Vegetables II pp 121-159 | Cite as


  • Masayoshi Shigyo
  • Chris Kik
Part of the Handbook of Plant Breeding book series (HBPB, volume 2)

Onion (Allium cepa L.) is since ancient times a valuable vegetable crop for people all over the world. In this context a mural from Egypt, dated approximately 3000 BC, depicts already images of onions. Therefore it can be inferred that onions were already an important food source for the people from the Ancient Egypt. The word “onion” is derived from Latin and means “large pearl”. The onion was compared to a pearl not only for its shape but also for its highly valuable nutritional quality.


Double Haploid Downy Mildew Double Haploid Line Allium Cepa Downy Mildew Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arifin, N.S., and Okubo, H. 1996. Geographical distribution of allozyme patterns in shallot (Allium cepa var. ascalonicum Backer) and wakegi onion (A. x wakegi Araki), Euphytica 91: 305-313.Google Scholar
  2. Arifin, N.S., Ozaki, Y., and Okubo, H. 2000. Genetic diversity in indonesian shallot (Allium cepa var. ascalonicum) and Allium x wakegi revealed by RAPD markers and origin of A. x wakegi identified by RFLP analyzes of amplified chloroplast genes, Euphytica 111: 23-31.Google Scholar
  3. Astley, D., Innes, N.L., and Van der Meer, Q.P. 1982. Genetic Resources of Allium Species, IBPGR secretariat, Rome, Italy, pp. 38.Google Scholar
  4. Astley, D. 1990. Conservation of genetic resources, in: Onions and Allied Crops Vol I, H.D. Rabinowitch, and J.L. Brewster, eds., CRC Press Inc, Boca Raton, Florida, USA., pp. 177-198.Google Scholar
  5. Bailey, L.H. 1949. Manual of cultivated plants, The MacMillan Co., New York. pp. 1116.Google Scholar
  6. Barandiaran, X., Pietro, A.D., and Martin, J. 1998. Biolistic transfer and expression of a uidA reporter gene in different tissues of Allium sativum L., Plant Cell Rep. 17: 737-741.Google Scholar
  7. Berninger, E. 1965. Contribution a l’etude de la sterilite de male de l’oignon (Allium cepa L.), Ann Amelior Plant (Paris) 23: 183-199.Google Scholar
  8. Bohanec, B., and Jakše, M. 1999. Variations in gynogenic response among long-day onion (Allium cepa L.) accessions, Plant Cell Rep. 18: 737-742.Google Scholar
  9. Bosch Serra, A.-D., and Currah, L. 2002. Agronomy of onions, in: Allium Crop Science: Recent Advances, H.D. Rabinowitch, and L. Currah, eds., CABI Publ.,Wallingford, UK, pp. 187-232.Google Scholar
  10. Campion, B., Azzimonti, M.T., Vicini, E., Schiavi, M., and Falavigna, A. 1992. Advances in haploid plant induction in onion (Allium cepa L.) through in vitro gynogenesis, Plant Science 86: 97-104.Google Scholar
  11. Campion, B., Bohanec, B., and Javornik, B. 1995. Gynogenic lines of onion (Allium cepa L.): evidence of their homozygosity, Theor. Appl. Genet. 91: 598-602Google Scholar
  12. Cramer, C.S. 2000. Breeding and genetics of Fusarium basal rot resistance in onion, Euphytica 115: 159-166.Google Scholar
  13. Cross, R.J. 1998. Review paper: global genetic resources of vegetables, Plant Varieties and Seeds 11: 39-60.Google Scholar
  14. De Courcel, A.G.L., Vedel, F., and Boussac, J.M. 1989. DNA polymorphisms in Allium cepa cytoplasms and its implications concerning the origin of onions, Theor. Appl. Genet. 77: 793-798.Google Scholar
  15. De Melo, P.E. 2003. The root systems of onion and Allium fistulosum in the context of organic farming: a breeding approach, Ph D thesis, Wageningen University and Research Center, the Netherlands, pp. 127.Google Scholar
