Snap Bean

  • Metaxia Koutsika-Sotiriou
  • Ekaterini Traka-Mavrona
Part of the Handbook of Plant Breeding book series (HBPB, volume 2)

The common bean (Phaseolus vulgaris L.; 2n = 2x = 22) is a member of the family Fabaceae, tribe Phaseoleae, subfamily Papilionoideae. Cultivated forms are grown on all continents except Antarctica (Gepts, 1998). Commonly grown species of Phaseolus are: P. acutifolius A. Gray (tepary bean), P. coccineus L. (scarlet or runner bean), P. lunatus L. (Burma, butter or Lima bean), and P. vulgaris L. (baked, canellini, common, dwarf, flageolet, frijoles, French, kidney, navy, pinto, snap, string, wax, haricot or Nunas bean) (Broughton et al., 2003). Beans main products are dry beans (seeds harvested at complete maturity), shell beans (seeds harvested at physiological maturity, i.e. before the desiccation associated with complete maturity sets in), and green or snap beans (pods harvested before the seed development phase) (Gepts, 1998).


Common Bean Seed Yield Bean Variety Snap Bean Bush Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acquaah, G., Adams, M. W., and Kelly, J. D. 1991. Identification of effective indicators of plant architecture in dry bean. Crop Sci. 31:261-264.CrossRefGoogle Scholar
  2. Adams, M. W. 1967. Basis of yield component compensation in crop plants with special reference to the field beans Phaseolus vulgaris. Crop Sci. 7:505-510.CrossRefGoogle Scholar
  3. Allard, R. W. 1961. Relationship between genetic diversity and consistency of performance in different environments.bCrop Sci. 1:127-133.CrossRefGoogle Scholar
  4. Allard, R. W., and Bradshaw, A. D. 1964. Implications of genotype-environmental interactions in applied plant breeding, Crop Sci. 4:503-508.Google Scholar
  5. Al-Mukhtar, F. 1981. Genetics of ovule number per pod, flowering, and association of several traits in Phaseolus vulgaris L. crosses, Diss. Abstr. 4:3306B-3307B.Google Scholar
  6. Aragao, F. G. L., and Rech, E. L. 1997. Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of Carioca cultivar, Inter. J. Plant Sci., 158:157-163.Google Scholar
  7. Asencios-Manzanera, M. C., Asencio, C., and Singh, S. P. 2006. Gamete selection for resistance to common and halo bacterial blights in dry bean intergene pool populations, Crop Sci. 46:131-135.Google Scholar
  8. Atkin, J. D. 1972. Nature of the stringy pod rogue of snap beans, Phaseolus vulgaris, Search Agric., Geneva, N.Y., 2:1-3.Google Scholar
  9. Austin, B., and MacLean, M. S. 1972. A method for screening Phaseolus vulgaris genotypes for tolerance to low temperatures, J. Hort. Sci. 47:279-290.Google Scholar
  10. Baggett, J. R. 1995. A historical summary of vegetable breeding at Oregon State Univ., Proc. Oregon Hort. Soc. 86:89-99.Google Scholar
  11. Bassett, M. J. 1976. The inheritance of the reclining foliage characteristic of beans and its potential value when combined with long racemes, HortScience 11:238-240.Google Scholar
  12. Batzios, D. P., and Roupakias, D. G. 1997. HONEY: A microcomputer program for plant selection and analyses of the honeycomb designs, Crop Sci. 37:744-747.CrossRefGoogle Scholar
  13. Baudoin, J. P. 1993. Lima bean (Phaseolus lunatus L.), in: Genetic Improvement of Vegetable Crops, G. Kallo, and B. O. Bergh (eds.), Pergamon Press Ltd, Oxford, England, pp. 391-404.Google Scholar
  14. Bayuelo-Jimenez, J. S., Debouck, D. G., and Lynch, J. P. 2002a. Salinity tolerance in Phaseolus species during early vegetative growth, Crop Sci. 42:2184-2192.CrossRefGoogle Scholar
  15. Bayuelo-Jimenez, J. S., Graig, R., and Lynch, J. P. 2002b. Salinity tolerance of Phaseolus species during germination and early seedling growth, Crop Sci. 42:1584-1594.CrossRefGoogle Scholar
  16. Beaver, J. S., and Kelly, J. D. 1994. Comparison of two selection methods for the improvement of dry bean populations derived from crosses between gene pools, Crop Sci. 34:34-37.CrossRefGoogle Scholar
  17. Beccera-Velasquez, V. L., and Gepts, P. 1994. RFLP diversity of common bean (Phaseolus vulgaris L) in its centres of origin, Genome 37:256-263.Google Scholar
  18. Beebe, S., Cardona, C., Diaz, O., Rodriguez, F., Mancia E., and Ajquejay, S. 1993. Development of common bean (Phaseolus vulgaris L.) lines resistant to the bean pod weevil, Apion Godmani Wagner, in Central America, Euphytica 69:83-88.Google Scholar
  19. Beltran, G. E., Jung, G. W., Nienhuis, J., and Bassett, M. J. 2002. Identification of RAPD markers linked to five marker genes (blu, dgs, y, arg, and a flat pod mutant) in common bean, J. Am. Soc. Hortic. Sci. 127:685-688.Google Scholar
  20. Binnie, R. C., and Clifford, P. E. 1981. Flower and pod production in Phaseolus vulgaris, J. Agric. Sci. 97:397-402.Google Scholar
  21. Blaylock, A. D. 1995. Navy bean yield and maturity response to nitrogen and zinc, J. Plant Nutr. 18:163-178.Google Scholar
  22. Bliss, F. A. 1971. Inheritance of growth habit and time of flowering in beans, Phaseolus vulgaris L., J. Am. Soc. Hortic. Sci. 96:715-717.Google Scholar
  23. Blum, A. 1988. Plant Breeding for Stress Environments, Boca Raton, CRC Press, FL, pp. 223.Google Scholar
  24. Borojevic, S. 1990. Principles and Methods of Plant Breeding, Elsevier, Amsterdam, pp. 368.Google Scholar
  25. Bos, I., 1983, Some remarks on the honeycomb selection, Euphytica 32:329-335.Google Scholar
  26. Boutin, S. R., Young, N. D., Olson, T. C., Yu, Z. H., Shoemaker, R. C., and Vallejos, C. E. 1995. Genome conservation among three legume genera detected with DNA markers, Genome 38:928-937.PubMedGoogle Scholar
  27. Bouwkamp, J. C., and Summers, W. L. 1982. Inheritance of resistance to temperature-drought stress in the snap bean, J. Hered. 73:385-386.Google Scholar
  28. Bravo, A., Wallace, D. C., and Wilkinson, R. E. 1969. Inheritance of resistance to Fusarium root rot of beans, Phytopathology 59:1930-1933.Google Scholar
  29. Brim, C. A. 1966. A modified pedigree method of selection in soybeans, Crop Sci. 6:220.Google Scholar
