pierre, M., Piffanelli, P., Bendahmane, A., Bonas, U., and Lahaye, T. 2006. Physical delimitation of the pepper Bs3 resistance gene specifying recognition of the AVRBS3 protein from Xanthomonas campestris pv. vesicatoria. Theor. Appl. Genet. 113: 895-905.CrossRefPubMedGoogle Scholar
  48. Jones, J.B., Minsavage, G.V., Roberts, P.D., Johnson, R.R., Kousik, C.S., Subramanian, S., and Stall, R.E. 2002. A non-hypersensitive resistance in pepper to the bacterial spot pathogen is associated with two recessive genes. Phytopathology 92: 273-277.CrossRefPubMedGoogle Scholar
  49. Kang, B.C., Yeam, I., Frantz, J.D., Murphy, J.F., and Jahn, M.K. 2005. The pvr1 locus in Capsicum encodes a translation initiation factor eIF4eE that interacts with Tobacco Etch Virus VPg. The Plant Journal 42: 392-405.CrossRefPubMedGoogle Scholar
  50. Kashiwagi, T., Horibata, Y., Mekuria, D.B., Tebayashi, S.I., and Kim, C.S. 2005. Ovipositional deterrent in the sweet pepper, Capsicum annuum, at the mature stage against Liriomyza trifolii (Burgess). Biosci. Biotechnol. Biochem. 69: 1831-1835.CrossRefPubMedGoogle Scholar
  51. Khah, E.M. and Passam, H.C. 1992. Sodium hypochlorite concentration, temperature, and seed age influence germination of sweet pepper. HortScience 27: 821-823.Google Scholar
  52. Kim, B., and Kim, D.H. 2005. Development of SCAR markers for early identification of cytoplasmic male sterility genotype in chilli pepper (Capsicum annuum L.). Mol. Cells 20: 416-422.PubMedGoogle Scholar
  53. Kim, S.J., Lee, S.J., Kim, B.D., and Paek, K.H. 1997. Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Rep. 16: 825-830.CrossRefGoogle Scholar
  54. Kimble, K.A. and Grogan, R.G. 1960. Resistance to Phytophthora root rot in pepper. Plant Dis. Rep. 44: 872-872.Google Scholar
  55. Kyle, M.M. and Palloix, A. 1997. Proposed revision of nomenclature for potyvirus resistance genes in Capsicum. Euphytica 97: 183-188.CrossRefGoogle Scholar
  56. Lee, J., Lee, D.H., and Park, H.G. 2005. Mapping of St locus flanking region related to incomplete phenotype of cytoplasmic-genic male sterility in chilli pepper (Capsicum annuum L.). Plant and Animal Genome XIII. p. 194.Google Scholar
  57. Lefebvre, V., Daubeze, A.M., van der Voort, J.R., Peleman, J., Bardin, M., and Palloix, A. 2003. QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor. Appl. Genet. 107: 661-666.CrossRefPubMedGoogle Scholar
  58. Lefebvre, V., Kuntz, M., Camara, B., and Palloix, A. 1998. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol. Biol. 36: 785-789.CrossRefPubMedGoogle Scholar
  59. Lefebvre, V. and Palloix, A. 1996. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor. Appl. Genet. 93: 503-511.CrossRefGoogle Scholar
  60. Lim, H.T., Lee, G.Y., You, Y.S., Park, E.J., Song, Y.N., Yang, D.C., and Choi, K.H. 1999. Regeneration and genetic transformation of hot pepper plants. In: Proc. Int. Symp. on quality of fresh and fermented vegetables, pp. 387-396. Acta Hort 483.Google Scholar
  61. Lippert, L.F., Smith, P.G., and Bergh, B.O. 1966. Cytogenetics of the vegetable crops. Garden pepper, Capsicum sp. Bot. Rev. 32: 24-55.CrossRefGoogle Scholar
  62. 2000. Chile peppers repel pests.