  16. De Visser, C.L.M. 1998. Development of a downy mildew advisory model based on DOWNCAST, European Journal of Plant Pathology 104: 933-943.Google Scholar
  17. De Vries, J.N., Wietsma, W.A., and Jongerius, M.C. 1992a. Linkage of downy mildew resistance genes Pd1 and Pd2 from Allium roylei Stearn in progeny of its interspecific hybrid with onion (A. cepa L.), Euphytica 64: 131-137.Google Scholar
  18. De Vries, J.N., Jongerius, R., Sandbrink, H., and Lindhout, P. 1992b. RAPD markers assist in resistance breeding, Prophyta 2: 50-51.Google Scholar
  19. Dommisse, E.M., Leung, D.W.M., Shaw, M.L., and Conner, A.J. 1990. Onion is a monocotyledonous host for Agrobacterium, Plant Science 69: 249-257.Google Scholar
  20. Dowker, B.D., and Gordon, G.H. 1983. Heterosis and hybrid cultivars in onion. in: Heterosis; reappraisal of theory and practice, R. Frankel, ed., Monogr. in Theor. Appl. Genet. Vol 6. Springer-Verlag, Berlin, pp. 220-223.Google Scholar
  21. Dowker, B.D. 1990. Onion breeding. in: Onions and Allied Crops Vol 1, H.D. Rabinowitch and J.L. Brewster, eds., CRC Press Inc, Boca Raton, Florida, USA, pp. 216-232.Google Scholar
  22. Eady, C.C., Weld, R.J., and Lister, C.E. 2000. Agrobacterium tumefaciens-mediated transformation and transgenic-plant regeneration of onion (Allium cepa L.), Plant Cell Rep. 19: 376-381.Google Scholar
  23. Eady, C.C., Reader, J., Davis, S., and Dale, T. 2003. Inheritance and expression of introduced DNA in transgenic onion plants (Allium cepa), Ann. of Appl. Biol. 142: 219-224.Google Scholar
  24. FAOSTAT (July 26, 2006);
  25. Ferrer, E., Linares, C., and Gonzalez, J.M. 2000. Efficient transient expression of the beta-glucuronidase reporter gene in garlic (Allium sativum L.), Agronomie 20: 869-874.Google Scholar
  26. Entwistle, A.R. 1990. Root diseases, in: Onions and Allied Crops, H.D. Rabinowitch, and J.L. Brewster, eds., CRC Press Inc, Boca Raton, Florida, USA, pp. 103-154.Google Scholar
  27. Friesen, N, Fritsch, R.M., and Blattner, F.R. 2005. Phylogeny and new intrageneric classification of Allium L. (Alliaceae) based on nuclear ribosomal DNA ITS sequences, Aliso 22: 372-395.Google Scholar
  28. Friesen, N., and Klaas, M. 1998. Origin of some minor vegetatively propagated Allium crops studied with RAPD and GISH, Genetic Resources and Crop Evolution 45: 511-523.Google Scholar
  29. Fritsch, R.M., and Friesen, N. 2002. Evolution, domestication and taxonomy, in: Allium Crop Science: Recent Advances, H.D. Rabinowitch, and L. Currah, eds., CABI Publ., Wallingford, UK, pp. 5-30.Google Scholar
  30. Galmarini, C.R., Goldman, I.L., and Havey, M.J. 2001. Genetic analyzes of correlated solids, flavour, and health-enhancing traits in onion (Allium cepa L.), Molecular Genetics and Genomics 265: 543-551.PubMedGoogle Scholar
  31. Gass, T., Astley, D., Rabinowitch, H.D., and Frison, E.A. 1995. Report of a working group on Allium - Fifth meeting 25-27 May 1995 Skierniewice, Poland, European Cooperative Program for Crop Genetic Resources Networks.Google Scholar
  32. Gokce, A.F., and Havey, M.J. 2002. Linkage equilibrium among tightly linked RFLPs and the Ms locus in open-pollinated onion populations, J. Amer. Soc. Hort. Sci. 127: 944-946.Google Scholar
  33. Hang, T.T.M., Shigyo, M., Yamauchi, N., and Tashiro, Y. 2004a. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.), Genes Genet. Syst., 79: 263-269.Google Scholar