  30. Brothers, M. E., and Kelly, J. D. 1993. Interrelationship of plant architecture and yield components in the pinto bean ideotype, Crop Sci. 33:1234-1238.CrossRefGoogle Scholar
  31. Broughton, W. J., Hernàdez, G., Blair, M., Beebe, S., Gepts, P., and Vanderleyden, J. 2003. Beans (Phaseolus spp.) model food legumes, Plant Soil 252:55-128.Google Scholar
  32. Burkey, K. O., and Eason, G. 2002. Ozone tolerance in snap bean in associated with elevated ascorbic acid in the leaf apoplast, Physiol. Plant. 114:387-394.PubMedGoogle Scholar
  33. Carozzi, N. B., and Koziel, M. G. 1997. Advances in Insect Control: The Role of Transgenic Plants, Taylor and Francis Inc., New York, U.K.Google Scholar
  34. Carpenter, A. C., and Board, J. E. 1997a. Branch yield components controlling soybean yield stability across plant populations, Crop Sci. 37:885-891.CrossRefGoogle Scholar
  35. Carpenter, A. C., and Board, J. E. 1997b. Growth dynamic factors controlling soybean yield stability across plant populations, Crop Sci. 37:1520-1526.CrossRefGoogle Scholar
  36. Cattan-Toupance, I., Michalakis, Y., and Neema, C. 1998. Genetic structure of wild bean populations in their South-Andean centre of origin, Theor. Applied Genet. 96:844-851.Google Scholar
  37. Cerna, J., and Beaver, J. S. 1990. Inheritance of early maturity of indeterminate dry bean, Crop Sci. 30:1215-1218.CrossRefGoogle Scholar
  38. Chung, W. J., Baggett, J. R., and Rowe, K. E. 1991. Inheritance of pod cross-section in beans (Phaseolus vulgaris L.), Euphytica 53:159-164.Google Scholar
  39. CIAT, 1992 (Centro International del Agricultura Tropical), Constraints to and opportunities for improving bean production. A planning document 1993-1998 and an achieving document 1987-1992, CIAT, Cali, Columbia.Google Scholar
  40. Cichy, K. A., Foster, S., Grafton, K. F., and Hosfield, G. L. 2005. Inheritance of seed zinc accumulation in navy bean, Crop Sci. 45:864-870.Google Scholar
  41. Cook, D. R. 1999. Medicago truncatula - a model in the making, Current Opinion in Plant Biology 2:301-304.PubMedGoogle Scholar
  42. Coyne, D. P. 1966. The genetics of photoperiodism and the effect of temperature on the photoperiodic response for time of flowering in Phaseolus vulgaris L. varieties, Proc. Am. Soc. Hortic. Sci. 89:350-360.Google Scholar
  43. Coyne, D. P. 1967. Photoperiodism: Inheritance and lingage studies in Phaseolus vulgaris, J. Hered. 58:313-314.Google Scholar
  44. Coyne, D. P., and Mattson, R. H. 1964. Inheritance of time of flowering and length of blooming period in Phaseolus vulgaris L, Proc. Am. Soc. Hortic. Sci. 85:366-373.Google Scholar
  45. Coyne, D. P., and Schuster, M. L. 1974. Linkage studies of plant habit, photoperiod response and tolerance to Xanthomonas phaseoli in beans (Phaseolus vulgaris), HortScience 9:292 (Abstr.).Google Scholar
  46. Clothers, S. E., and Westermann, D. T. 1976. Plant spacing effects on the seed yield of Phaseolus vulgaris L., Agron. J. 68:958-960.CrossRefGoogle Scholar
  47. Currence, T. M. 1931. A new pod color in snap beans, J. Hered. 22:21-23.Google Scholar
  48. Davis, D. W., and Frazier, W. A. 1966. Inheritance of some growth habit components in certain types of bush lines of Phaseolus vulgaris L., Proc. Am. Soc. Hortic. Sci. 88:384-392.Google Scholar
  49. De Clercq, J. M., Zambre, M., Van Montagu, M., Dillen, W., and Angemon, G. 2002. An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray, Plant Cell Rep. 2:333-340.Google Scholar
  50. Deakin, J. R. 1974. Association of seed color with emergence and seed yield of snap beans, J. Am. Soc. Hortic. Sci. 99:110-114.Google Scholar
  51. Debouck, D. G. 1991. Systematics and morphology, in: Common Beans: Research for Crop Improvement, A. van Schoonhoven, and O. Voysest, eds., CAB International, Wallingford, Oxon, U.K., pp. 55-118.Google Scholar
  52. Debouck, D. G. 1999. Diversity in Phaseolus species in relation to the common bean, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 25-52.Google Scholar
  53. Debouck, D. G. 2000. Biodiversity, ecology, and genetic resources of Phaseolus beans - Seven answered and unanswered questions, in: Proc. of the 7th MAFE Inter. Workshop on Genetic Resources, Part 1. Wild Legumes, AFFRC and NIAR, Japan, pp. 95-123.Google Scholar
  54. Debouck, D. G., and Smartt, J. 1995. Beans, Phaseolus spp. (Leguminosae-Papilionoideae), in: Evolution of Crop Plants, J. Smartt, and N. W. Simmonds, eds., 2nd ed., Longman, London, U.K., pp. 287-294.Google Scholar
  55. Dekkers, I. C. M., and Hospital, F. 2002. The use of molecular genetics in the improvement of agricultural populations, Nature Rev. Genetics 3:22-32.PubMedGoogle Scholar
  56. Delgado-Salinas, A., Bruneau, A., and Doyle, J. J. 1993. Chloroplast phylogenetic studies in New World Phaseolinae (Leguminosae: Papilionoideae: Phaseoleae), Syst. Bot. 18:6-17.Google Scholar
  57. Delgado-Salinas, A., Turley, T., Richman, A., and Lavin, M. 1999. Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae), Syst. Bot. 24:438-460.Google Scholar
  58. Detongon, J., and Baggett, J. R. 1989. Inheritance of stem elongation tendency in determinate forms of common bean, J. Am. Soc. Hortic. Sci. 114:115-117.Google Scholar
  59. Dickson, M. H. 1975. Inheritance of transverse cotyledon cracking resistance in snap beans (Phaseolus vulgaris L.), J. Am. Soc. Hortic. Sci. 100:231-233.Google Scholar
  60. Dickson, M. H., and Boettger, M. A. 1984a. Emergence growth and blossoming of bean at suboptimal temperatures, J. Am. Soc. Hortic. Sci. 109:257-260.Google Scholar
  61. Dickson, M. H., and Boettger, M. A. 1984b. Effects of high and low temperatres on pollen germination and seed set in snap beans, J. Am. Soc. Hortic. Sci. 109:372-374.Google Scholar
  62. Dickson, M. H., and Petzoldt, R. 1987. Inheritance of low temeperature tolerance in beans at several growth stages, HortScience 22:481-483.Google Scholar
  63. Dickson, M. H., and Petzoldt, R. 1988. Deleterious effects of white seed due to p gene in beans, J. Am. Soc. Hortic. Sci. 113:111-114.Google Scholar