  63. Maggioni, L. 2004. Conservation and use of vegetable genetic resources: a European perspective. IPGRI, Rome, Italy. Google Scholar
  64. Maris, P.C., Joosten, N.N., Peters, D., and Goldbach, R.W. 2003. Thrips resistance in pepper and its consequences for the acquisition and inoculation of Tomato Spotted Wilt virus by the Western flower thrips. Phytopathology 93: 96-101.CrossRefPubMedGoogle Scholar
  65. Matsunaga, H. and Monma, S. 1999. Sources of resistance to bacterial wilt in Capsicum. J. Japan Soc. Hort. Sci. 68: 753-761.CrossRefGoogle Scholar
  66. McKinney, H.H. 1952. Two strains of tobacco mosaic virus, one of which is seed borne in an etch-immune pungent pepper. Plant Dis. Rep. 36: 184-187.Google Scholar
  67. Monma, S. and Sakata, Y. 1997. Screening of Capsicum accessions for resistance to cucumber mosaic virus. J. Jpn. Soc. Hortic. Sci. 65: 769-776.CrossRefGoogle Scholar
  68. Moury, B., Palloix, A., Selassie, K.G., and Marchoux, G. 1997. Hypersensitive resistance to Tomato Spotted Wilt Virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94: 45-52.CrossRefGoogle Scholar
  69. Muhyi, R. and Bosland, P.W. 1995. Evaluation of Capsicum germplasm for sources of resistance to Rhizoctonia solani. HortScience 30: 341-342.Google Scholar
  70. Murphy, J.F., Blauth, J.R., Livingstone, K.D., Lackney, V.K., and Jahn, M.K. 1998. Genetic mapping of the pvr1 locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels. Mol. Plant-Microbe Interact. 11: 943-951.CrossRefGoogle Scholar
  71. Paran, I., van der Voort, J.R., Lefebvre, V., Jahn, M., Landry, L., van Schriek, M., Tanyolac, B., Caranta, C., Ben Chaim, A., Livingstone, K., Palloix, A. and Peleman, J. 2004. An integrated genetic linkage map of pepper (Capsicum spp.). Mol. Breeding 13: 251-261.CrossRefGoogle Scholar
  72. Park, S.H., Li, J., Pittman, K., Berkowitz, G., Undurraga, S., Yang, H., Morris, J.L., Hirschi, K.D., and Gaxiola, R.A. 2005. Up-regulation of a vacuolar H+-PPase as a strategy to engineer drought resistant crop plants. Proc. Natl. Acad. Sci. USA. 102: 18830-18835.CrossRefPubMedGoogle Scholar
  73. Pickersgill, B. 1969. The archaeological record of chilli peppers (Capsicum spp.) and the sequence of plant domestication in Peru. Am. Antiq. 34: 53-61.CrossRefGoogle Scholar
  74. Pickersgill, B. 1997. Genetic resources and breeding of Capsicum spp. Euphytica 96: 129-133.CrossRefGoogle Scholar
  75. Pierre, M., Noel, L., Lahaye, T., Ballvora, A., Veuskens, J., Ganal, M., and Bonas, U. 2000. High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthomonas campestris pv vesicatoria AvrBs3 protein. Theor. Appl. Genet. 101: 255-263.CrossRefGoogle Scholar
  76. Pochard, E. and Daubeze, A.M. 1989. Progressive construction of a polygenic resistance to cucumber mosaic virus in the pepper. Capsicum Eggplant Newsl. 8: 187-192.Google Scholar
  77. Popovsky, S. and Paran, I. 2000. Molecular genetics of the y locus in pepper: its relation to capsanthin-capsorubin synthase and to fruit colour. Theor. Appl. Genet. 101: 86-89.CrossRefGoogle Scholar
  78. Ritchie, D.F., Kousik, C.S., and Paxton, T.C. 1998. Response of bacterial spot pathogen strains to four major resistance genes in pepper. Proc. Natl. Pepp. Conf. San Antonio, Texas. p.14.Google Scholar
  79. Rivas, M., Sundstrom, F.J., and Edwards, R.I. 1984. Germination and crop development of hot pepper after seed priming. HortScience 19: 279-281.Google Scholar
  80. Rodriguez, J.M., Berke, T., Engle, L., and Nienhuis, J. 1999. Variation among and within Capsicum species revealed by RAPD markers. Theor. Appl. Genet. 99: 147-156.CrossRefGoogle Scholar
  81. Sahin, F. and Miller, S.A. 1998. Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6. Plant Dis. 82: 794-799.CrossRefGoogle Scholar