  34. Hang, T.T.M., Shigyo, M., Yaguchi, S., Yamauchi, N., and Tashiro, Y. 2004b. Effect of single alien chromosome from shallot (Allium cepa L. Aggregatum group) on carbohydrate production in leaf blade of bunching onion (A. fistulosum L.), Genes Genet. Syst. 79: 345-350.Google Scholar
  35. Hanelt, P. 1990. Taxonomy, Evolution and History, in: Onions and Allied Crops, H.D. Rabinowitch, and J.L. Brewster, eds., CRC Press Inc, Boca Raton, Florida, USA., pp. 1-26.Google Scholar
  36. Harlan, J.R., and De Wet, J.M.J. 1971. Towards a rational classification of cultivated plants, Taxon 20: 509-517.Google Scholar
  37. Hallauer, A.R. 1992. Recurrent selection in maize, in: Plant Breeding Reviews Vol. 9, J Janick, ed., Wiley Publishing, Inc., Indianapolis, USA, pp. 115-179.Google Scholar
  38. Havey, M.J. 1991. Molecular Characterization of the interspecific origin of viviparous onion, The Journal of Heredity 82: 501-503.Google Scholar
  39. Havey, M.J. 1993. A putative donor of S-cytoplasm and its distribution among open-pollinated poupulations of onion, Theor. Appl. Genet. 86: 128-134.Google Scholar
  40. Havey, M.J. 1995. Identification of cytoplasms using the polymerase chain reaction to aid in the extraction of maintainer lines from open-pollinated populations of onion, Theor. Appl. Genet. 90: 263-268.Google Scholar
  41. Havey, M.J. 1999. Seed yield, floral morphology, and lack of male-fertility restoration of male-sterile onion (Allium cepa L.) populations possessing the cytoplasm of Allium galanthum, J. Amer. Soc. Hort. Sci. 124: 626-629.Google Scholar
  42. Havey, M.J. 2000. Diversity among male sterility inducing and male fertile cytoplasms of onion, Theor. Appl. Genet. 101: 778-782.Google Scholar
  43. Havey, M.J., Galmarini, C.R., Gokce, A.F., and Henson, C. 2004. QTL affecting soluble carbohydrate concentrations in stored onion bulbs and their association with flavour and health-enhancing attributes, Genome 47: 463-468.PubMedGoogle Scholar
  44. Hildebrandt, P.D., and Sutton, J.C. 1984. Interactive effects of the dark period, humid period, temperature, and light on sporulation of Peronospora destructor, Phytopathology 74: 1444-1449.Google Scholar
  45. Holford, P., Croft, J.H., and Newbury, H.J. 1991a. Differences between, and possible origins of the cytoplasms found in fertile and male sterile onions (Allium cepa L.), Theor. Appl. Genet. 82: 737-744.Google Scholar
  46. Holford, P., Croft, J.H., and Newbury, H.J. 1991b. Structural studies of microsporogenesis in fertile and male sterile onions (Allium cepa L.) containing the CMS-S cytoplasm, Theor. Appl. Genet. 82: 745-755.Google Scholar
  47. Inden, H., and Asahira T. 1990. Japanese Bunching Onion (Allium fistulosum L.), in: Onions and Allied Crops Vol III., H.D. Rabinowitch, and J.L. Brewster, eds., CRC Press Inc, Boca Raton, Florida, USA., pp. 159-178.Google Scholar
  48. Iwata, T. 2005. Breeding of F1 hybrid onion cultivars for long-term storage with Fusarium basal rot resistance in Hokkaido (in Japanese), Research Journal of Food and Agriculture 28 (2): 16-19.Google Scholar
  49. Jakse, M., Havey, M.J., and Bohanec, B. 2003. Chromosome doubling procedures of onion (Allium cepa L.) gynogenic embryos, Plant Cell Rep. 21: 905-910.PubMedGoogle Scholar
  50. Javornik, B., Bohanec, B., and Campion, B. 1998. Second cycle gynogenesis in onion, Allium cepa L., and genetic analysis of the plants, Plant Breeding 117: 275-278.Google Scholar
  51. Jones, H.A., and Mann, L.K. 1963. Onions and their Allies, Leonard Hill Ltd, London, pp. 286.Google Scholar