  64. Dinneny, J. R., and Yanofsky, M. F. 2004. Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned, BioEssays 27:42-49.Google Scholar
  65. Donald, C. M., and Hamblin, J. 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria, Adv. Agron. 28:361-405.Google Scholar
  66. Dubetz, S., and Mahalle, P. S. 1969. Effects of soil water stress on bush beans Phaseolus vulgaris L. at three growth stages, J. Am. Soc. Hortic. Sci. 94:479-481.Google Scholar
  67. Dudley, J. W., and Lambert, R. J. 1992. Ninety generations of selection for oil and protein in maize, Maydica 37:81-87.Google Scholar
  68. Duvick, D. N. 1992. Genetic contributions to advances in yield of U.S. maize, Maydica 37:69-79.Google Scholar
  69. Duvick, D. N. 1996. Plant breeding an evolutionary concept, Crop Sci. 36:539-548.CrossRefGoogle Scholar
  70. Duvick, D. N. 1997. Genetic rates of gain in hybrid maize yield, during the past 40 years, Maydica 22:187-196.Google Scholar
  71. Edmeades, G. O., and Daynard, T. B. 1979. The relationship between final yield and photosynthesis at flowering in individual maize plants, Can. J. Plant Sci. 59:585-601.CrossRefGoogle Scholar
  72. Elliott, M. L., Des Jardin, E. A., BatsonJr, W. E., Caceres, J., Brannen, P. M., Howell, C. R., Benson, D. M., Conway, K. E., Rothrock, C. S., Schneider, R. N., Ownley, B. H., Canaday, C. H., Keinath, A. P., Huber, D. M., Summer, D. R., Motsenbocker, C. E., Thaxton, M. A., Cubeta, M. A., Adams, P. D., Backman, P. A., Fajardo, J., Newman, M. A., and Pereira, R. M. 2001. Viability and stability of biological control agents on cotton and snap bean seeds, Pest Manag. Sci. 57:695-706.Google Scholar
  73. Ellis, R. H., Hong, T. D., and Roberts, E. H. 1985a. Handbook of Seed Technology for Genebanks, Vol. I. Principles and Methodology, IBPGR, Rome, pp. 210.Google Scholar
  74. Ellis, R. H., Hong, T. D., and Roberts, E. H. 1985b. Handbook of Seed Technology for Genebanks, Vol. II. Compendium of Specific Germination, Information and Test Recommendations, IBPGR, Rome, pp. 667.Google Scholar
  75. Esquinas-Alcàzar, J. T. 1993. Plant genetic resources, in: Plant Breeding, Principles and Prospects, M. D. Hayward, N. O. Bosemark, and I. Romagosa, eds., Chapman and Hall, London, U.K., pp. 33-51.Google Scholar
  76. Evans, A. M. 1976. Beans, Phaseolus spp. (Leguminosae-Papilionacae), in: Evolution of Crop Plants, N. W. Simmonds, ed., Longman Group Limited, London, pp. 168-172.Google Scholar
  77. Evans, L. T. 1980. The natural history of crop yield, Am. Sci. 68:388-397.Google Scholar
  78. Evans, L. T. 1993. Crop Evolution Adaption and Yield, Cambridge, University Press, U.K., pp. 500.Google Scholar
  79. Evans, L. T., and Fischer, R. A. 1999. Yield potential: its definition, measurement and significance, Crop Sci. 39:1544-1551.CrossRefGoogle Scholar
  80. FAO, 2006. Food and Agricultural Organization, subset = agriculture.
  81. Farlas-Rodriguez, R., Melllor, R. B., Arias, C., and Peña Cabriales, J. 1998. The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris L.) with resistance to drought stress, Physiol. Plant. 102:353-359.Google Scholar
  82. Farlow, P. J., Dyth, D. E., and Kruger, N. S. 1979. Effect of temperature on seed set and in vitro pollen germination in french bean (Phaseolus vulgaris), Austral. J. Exper. Agr. Anim. Husb. 19:725-731.Google Scholar
  83. Fasoula, V. A., and Fasoula, D. A. 2000. Honeycomb breeding: Principles and applications, Plant Breed. Rev. 18:177-250.Google Scholar
  84. Fasoula, V. A., and Fasoula, D. A. 2002. Principles underlying genetic improvement for high and stable crop yield potential, Field Crops Res. 75:191-209.Google Scholar
  85. Fasoulas, A. C. 1973. A New Approach to Breeding Superior Yielding Varieties, Publ. 3, Dept. of Genetics and Plant Breeding, Aristotelian Univ. of Thessaloniki, Greece. Google Scholar
  86. Fasoulas, A. C. 1977. Field Designs for Genotypic Evaluation and Selection, Publ. 7, Dept. of Genetics and Plant Breeding, Aristotelian Univ. of Thessaloniki, Greece, pp. 61.Google Scholar
  87. Fasoulas, A. C. 1988. The Honeycomb Methodology of Plant Breeding, A. C. Fasoulas, ed., Thessaloniki, Greece, pp. 167.Google Scholar
  88. Fasoulas, A. C. 1993. Principles of Crop Breeding, A. C. Fasoulas, ed., Thessaloniki, Greece, pp. 127.Google Scholar
  89. Fasoulas, A. C. 1997. Overcoming inbred line stagnation for productivity and stability in maize breeding, in: Proc. of the XVIIth Conferecne on Genetics, Biothechnology and Breeding of Maize and Sorghum, A. S. Tsaftaris, ed., The Royal Soc. Chem., Cambridge, U.K., pp. 115-124.Google Scholar
  90. Fasoulas, A. C., and Fasoula, V. A. 1995. Honeycomb selection designs, Plant Breed. Rev. 13:87-139.Google Scholar
  91. Ferrandiz, C. 2002. Regulation of fruit dehiscence in Arabidopsis, J. Exp. Bot. 53:2031-2038.PubMedGoogle Scholar
  92. Fowler, D. B., Limin, A. E., and Richie, I. I. 1999. Low-temperature tolerance to cereals: Model and genetic interpretation, Crop Sci. 39:626-633.CrossRefGoogle Scholar
  93. Frazier, W. A., Baggett, J. R., and Sistrunk, W. A. 1958. Transfer of certain blue lake pole bean pod characters to bush beans, J. Am. Soc. Hortic. Sci. 71:416-421.Google Scholar
  94. Garber, K., Bilic, I., Pusch, O., Tohme, J., Bachmair, A., Schweizer, D., and Jantsch, V. 1999. The Tpv 2 family of retrotransposons of Phaseolus vulgaris: structure, integration characteristics and use of genotype classification, Plant Mol. Biol. 39:797-807.Google Scholar
  95. Gardner, C. O. 1961. An evaluation of effects of mass selection and seed irradiation with the thermal neutrons on yield of corn, Crop Sci. 1:241-245.CrossRefGoogle Scholar
  96. Gepts, P. 1988. A middle American and an Andean common bean pool, in: Genetic Resources of Phaseolus Beans, P. Gepts, eds., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 375-390.Google Scholar
  97. Gepts, P. 1990. Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans, Econ. Bot. 44:28-38.Google Scholar
  98. Gepts, P. 1998. Origin and evolution of common bean: Past events and recent trends, HortScience 33:1124-1130.Google Scholar