  82. ScoreCard-the pollution information site. 2006.
  83. Shaw, N. and Cantliffe, D.J. 2003. Colour your world. American Vegetable Grower. Nov.Google Scholar
  84. Shifriss, C. 1997. Male sterility in pepper (Capsicum annuum L.). Euphytica 93: 83-88.CrossRefGoogle Scholar
  85. Shifriss, C., Pilowsky, M., and Zacks, J.M. 1992. Resistance to Leveillula taurica mildew (-Oidopsis taurica) in Capsicum annuum. Phytoparasitica 20: 279-283.CrossRefGoogle Scholar
  86. Shifriss, C. and Guri, A. 1979. Variation in stability of cytoplasmic-genic male sterility in Capsicum annuum. J. Amer. Soc. Hort. Sci. 104: 94-96.Google Scholar
  87. Shifriss, C. and Rylsky, I. 1972. A male sterile (ms-2) gene in ‘California Wonder’ pepper (Capsicum annuum L.). HortScience 7: 36.Google Scholar
  88. Shifriss, C. and Frankel, R. 1969. A new male-sterility gene in C. annuum L. J. Amer. Soc. Hort. Sci. 94: 385-387.Google Scholar
  89. Shin, R., Park, J.M., An, J.M., and Kyung-Hee Paek. 2002. Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial and oomycete pathogens. Mol. Plant-Microbe Interact. 15: 983-989.CrossRefPubMedGoogle Scholar
  90. Singh, J. and Thakur, M.R. 1979. Reaction of some pepper lines (Capsicum annuum L.) to cucumber mosaic virus. Indian J. Micro. Plant Pathol. 9: 276.Google Scholar
  91. Smith, P.G., Kimble, K.A., Grogan, R.G., and Millet, A.H. 1967. Inheritance of resistance in peppers to Phytophthora root rot. Phytopathology 57: 377-379.Google Scholar
  92. Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J. 1999a. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA. 96: 14153-14158.CrossRefPubMedGoogle Scholar
  93. Tai, T., Dahlbeck, D., Stall, R.E., Peleman, J., and Staskawicz, B.J. 1999b. High-resolution genetic and physical mapping of the region containing the Bs2 gene of pepper. Theor. Appl. Genet. 99: 1201-1206.CrossRefGoogle Scholar
  94. Texas Agr. Exp. Station. 1993.Google Scholar
  95. Thies, J.A., and Fery, R.L. 2002. Heat stability of resistance to Southern Root-Knot Nematode resistance in bell pepper genotypes homozygous and heterozygous for the N gene. J. Amer. Soc. Hort. Sci. 127: 371-375.Google Scholar
  96. Thies, J.A. and Fery, R.L. 2002. Evaluation of a Core of the U.S. Capsicum Germplasm Collection for Reaction to the Northern Root-Knot Nematode (Meloidogyne Hapla). HortScience 37: 805-810.Google Scholar
  97. Ungs, W.D., Woodbridge, C.G., and Csizinszky, A.A. 1977. Screening peppers (Capsicum annuum L.) for resistance to curly top virus. HortScience 12: 161-162.Google Scholar
  98. Vaughan, C.E., Gregg, B.R., and DeLouche, J.C. 1968. Seed processing and handling. Handbook No. 1, Seed Tech. Lab., Miss. State Univ. 298 pp.Google Scholar
  99. Villalon, B., Dainello, F.J., and Bender, D.A. 1994. ‘Jaloro’ hot yellow jalapeño pepper. HortScience 29: 1092-1093.Google Scholar
  100. Villalon, B. 1986. Breeding peppers to resist virus diseases. Plant Dis. 65: 557-562.Google Scholar
  101. Villalon, B. 1983. TAM mild jalapeño-1 pepper. HortScience 18: 492-493.Google Scholar
  102. Watkins, J.T., Cantliffe, D.J., Huber, H.B., and Nell, T.A. 1985. Gibberellic acid stimulated degradation of endosperm in pepper. J. Amer. Soc. Hort. Sci. 110: 61-65.Google Scholar
  103. Yoo, H.S., Kang, B.C., Huh, J.H., Nahm, S.H., Hwang, H.S., Kim, B.S., and Kim, B.D. 2001. Identification of AFLP markers linked to pepper disease resistance Bs3 for Xanthomonas campestris pv. vesicatoria. Korean J. Breeding 33(3): 1-7.Google Scholar
  104. Zitter, T.A. and Cook, A.A. 1973. Inheritance of tolerance to a pepper virus in Florida. Phytopathology 63: 1211-1212.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kevin M. Crosby
    • 1
  1. 1.Department of Horticultural SciencesTexas A&M Research & Extension CenterWeslacoUSA

Personalised recommendations