  52. Jones, J.N., and Clarke, A.E. 1943. Inheritance of male sterility in the onion and the production of hybrid seed, Proc. Amer. Soc. Hort. Sci. 43: 189-194.Google Scholar
  53. Kaul, M.L.H. 1988. Male sterility in higher plants, Monogr in Theor. Appl. Genet Vol. 9, Springer-Verlag, Berlin, pp. 1005.Google Scholar
  54. Keusgen, M. 2002. Health and Alliums, in: Allium Crop Science: Recent Advances, H.D. Rabinowitch, and L. Currah, eds., CABI Publ., Wallingford, UK, pp. 357-378.Google Scholar
  55. Keller, J. 1990. Culture of unpollinated ovules, ovaries, and flower buds in some species of the genus Allium and haploid induction via gynogenesis in onion (Allium cepa L.), Euphytica 47: 241-247.Google Scholar
  56. Khrustaleva, L.I., and Kik, C. 2000. Introgression of Allium fistulosum into A. cepa mediated by A. roylei. Theor. Appl. Genet. 100: 17-26.Google Scholar
  57. Khrustaleva, L.I., De Melo, P.E., Van Heusden, A.W., and Kik, C. 2005. The integration of recombination and physical maps in a large genome species using haploid genome analysis in a tri-hybrid A. cepa x (A. roylei x A. fistulosum) population, Genetics 169: 1673-1685.PubMedGoogle Scholar
  58. Kik, C., Wietsma, W.A., and Verbeek, W.H.J. 1998. Onion, in: Hybrid cultivar development: concepts and methodologies, S.S. Banga, and S.K. Banga, eds., Narosa Publ. House, New Delhi, India, pp. 476-485.Google Scholar
  59. Kik, C., Kahane, R., and Gebhardt, R. 2001a. Garlic & Health, Nutrition, Metabolism and Cardiovascular diseases, 11 (4; suppl.), 57-65.Google Scholar
  60. Kik, C., De Greef, H.J., and Van Marrewijk, N.P.A. 2001b. Uniformity in F1 hybrid and open-pollinated long day onion cultivars, Allium Improvement Newsletter 11: 18-22.Google Scholar
  61. Kik, C. 2002. Exploitation of wild relatives for the breeding of cultivated Allium species, in: Allium Crop Science: Recent Advances, H.D., Rabinowitch, and L. Currah, eds., CABI Publ.,Wallingford, UK, pp. 81-100.Google Scholar
  62. Kik, C., Kahane, R., and Gebhardt, R. 2005. Final scientific report Garlic & Health (QLK1-CT-1999-00498),, pp. 167.
  63. King, J.J., Bradeen, J.M., Bark, O., McCallum, J.A., and Havey, M.J. 1998. A low-density genetic map map of onions reveals a role for tandem duplication in the evolution of an extremely large diploid genome, Theor. Appl. Genet. 96: 52-62.Google Scholar
  64. Klein, T.M., Wolf, E.D., Wu, R., and Sanford, J.C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells, Nature 327: 70-73.Google Scholar
  65. Koch, H.P., and Lawson, L.D. 1998. Garlic: the science and therapeutic application of Allium sativum L. and related species (2nd edition), Williams & Wilkins, Baltimore, USA, pp. 329.Google Scholar
  66. Kodama, F. 1983. Studies on basal rot of onion caused by Fusarium oxysporum f.sp.cepae and its control (in Japanese with English summary), Report of Hokkaido Prefectural Agricultural Experimental Stations 39:1-65.Google Scholar
  67. Kofoet, A., and Zinkernagel, V. 1990. Resistance to downy mildew (Peronospora destructor (Berk.) Casp. in Allium species, Journal of Plant Diseases and Protection 97: 13-23.Google Scholar
  68. Kofoet, A., Kik, C., Wietsma, W.A., and De Vries, J.N. 1990. Inheritance of resistance to downy mildew (Peronospora destructor [Berk.] Casp.) from Allium roylei Stearn in the backcross Allium cepa x (A. roylei x A. cepa), Plant Breeding 105: 144-149.Google Scholar
  69. Kondo, T., Hasegawa, H., and Suzuki, M. 2000. Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer, Plant Cell Rep. 19: 989-993.Google Scholar