  99. Gepts, P. 1999. Development of an integrated linkage map, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 52-92.Google Scholar
  100. Gepts, P., and Bliss, F. A. 1985. F1 hybrid weakness in the common bean: Differential geographic origin suggests two gene pools in cultivated bean germplasm, J. Hered. 76:447-450.Google Scholar
  101. Gepts, P., and Debouck, D. G. 1991. Origin, domestication and evolution of the common bean, Phaseolus vulgaris L., in: Common Beans: Research for Crop Improvement, A.Van Schoonhoven and O.Voysest, eds., CAB Intern., Wallingford, Oxon, U.K., pp. 7-53.Google Scholar
  102. Gepts, P., Kmiecik, K., Pereira, P., and Bliss, F. A. 1988. Dissemination pathways of common bean (Phaseolus vulgaris, L., Fabaceae) deduced from phaseolin electrophoretic variability, I. The Americas, Econ. Bot. 42:73-85.Google Scholar
  103. Godwin, I. 2003. Plant germplasm collections as source of useful genes, in: Plant Molecular Breeding, H. J. Newbury, ed., Blackwell Publ., CRC Press, U.K., pp. 134-151.Google Scholar
  104. Gonzalez, A. M., Monteagudo, A. B., Casquero, P. A., De Ron, A. M., and Santalla, M. 2006. Genetic variation and environmental effects on agronomical and commercial quality traits in the main European market classes of dry bean, Field Crops Res. 95:336-347.Google Scholar
  105. Grafton, K. F., Schneiter, A. A., and Nagle, B. J. 1988. Row spacing population and genotype X row spacing interaction effects on yield and yield components of dry bean, Agron. J. 80:631-634.CrossRefGoogle Scholar
  106. Graham, P. H., and Ranalli, P. 1997. Common bean (Phaseolus vulgaris L.), Field Crops Res. 53:131-146.Google Scholar
  107. Greenway, H., and Munns, R. 1980. Mechanisms of salt tolerance in non-halophytes, Annu. Rev. Plant Physiol. 31:149-190.Google Scholar
  108. Grubben, G. J. H. 1977. Leguminous vegetables, in: Tropical Vegetables and their Genetic Resources, H. D. Tindall , and J. T. Williams, eds., Inter. Board Plant Gen. Res. (IBPGR), Rome, pp. 65-68.Google Scholar
  109. Hagedorn, D. J., and Inglis, D. A. 1986. Handbook of Bean Diseases, University of Wisconsin-Extension, Cooperative Extension Publications, Madison, Wisconsin, pp. 25. Google Scholar
  110. Hall, A. E. 1992. Breeding for heat tolerance, Plant Breed. Rev. 10:129-168.Google Scholar
  111. Hallauer, A. R. 1978. Potential of exotic germplasm for maize improvement, in: Maize Breeding and Genetics, D. B. Walden, eds., John Wiley, New York, pp. 229-247.Google Scholar
  112. Hamblin, J., and Evans, A. M. 1976. The estimation of cross yield using early generation and parental yields in dry beans (Phaseolus vulgaris L.), Euphytica 25:515-520.Google Scholar
  113. Hardwick, R. C., and Andrews, D. J. 1980. A method or measuring differences between bean varieties in tolerance to sub-optimal temperatures, Ann. Appl. Biol. 95:235-247.Google Scholar
  114. Harman, G. E. 1991. Seed treatments for biological control of plant disease, Crop Prot. 10:166-171.Google Scholar
  115. Hidalgo, R. 1991. CIAT’s world Phaseolus collection, in: Common Beans: Research for Crop Improvement, A. Van Schoonhoven, and O. Voysest, eds., CAB, Intern., Wallingford, Oxon, U.K., pp. 163-197.Google Scholar
  116. Hucl, P., and Scoles, G. J. 1985. Interspecific hybridization in the common bean: a review, HortScience 20:352-357.Google Scholar
  117. Humphry, M. E., Konduri, V., and Lambrides, C. J. 2002. Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes, Theor. Applied Gen. 105:160-166.Google Scholar
  118. Ingram, J., and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:377-403.PubMedGoogle Scholar
  119. Janick, J. 1999. Exploitation of heterosis: Uniformity and stability, in: The Genetics and Exploitation of Heterosis in Crops, ASA-CSSA-SSSA, Madison, pp. 319-333.Google Scholar
  120. Jenkins, M. I. 1978. Maize breeding during the development and early years of hybrid maize, in: Breeding and Genetics, D. B. Walden, ed., Proc. Intern. Maize Symp., John Wiley & Sons, New York, pp. 13-28.Google Scholar
  121. Jensen, N. F. 1988. Plant Breeding Methodology, Wiley-Interscience, New York, p. 676.Google Scholar
  122. Jinks, J. L., and Pooni, H. S. 1976. Predicting the properties of recombinant inbred lines derived by single seed descent, Heredity 36:233-266.Google Scholar
  123. Jung, G., Ariyarathne, H. M., Coyne, D. P., and Nienhuis, I. 2003. Mapping QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean, Crop Sci. 43:350-357.CrossRefGoogle Scholar
  124. Kaplan, L. 1965. Archaeology and domestication in American Phaseolus beans, Econ. Bot. 19:358-368.Google Scholar
  125. Kearsey, M. J., and Luo, Z. W. 2003. Mapping, characterization and development of quantitative trait loci, in: Plant Molecular Breeding, H. J. Newbury, ed., Blackwell Publ. CRC Press, U.K., pp. 1-29.Google Scholar
  126. Keinath, A. P., BatsonJr, W. E., Caceres, J., Elliott, M. L., Summer, D. R., Brannen, P. M., Rothrock, C. S., Huber, D. M., Benson, D. M., Conway, K. E., Schneider, R. N., Motsenbocker, C. E., Cubeta, M. A., Ownley, B. H., Canaday, C. H., Adams, P. D., Backman, P. A., and Fajardo, J. 2000. Evaluation of biological and chemical seed treatments to improve stand of snap bean across the southern United States, Crop Prot. 19:501-509.Google Scholar
  127. Kelly, J. D., and Adams, M. W. 1987. Phenotypic recurrent selection in ideotype breeding of pinto beans, Euphytica 36:69-80.Google Scholar
  128. Kelly, J. D., Gepts, P., Miklas, P. N., and Coyne, D. P. 2003. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea, Field Crops 82:135-154.Google Scholar
  129. Klu, J. Y. P. 1997. Induced mutations in winged bean (Phosphocarpus tetragonolobus L. DC) with low tannin content, Euphytica 98:99-107.Google Scholar
  130. Koinange, E. M. K., Singh, S. P., and Gepts, P. 1996. Genetic control of the domestication syndrome in common bean, Crop Sci. 36:1037-1045.CrossRefGoogle Scholar