  70. Kuhl, J.C., Cheung, F., Yuan, Q.P., Martin, W., Zewdie, Y., McCallum, J., Catanach, A., Rutherford, P., Sink, K.C., Jenderek, M., Prince, J.P., Town, C.D., and Havey, M.J. 2004. A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales, Plant Cell 16: 114-125.PubMedGoogle Scholar
  71. Levings, C.S. 1990. The Texas cytoplasm of maize: cytoplasmic make sterility and disease susceptibility, Science 250: 942-947.PubMedGoogle Scholar
  72. Loosjes, M. 1976. Ecology and the genetic control of the onion fly, Delia antiqua (Meigen), Ph D thesis University of Leiden, the Netherlands, pp. 179.Google Scholar
  73. Lorbeer, J.W., Kuhar, T.P., and Hoffmann, M.P. 2002. Monitoring and forecasting of disease and insect attack in onions and Allium crops within IPM strategies, in: Allium Crop Science: Recent Advances, H.D. Rabinowitch, and L. Currah, eds., CABI Publ., Wallingford, UK, pp. 293-310.Google Scholar
  74. Maaβ, H.I. 1996. About the origin of the French grey shallot, Genetic Resources and Crop Evolution 43: 291-292.Google Scholar
  75. Martin, W.J., McCallum, J., Shigyo, M., Jakse, J., Kuhl,J.C., Yamane,N., Pither-Joyce,M., Gokce,A.F., Sink, K.C., Town,C.D., and Havey,M.J. 2005. Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity, Molecular Genetics and Genomics 274: 197-204.PubMedGoogle Scholar
  76. Martinez, L., Aguero, C.B., and Galmarini, C.R. 1997. Obtention of haploid plants by ovule culture in onions, Acta Hort. 433: 447-454.Google Scholar
  77. Masuzaki, S., Shigyo, M., and Yamauchi, N. 2006a. Direct comparison between genomic constitution and flavonoid contents in Allium multiple alien addition lines reveals chromosomal locations of genes related to biosynthesis from dihydrokaempferol to quercetin glucosides in scaly leaf of shallot (Allium cepa L.), Theor. Appl. Genet. 112: 607-617.PubMedGoogle Scholar
  78. Masuzaki, S., Shigyo, M., and Yamauchi, N. 2006b. Complete assignment of structural genes involved in flavonoid biosynthesis influencing bulb colour to individual chromosomes of the shallot (Allium cepa L.), Genes Genet. Syst. 81: 255-263.Google Scholar
  79. McCallum, J., Leite, D., Pither-Joyce, M., and Havey, M.J. 2001. Expressed sequence markers for genetic analysis of bulb onion (Allium cepa L.), Theor. Appl. Genet. 103: 979-991.Google Scholar
  80. Michelmore, R.W., Paran, I., and Kesseli, R.V. 1991. Identification of markers linked to disease resistance genes by bulked segregant anaysis; a rapid method to detect markers in specific genomic regions by using segregating populations, Proceedings of the National Academy of Sciences (USA) 88: 9828-9832.Google Scholar
  81. Miyaura, K., Shinada, Y., Nakano, M., Yamaki, T., and Ochi, H. 1985. A new onion variety ‘‘Sekihoku’’(in Japanese with English Summary), The Bulletin of Hokkaido Prefectural Agricultural Experiment Stations 53: 115-125.Google Scholar
  82. Muren, R. 1989. Haploid plant induction from unpollinated ovaries in onion, HortScience 24: 833-834.Google Scholar
  83. Ohara, T., Song, Y.S., Tsukazaki, H., Wako,T., Nunome,T., and Kojima,A. 2005. Genetic mapping of AFLP markers in Japanese bunching onion (Allium fistulosum), Euphytica 144: 255-263.Google Scholar
  84. Permadi, A.H., and Van der Meer, Q.P. 1993. Allium cepa L. cv. group Aggregatum, in: Plant Resources of South-East Asia, No. 8, Vegitables, J.S. Siemonsma and K. Piluek, eds., Pudoc Scientific Publishers, Wageningen, the Netherlands.Google Scholar