  131. Koutsika-Sotiriou, M. 1999. Hybrid seed production in maize, in: Heterosis and Hybrid Seed Production in Agronomic Crops, A. S. Basra, ed., The Haworth press, New York, pp. 25-64.Google Scholar
  132. Koutsika-Sotiriou, M., and Karagounis, Ch. 2005. Assessment of maize germplasm, Maydica 50:63-70.Google Scholar
  133. Kretchmer, P. J., Laing, D. R., and Wallace, D. H. 1979. Inheritance and morphological traits of a phytochrome-controlled single gene in bean, Crop Sci. 19:605-607.CrossRefGoogle Scholar
  134. Kretchmer, P. J., Ozbun, J. L., Kaplan, S. L., Laing, D. R., and Wallace, D. H. 1977. Red and far-red light effects on climbing in Phaseolus vulgaris L., Crop Sci. 17:797-799.CrossRefGoogle Scholar
  135. Kyle, J. H., and Randall, T. E. 1963. A new concept of the hard seed character in Phaseolus vulgaris L. and its use in breeding and inheritance studies, Proc. Am. Soc. Hortic. Sci. 83:461-475.Google Scholar
  136. Lamkey, K., and Hallauer, A. R. 1987. Heritability estimated from recurrent selection experiments in maize, Maydica 32:61-78.Google Scholar
  137. Lammerts van Bueren, E. T., Struik, P. C., Tiemens-Hulscher, M., and Jacobsen, E. 2003. Concepts of intrinsic value and integrity of plants in organic plant breeding propagation, Crop Sci. 43:1922-1929.CrossRefGoogle Scholar
  138. Larsen, R. C., and Miklas P. N. 2003. Generation and molecular mapping of the sequence chracterized amplified region marker linked with the Bet gene for resistance to Beet curly top virus in common bean, Phytopathology 94:320-325.Google Scholar
  139. Lazcano-Ferrat, I., and Louatt, C. J. 1999. Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit, Crop Sci. 39:467-475.CrossRefGoogle Scholar
  140. Leakey, C. L. A. 1988. Genotypic and phenotypic markers in coomon bean, in: Genetic Resources of Phaseolus Beans, P. Gepts, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 245-347.Google Scholar
  141. Lee, J. M., Grant, D., Vallejos, C. E., and Shoemaker, R. C. 2001. Genome organization in dicots. II. Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes, Theor. Applied Genet. 103:765-773.Google Scholar
  142. Lewis, M. E., and Bliss, F. A. 1994. Tumor formation and glucuronidase expression in Phaseolus vulgaris inoculated with Agrobacterium tumefaciens, J. Am. Soc. Hortic. Sci. 119:361-366.Google Scholar
  143. Leyna, H. K. G., Korban, S. S., and Coyne, D. P. 1982. Changes in patterns of inheritance of flowering time of dry beans in different environments, J. Hered. 73:306-308.Google Scholar
  144. Li, Ch., Zhou, A., and Sang, T. 2006. Rice domestication by reducing shattering, Science 311:1036-1039.Google Scholar
  145. Lott, J. N. A., Ockenden, I., Raboy, V., and Batten, G. D. 2000. Phytic acid and phosphorous in crop seeds and fruits: a global estimate, Seed Sci. Res. 19:11-33.Google Scholar
  146. Mass, E. V., and Hoffman, G. J. 1977. Crop salt tolerance - Current assessment, J. Irrig. Drainage 103:115-134.Google Scholar
  147. Mack, H. J., and Hatch, D. L. 1968. Effects of plant arrangement and population density on yield of bush snap beans, Proc. Am. Soc. Hortic. Sci. 92:418-425.Google Scholar
  148. Manshardt, R. M., and Bassett, M. J. 1984. Inheritance of stigma position in Phaseolus vulgaris X P. coccineus hybrid populations, J. Hered. 75:45-50.Google Scholar
  149. Masaya, P., and White, J. W. 1993. Adaptation to photoperiod and temperature, in: Common Beans: Research for Crop Improvement, A. van Schoonhoven, and O. Voysest, eds., CAB International, Wallingford, Oxon, U.K., pp. 445-500.Google Scholar
  150. Mauk, C. S., Breen, P. J., and Mack, H. J. 1983. Yield response of major pod-bearing modes in bush snap beans to irrigation and plant population, J. Am. Soc. Hort. Sci. 108:935-939.Google Scholar
  151. Meyer, D. W., and Badaruddin, M. 2001. Frost tolerance of ten seedling legume species at four growth stages, Crop Sci. 41:1838-1842.CrossRefGoogle Scholar
  152. Miklas, P. N., Delorme, R., and Riley, R. 2003. Identification of QTL conditioning resistance to white mold in snap bean inheritance, J. Am. Soc. Hortic. Sci. 128:567-570.Google Scholar
  153. Miklas, P. N., Johnson, W. C., Delorme, R., and Gepts, P. 2001. QTL conditioning physiological resistance and avoidance to white mold in dry bean, Crop Sci. 41:309-315.CrossRefGoogle Scholar
  154. Moraghan, J. T., and Grafron, K. 1999. Seed-zinc concentration and the zinc-efficiency trait in navy bean, Soil Sci. Soc. Am. J. 63:918-922.Google Scholar
  155. Moreno-Gonzales, J., and Cubero, J. I. 1993. Selection strategies and choice of breeding methods, in: Plant Breeding, Principles and Prospects, M. D. Hayward, N. O. Bosemark, and I. Romagosa, eds., Chapman and Hall, London, U.K., pp. 281-313.Google Scholar
  156. Moreno, L. S., Maiti, R. K., Gonzales, A. N., Star, J. V., Froughbakhch, R., and Gonzales, H. G. 2000. Genotypic variability in bean cultivars (Phaseolus vulgaris L.) for resistance to salinity at the seedling stage, Indian Agric. 44:1-12.Google Scholar
  157. Motto, M., Sorresi, G. P., and Salamini, F. 1978. Seed size inheritance in a cross between wild and cultivated common beans (Phaseolus vulgaris L.), Genetica 49:31-36.Google Scholar
  158. Myers, J. R. 2000. Tomorrow’s snap bean cultivars, in: Bean Rresearch, Production and Utilization, S. P. Singh, ed., Proc. Idaho Bean Workshop, Univ. Idaho, Moscow, ID, pp. 39-51.Google Scholar
  159. Myers, J. R., and Baggett, J. R. 1999. Improvement of snap bean, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 289-329.Google Scholar
  160. Newbury, H. J., and Paterson, A. H. 2003. Genomic colinearity and its participation in crop plant improvement, in: Plant Molecular Breeding, H. J. Newbury, ed., Blackwell Publ., CRC Press, U.K., pp. 60-81.Google Scholar
  161. Nienhuis, J., and Singh, S. P. 1988. Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle American origin, I: General combining ability, Plant Breed. 101:143-154.Google Scholar