  85. Phuong, P.T.M., Isshiki, S., and Tashiro, Y. 2006a. Genetic variation of shallot (Allium cepa L. Aggregatum group) in Vietnam, J. Japan. Soc. Hort. Sci. 75: 236-242.Google Scholar
  86. Phuong, P.T.M., Isshiki, S., and Tashiro, Y. 2006b. Comparative study on shallot (Allium cepa L. Aggregatum group) from Vietnam and the surrounding countries, J. Japan. Soc. Hort. Sci. 75: 306-311.Google Scholar
  87. Pike, L.M. 1986. Onion breeding, in: Breeding Vegetable Crops, M.J. Bassett, ed., AVI Publ. Westport (USA), pp. 357-394.Google Scholar
  88. Pistorius, R. 1997. Scientists, plants and politics, A History of the Plant Genetic Resources Movement, IPGRI, Rome, Italy, pp. 134.Google Scholar
  89. Puizina, J., and Papes, D. 1997. Further cytogenetic analyzes of the Croatian triploid shallot ‘‘Ljutika’’ (Allium cepa var. viviparum, Alliaceae) and its comparison with the Indian triploid ‘‘Pran’’, Plant Systematics and Evolution 208: 11-23.Google Scholar
  90. Rabinowitch, H.D. 1997. Breeding alliaceous crops for pest resistance. Acta Hort. 433: 223-246.Google Scholar
  91. Retig, N., Kust, A.F., and Gabelman, W.H. 1970. Greenhouse and field tests for determination of the resistance of onion lines to basal rot, J. Amer. Soc. Hort. Sci. 95: 422-424.Google Scholar
  92. Schwartz, H.F., and Mohan, S.K. 1995. Compendium of onion and garlic diseases, APS Publ. St Paul, USA, pp. 54.Google Scholar
  93. Schweisguth, B. 1973. Etude d’un nouveau type de sterilite male chez l’ oignon, Allium cepa L., Ann. Amelior. Plant 23: 221-233.Google Scholar
  94. Shigyo, M., Tashiro, Y., Isshiki, S., and Miyazaki, S. 1996. Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. Aggregatum group), Genes Genet. Syst. 71: 363-371.Google Scholar
  95. Shigyo, M., Tashiro, Y., Iino, M., Terahara, N., Ishimaru, K., and Isshiki, S. 1997. Chromosomal locations of genes related to flavonoid and anthocyanin production in leaf sheath of shallot (Allium cepa L. Aggregatum group), Genes Genet. Syst. 72: 149-152.Google Scholar
  96. Shigyo, M. 2006. Allium, in: Genetic Resources, Chromosome Engineering, and Crop Improvement: Vegetable Crops, Volume 3, R. J. Singh, ed., CRC Press, Boca Raton, FL, USA, pp. 245-269.Google Scholar
  97. Stearn, W.T. 1943. The Welsh onion and the Ever-ready onion, Gardeners Chronicle 143: 86-88.Google Scholar
  98. Sutton, J.C., James, T.D.W., and Rowell, P.M. 1986. BOTCAST: a forecasting system to time the initial fungicide spray for managing Botrytis leaf blight of onions, Agriculture, Ecosystems and Environment 18: 123-143.Google Scholar
  99. Smith, B.M., and Crowther, T.C. 1995. Inbreeding depression and single cross hybrids in leeks (Allium ampeloprasum ssp porrum), Euphytica 86: 87-94.Google Scholar
  100. Tanaka, M., Komochi, S., Nagai, M., Uragami, A., and Yoshikawa, H. 1987. A new onion hybrid “Tuskihikari” (in Japanese with English Summary), Res. Bull. Hokkaido Nalt. Agric. Exp. Stn. 148: 107-129.Google Scholar
  101. Tsukazaki. H., Nunome, T., Fukuoda, H., Kanamori, H., Kono, I., Ohara, T., Song, Y.S., Yamashita, K., Wako, T., and Kojima, A. 2006. Applications of DNA marker technology in Japanese bunching onion breeding. ISHS Symposium Seoul, South Korea. Workshop 4: Genomics and molecular breeding for Allium crop improvement.Google Scholar
  102. Van der Meer, Q.P., and Van Bennekom, J.L. 1969. Effect of temperature on the occurrence of male sterility in onion (Allium cepa L.), Euphytica 18: 389-394.Google Scholar