  162. Ninou, E., and Papakosta, D. 2006. Differentiation among bean cultivars (Phaseolus vulgaris L.) of different use in the agronomic traits and nitrogen and phosphorus use, Master Thesis, Aristotelian University of Thessaloniki, Thessaloniki, Hellas, p. 82.Google Scholar
  163. OECD, 2000, OECD Scheme for the control of vegetable seed moving in international trade, in: OECD Seed Schemes ‘2000’, OECD, Paris, pp. 191-215.Google Scholar
  164. Olufajo, O. O., Scarisbrick, D. H., and Daniels, R. W. 1981. The effect of pod removal on the reproductive development of Phaseolus vulgaris cv. Provider, J. Agric. Sci. 96:669-676.Google Scholar
  165. Omae, H., Kumar, A., Egawa, Y., Kashiwaba, K., and Shono, M. 2005. Midday drop of leaf water content related to drought tolerance in snap bean (Phaseolus vulgaris L.), Plant Prod. Sci. 8:465-467.Google Scholar
  166. Otubo, S. T., Ramahlo, M. A. P., de Abreu, A. B., and des Santos, J. B. 1996. Genetic control of low temperature tolerance in germination of the common bean (Phaseolus vulgaris L.), Euphytica 89:313-317.Google Scholar
  167. Pandey, S., and Gardner, C. O. 1992. Recurrent selection for population variety, and hybrid improvement in tropical maize, Adv. Agron. 48:2-79.Google Scholar
  168. Paredes, O. M., and Gepts, P. 1995. Extensive introgression of Middle American germplasm into Chilean common bean cultivars, Genet. Res. Crop Evol. 42:29:41.Google Scholar
  169. Parsons, F. G. 1985. The early history of seed certification, in: The Role of Seed Certification in the Seed Industry, M. B. McDonald, Jr. and W. D. Pardee, eds., Crop Sci. Soc. Am., Spec. Publ. 10., Am. Soc. Agron., Madison, WI., pp. 3-7.Google Scholar
  170. Patermiani, E. 1973. Recent studies on heterosis, in: Agricultural Genetics Selected Topics, R. Moav, ed., John Wiley & Sons, New York, pp. 1-22.Google Scholar
  171. Patino, H., and Singh, S. P. 1989. Visual selection for seed yield in the F2 and F3 generations of nine common bean crosses, Annu. Rep. Bean Improv. Coop. 32:79-80.Google Scholar
  172. Paulitz, T. 1992. Biological control of damping-off diseases with seed treatments, in: Biological Control of Plant Diseases: Progress and Challenges for the Future, E. S. Tjamos, G. C. Papavizas, and R. J. Cook, eds., Plenum Press, New York, pp. 145-156.Google Scholar
  173. Pearson, C. 1956. Some aspects of monosomic wheat breeding, Can. J. Bot. 34:60-70.Google Scholar
  174. Peirce, L. 1989. Vegetables: Characteristics, Production and Marketing, J. Wiley & Sons, N.Y., pp. 333-343.Google Scholar
  175. Poehlman, J. M., and Sleper, D. A. 1995. Breeding Field Crops, 4th ed., Iowa State University Press/Ames, pp. 453-468.Google Scholar
  176. Prakken, R. 1934. Inheritance of colors and pod characters in Phaseolus vulgaris L., Genetica 16:177-294.Google Scholar
  177. Quinones, F. A. 1969. Relationships between parents and selections in cross of dry beans, Phaseolus vulgaris L, Crop Sci. 9:673-675.Google Scholar
  178. Rainey, K. M., and Griffiths, P. D. 2005. Inheritance of heat tolerance during reproductive development in snap bean (Phaseolus vulgaris L.), J. Am. Soc. Hortic. Sci. 130:700-706.Google Scholar
  179. Ramalho, M. A. P., dos Santos, J. B., and Pereira Filho, I. 1988. Choice of patterns for dry bean (Phaseolus vulgaris L.) breeding. I. Interaction of mean components by generation and by location, Rev. Bras. Genet. 11:391-400.Google Scholar
  180. Rasmusson, D. C., and Phillips, R. I. 1997. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis, Crop Sci. 37:303-310.CrossRefGoogle Scholar
  181. Robertson, L. D., and Frey, K. J. 1987. Honeycomb design for selection among homozygous oat lines. Crop Sci. 27:1105-1108.CrossRefGoogle Scholar
  182. Robins, J. S., and Domingo, C. E. 1956. Moisture deficit in ralation to the growth and development of dry beans, Agron. J. 48:67-70.CrossRefGoogle Scholar
  183. Roman-Avilés, B, Snapp, S. S., and Kelly, J. D. 2004. Assessing root traits associated with root rot resistance in common bean, Field Crops Res. 86:147-156.Google Scholar
  184. Romanhernandez, O., and Beaver, J. S. 1996. Optimum stage of development for harvesting green-shelled beans, J. Agric. Univ. Puerto Rico 80:89-94.Google Scholar
  185. Rubatzky, V. E., and Yamaguchi, M. 1997. World Vegetables, Principles, Production, and Nutritive Values, Chapman and Hall, ITP, Inter. Thompson Publ. Co., N.Y., pp. 488-498.Google Scholar
  186. Schachl, R. 1998. Status of the European Phaseolus database, in: Report of a Working Group IPGRI on Grain Legumes, L. Maggioni, M. Ambrose, R. Schachl, and E. Lipman, (compilers), European Cooperative Program for Crop Genetic Resources Networks (ECP/GR), Norwich, U.K., pp. 31-33.Google Scholar
  187. Schoonhoven, Van. A., and Voysest, O. 1991. Common Beans: Research for Crop Improvement, CAB Inter., Wallingford, Oxon, U.K., pp. 979.Google Scholar
  188. Seth, A. K., and Wareing, P. F. 1967. Hormone-directed transport of metabolites and its possible role in plant senesence, J. Exp. Bot. 18:65-77.Google Scholar
  189. Shellie-Dessert, K. C., and Bliss, F. A. 1991. Genetic improvement of food quality factors, in: Common Beans: Research for Crop Improvement, A. van Schoonhoven, and O. Voysest, eds., CAB Inter., Wallingford, U.K., pp. 649-671.Google Scholar
  190. Sherf, A. F., and Macnab, A. A. 1986. Vegetables diseases and their control, J. Wiley and Sons, 2nd ed., Inc., London, pp. 32-53.Google Scholar
  191. Silbernagel, M. J. 1986. Snap bean breeding, in: Breeding Vegetable Crops, M. J. Basset, and J. Mark, eds., AVI Publ. Co., Westport, C.T., pp. 243-282.Google Scholar
  192. Silbernagel, M. J. 1987. Fusarium root rot-resistant snap bean breeding line FR-266, HortScience 22:1337-1338.Google Scholar
  193. Silbernagel, M. J., and Drake, S. R. 1978. Seed index, an estimate of snap bean quality, J. Am. Soc. Hortic. Sci. 103:257-260.Google Scholar
  194. Silbernagel, M. J., and Hannan, R. M. 1988. Utilization of genetic resources in the development of commercial bean cultivars in the U.S.A., in: Genetic Resources of Phaseolus Beans, P. Gepts, eds., Kluwer, Dordrecht, the Netherlands, pp. 561-596.Google Scholar
  195. Silbernagel, M. J., and Hannan, R. M. 1992. Use of plant introductions to develop U.S. bean cultivars, in: Use of Plant Introductions in Cultivar Development, H. Shands, and L. E. Weisner, eds., Part 2, CSSA Spec. Publ. 20, CSSA, Madison, WI.Google Scholar
  196. Silbernagel, M. J., Janssen, W., Davis, J. H. C., and Mondes de Oca, G. 1991. Snap bean production in the tropics: Implications for genetic improvement, in: Common Beans: Research for Crop Improvement,, A. Van Schoonhoven, and O. Voysest, eds., CAB Intern.,Wallingford, Oxon, U.K., pp. 835-862.Google Scholar
  197. Simmonds, N. W. 1979. Principles of Crop Improvement, Longman, London, pp. 408.Google Scholar
  198. Singh, S. P. 1989. Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae), Econ. Bot. 43:39-57.Google Scholar
  199. Singh, S. P. 1991. Bean genetics, in: Common Beans: Research for Crop Improvement, A. Van Schoonhoven, and O.Voysest, eds., CAB Intern. Wallingford, Oxon, U.K. pp. 199-286.Google Scholar
  200. Singh, S. P. 1992. Common bean improvement in the tropics, Plant Breed. Rev. 10:199-269.Google Scholar
  201. Singh, S. P. 1994. Gamete selection for simultaneous improvement of multiple traits in common bean, Crop Sci. 34:352-355.CrossRefGoogle Scholar
  202. Singh, S. P. 1995. Selection for water stress tolerance in interracial populations of common bean, Crop Sci. 35:118-124.CrossRefGoogle Scholar
  203. Singh, S. P. 1999. Integrated genetic improvement, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 133-165.Google Scholar
  204. Singh, S. P. 2001. Broadening the genetic base of common bean cultivars: A review, Crop Sci. 41:1659-1675.CrossRefGoogle Scholar
  205. Singh, S. P., Cajiao, C., Gutiėrez, J. A., Garcia, J., Pastor-Corrales, M. A., and Morales F. J. 1989a. Selection for seed yield in inter-gene pool crosses of common bean, Crop Sci. 29:1126-1131.CrossRefGoogle Scholar
  206. Singh, S. P., Cardona, C., Morales, F. J., Pastor-Corrales, M. A., and Voysest, O. 1998. Gamete selection for upright carioca bean with resistance to five diseases and a leafhopper, Crop Sci. 38:666-672.CrossRefGoogle Scholar
  207. Singh, S. P., Gepts, P., and Debouck, D. G. 1991a. Races of common bean (Phaseolus vulgaris, Fabaceae), Econ. Bot. 45:379-396.Google Scholar
  208. Singh, S. P., Gutiėrez, J. A., Molina, A., Urrea, C., and Gepts, P. 1991b. Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits, Crop Sci. 31:23-29.CrossRefGoogle Scholar
  209. Singh, S. P., Lepiz, R., Gutierrez, J. A., Urrea, C., Molina, A., and Teran, H. 1990. Yield testing of early generation populations of common bean, Crop Sci. 30:874-878.CrossRefGoogle Scholar
  210. Singh, S. P., and Molina, A. 1996. Inheritance of crippled trifoliolate leaves occuring in interracial crosses of common bean and its relationship with hybrid dwarfism, J. Hered. 87:464-469.Google Scholar
  211. Singh, S. P., Molina, A., and Gepts, P. 1995. Potential of wild common bean for seed yield improvement of cultivars in the tropics, Can. J. Plant Sci. 75:807-813.Google Scholar
  212. Singh, S. P., and Terran, H. 1998. Population bulk versus F1-derived family methods of yield testing in early generations of multiple-parent interracial and inter-gene pool crosses of common bean. Can. J. Plant Sci. 78:417-421.Google Scholar
  213. Singh, S. P., Teràn, H., Muñoz, C. G., and Takegami, J. C. 1999. Two cycles of recurrent selection for seed yield in common bean, Crop Sci. 39:391-397.CrossRefGoogle Scholar
  214. Singh, S. P., and Urrea, C. 1995. Inter-and intra-racial hybridization and selection for seed yield in early generations of common bean, Phaseolus vulgaris L. Euphytica 81:131-137.Google Scholar
  215. Singh, S. P., Urrea, C. A., Gutiėrez, J. A., and Garcia, J. 1989b. Selection for seed yield at two fertilizer levels in small-seeded common bean, Can. J. Sci. 69:1011-1017.CrossRefGoogle Scholar
  216. Skroch, P., and Nienhuis, J. 1995. Qualitative and quantitative characterization of RAPD variation among snap bean (Phaseolus vulgaris) genotypes, Theor. Appl. Genet. 91:1078-1085.Google Scholar
  217. Sonnante, G. T., Stockton, T., Nodari, Becerra, R. O., Velásquez, V. L., and Gepts, P. 1994. Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.), Theor. Appl. Genet. 89:629-635.Google Scholar
  218. Sotiriou, A., Koutsika-Sotiriou, M., and Gouli-Vavdinoudi, E. 1996. The effect of honeycomb selection for grain yield on a maize population, J. Agric. Sci. 127:143-149.Google Scholar
  219. Sprague, G. F., and Eberhart, S. A. 1977. Corn breeding, in: Corn and Corn Improvement, G. F. Sprague, ed., American Society of Agronomy, Madison, pp. 305-363.Google Scholar
  220. Stavelym, J. R., and Steinke, J. 1985. BABC-rust resistant -2, -3, -4 and -5 snap bean germplasm, HortScience 20:779-780.Google Scholar
  221. Subhadrabandhu, S., Adams, M. W., and Reicosky, D. A. 1978. Abscission of flowers and fruits in Phaseolus vulgaris L., I: cultivar differences in flowering pattern and abscission, Crop Sci. 18:893-896.CrossRefGoogle Scholar
  222. Sullivan, J. G., and Bliss, F. A. 1983. Recurrent mass selection for increased seed yield and seed protein percentage in the common bean (Phaseolus vulgaris L.), using a selection index, J. Am. Soc. Hortic. Sci. 108:42-46.Google Scholar
  223. Suzuki, K., Takeda, H., Tsukaguchi, T., and Egawa, Y. 2001. Ultrastructural study on depeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress, Sex. Plant Reprod. 13:293-299.Google Scholar
  224. Tar’an, B., Michaels, T. E., and Pauls, K. P. 1998. Stability of the association of molecular markers and common bacterial blight resistance in common bean (Phaseolus vulgaris L.), Plant Breed. 117:553-558.Google Scholar
  225. Tar’an, B., Michaels, T. E., and Pauls, K. P. 2002. Genetics maping of agronomic traits in common bean, Crop Sci. 42:544-556.CrossRefGoogle Scholar
  226. Taylor, A. G., and Dickson, M. H. 1987. Seed coat permeability in semi-hard snap bean seeds: Its influence on imbibitional chilling injury, J. Hort. Sci. 62:183-189.Google Scholar