  103. Van der Meer, Q.P., and Van Bennekom, J.L. 1978. Improving the onion crop (Allium cepa L.) by transfer of characters from Allium fistulosum. Biuletyn Warzywniczy 22, 87-91.Google Scholar
  104. Van der Meer, Q.P., and De Vries, J.N. 1990. An interspecific cross between Allium roylei Stearn and A. cepa L., and its backcross to A. cepa, Euphytica 47: 29-31.Google Scholar
  105. Van der Meer, Q.P. 1994. Onion hybrids: evaluation, prospects, limitations and methods, Acta Hort. 358: 243-248.Google Scholar
  106. Van Heusden, A.W., Van Ooijen, J.W., Vrielink-van Ginkel, M., Verbeek, W.H.J., Wietsma, W.A., and Kik, C. 2000a. Genetic mapping in an interspecific cross in Allium with amplified fragment length polymorphism (AFLPTM) markers, Theor. Appl. Genet. 100: 118-126.Google Scholar
  107. Van Heusden, A.W., Shigyo, M., Tashiro, Y., Vrielink-van Ginkel, R., and Kik, C. 2000b. The use of monosomic addition lines in the assignment of AFLP linkage groups to the chromosomes of Allium cepa L., Theor. Appl. Genet. 100: 480-486.Google Scholar
  108. Van Hintum Th.J.L., and Boukema, I. 1999. Genetic resources of leafy vegetables, in: Eucarpia Leafy Vegetables ’99, A. Lebeda, and E. Kristkova, eds., Palacky University, Olomouc, Czech Republic, pp. 59-72.Google Scholar
  109. Van Raamsdonk, L.W.D., Ensink, W., Van Heusden, A.W., Vrielink-van Ginkel, M., and Kik, C. 2003. Biodiversity assessment based on cpDNA and crossability analysis in selected species of Allium subgenus Rhizirideum, Theor. Appl. Genet. 107: 1048-1058.PubMedGoogle Scholar
  110. Wang, H. 1996. Genetic engineering male sterility in leek (Allium porrum L.). Ph D thesis, Universiteit Gent, Belgium.Google Scholar
  111. Werner, C.P., Dowker, B.D., DeSouza, D.C., Setter, A.P., Crowther, T.C., and Horobin, J.F. 1988. Triple test cross predictions of the performance of recombinant inbred lines from a wide cross in onions, Ann. Appl. Biol. 112: 525-535.Google Scholar
  112. Werner, C.P., Kearsey, M.J., Crowther, T.C., and Dowker, B.D. 1990. Prediction of the performance of inbred lines derived from a population cross in autumn-sown onions (Allium cepa L.), Theor. Appl. Genet. 79: 507-512.Google Scholar
  113. Yamashita, K., and Tashiro, Y. 1999. Possibility of developing a male sterile line of shallot (Allium cepa L. Aggregatum group) with cytoplasm from A. galanthum Kar. et Kir., J. Japan. Soc. Hort. Sci. 68: 256-262.Google Scholar
  114. Zheng, S.J., Khrustaleva, L., Henken, B., Sofiari, E., Jacobsen, E., Kik, C., and Krens, F. A. 2001. Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: the production of transgenic onions and shallots, Mol. Breeding 7: 101-115.Google Scholar
  115. Zheng, S-J., Henken, B., Ahn, Y-K., Krens, F.A., and Kik, C. 2004. The development of a reliable transformation protocol for garlic (Allium sativum L.) and the production of transgenic garlic resistant to beet armyworm, Mol. Breeding. 14: 293-307.Google Scholar
  116. Zheng, S-J., Henken, B., De Maagd, R.A., Purwito, A., Krens, F.A., and Kik, C. 2005. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.), Transgenic Research 14: 261-272.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Masayoshi Shigyo
    • 1
  • Chris Kik
    • 2
  1. 1.Laboratory of Vegetable Crop Science, Division of Agrobiology, Department of Biological and Environmental Sciences, Faculty of AgricultureYamaguchi UniversityYamaguchiJapan
  2. 2.Centre for Genetic Resources, The Netherlands (CGN)Wageningen University and Research CentreWageningenThe Netherlands

Personalised recommendations