  227. Tertivanidis, K., Koutita, O., Skarakis, G., Traka-Mavrona, E., and Koutsika-Sotiriou, M. 2003. The use of RAPD markers in monitoring molecular changes during a selection process in snap bean, J. New Seeds, 5:87-96.Google Scholar
  228. Thomashow, M. F. 2001. So what’s new in the field of plant cold acclimation? Lots!, Plant Physiol. 125:89-93.Google Scholar
  229. Tokatlidis, I., Koutsika-Sotiriou, M., Fasoulas, A. C., and Tsaftaris, A. S. 1998. Improving maize hybrids for potential yield per plant, Maydica 43:123-129.Google Scholar
  230. Tokatlidis, I. S., Koutsika-Sotiriou, M., and Tamoutsidis, E. 2005. Benefits from using maize density-independent hybrids, Maydica 50:9-17.Google Scholar
  231. Tokuhisa, J., and Browse, J. 1999. Genetic engineering of plant chilling tolerance, in: Genetic Engineering 21, I. K. Setlow, ed., Kluwer Academic/Phenum Publ., N.Y., pp. 79-93.Google Scholar
  232. Tollenaar, M., and Wu, J. 1999. Yield improvement in temperate maize is attributable to greater stress tolerance, Crop Sci. 39:1597-1604.CrossRefGoogle Scholar
  233. Traka-Mavrona, E., Georgakis, D., Koutsika-Sotiriou, M., and Pritsa, Th. 2000. An integrated approach of breeding and maintaining an elite cultivar of snap bean. Agron. J. 92:1020-1026.CrossRefGoogle Scholar
  234. Traka-Mavrona, E., Georgakis, D., Koutsika-Sotiriou, M., and Pritsa, Th. 2001. The efficiency of a breeding program with progressively advanced targets applied in an elite cultivar of snap bean. J. Agric. Sci. 136:301-308.Google Scholar
  235. Traka-Mavrona, E., Georgakis, D., and Koutsika-Sotiriou, M. 2002a. Phenology and quality studies on a snap bean cultivar deviation. J. New Seeds 4:41-56.Google Scholar
  236. Traka-Mavrona, E., Georgakis, D., Spanomitsios, G., and Koutsika-Sotiriou, M. 2002b. Pre-breeding manipulations for target pod yield stability in a snap bean cultivar. J. Hortic. Sci. Biotech. 77:641-648.Google Scholar
  237. Traka-Mavrona, E., Georgakis, D., and Koutsika-Sotiriou, M. 2003. Improvement in the stability and yield performance of a snap bean cultivar, J. Vegetable Crop Prod. 9:19-30.Google Scholar
  238. Tsukaguchi, T., Fukamachi, H., Ozawa, K., Takeda, H., Suzuki, K., and Egawa, Y. 2005.Diurnal change in water balance of heat-tolerant snap bean (Phaseolus vulgaris) cultivar and its association with growth under high temperature, Plant Prod. Sci. 8:375-382.Google Scholar
  239. Tsukaguchi, T., Kawamitsu, Y., Tkeda, H., Suzuki, K., and Egawa, Y. 2003. Water status of flower buds and leaves as affected by high temperature in contrasting snap bean (Phaseolus vulgaris L.) varieties in heat tolerance Plant Prod. Sci. 6:24-27.Google Scholar
  240. Tucker, C. L., and Harding J. 1974. Effect of the environment on seed yield in bulk populations of lima beans, Euphytica 23:135-139.Google Scholar
  241. Tucker, C. L., and Webster, B. D. 1970. Relation of seed yield and fitness in Phaseolus lunatus L. Crop Sci. 10:314-315.CrossRefGoogle Scholar
  242. UPOV, 1995. Corrigendum to guidelines for the conduct of tests for distinctness uniformity and stability of French bean (Phaseolus vulgaris L.), International Union for the Protection of new Varieties of Plants (UPOV), TG/12/8.Google Scholar
  243. Urrea, C. A., and Singh, S. P. 1994. Comparison of mass F2-derived family, and single-seed-descent selection methods in an interracial population of common bean, Can. J. Plant Sci. 74:461-464.Google Scholar
  244. Vance, C. P. 1997. Enhanced agricultural sustainability through biological nitrogen fixation, in: Biological Nitrogen Fixation for Ecology and Sustainable Agriculture. NATO ASI Series, A. Legocki, H. Bothe, and A. Puhler, eds., Springer-Verlag, Berlin, pp. 179-186.Google Scholar
  245. Veltcheva, M., Svetleva, D., Petkova, Sp., and Perl, A. 2005. In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.) - Problems and progress, Scientia Hort. 107:2-10.Google Scholar
  246. Voysest, O., and Dessert, M. 1991. Bean cultivars: Classes and commercial seed types, in: Common Beans: Research for Crop Improvement, A. Van Schoonhoven, and O. Voysest, eds., CAB Intern., Wallingford, Oxon, U.K., pp. 119-162.Google Scholar
  247. Waines, I. G., Manshardt, R. M., and Wells, W. C. 1988. Interspecific hybridization between Phaseolus vulgaris and P. acutifolius, in: Genetic Resources of Phaseolus Beans, P. Gepts, ed., Kluwer, Dordrecht, the Netherlands, pp. 485-502.Google Scholar
  248. Wall, J. R. 1970. Experimental introgression in the genus Phaseolus. 1. Effect of mating systems on interspecific gene flow, Evolution 24:356-366.Google Scholar
  249. Weaver, M. L., Noj, H., Burke, D. W., Silbernagel, M. J., Foster K., and Timm, H. 1984. Effect of soil moisture tension on pod retention and seed yield of beans, HortScience 19:567-569.Google Scholar
  250. Wells, W. C., Isom, W. H., and Waines, J. G. 1988. Outcrossing rates of six common bean lines, Crop Sci. 28:177-178.CrossRefGoogle Scholar
  251. Westermann, D. T., and Clothers, S. E. 1977. Plant population effects on the seed yield components of beans, Crop Sci. 17:493-496.CrossRefGoogle Scholar
  252. Westermann, D. T., and Kolar, J. J. 1978. Symbiotic N2(C2H2) fixation by bean, Crop Sci. 18:Google Scholar
  253. White, J. W., and Gonzalez, A. 1990. Characterization of the negative association between seed yield and seed size among genotypes of common bean, Field Crops Res. 23:159-175.Google Scholar
  254. White, J. W., and Singh, S. P. 1991. Sources and inheritance of earliness in tropically adapted indeterminate common bean, Euphytica 55:15-19.Google Scholar
  255. Wiseman, B. R. 1994. Plant resistance to insects in integrated pest management, Plant Dis. 78:927-932.Google Scholar
  256. Zaumeyer, W. J. 1972. Dry beans and snap beans, in: Genetic Vulnerability of Major Crops, Nat. Acad. Sci. Washington DC, USA, pp. 224.Google Scholar
  257. Zhang, H. B., Woo, S. S., and Wing, R. A. 1996. BAC, YAC and Cosmid library construction, in: Plant Gene Isolation: Principles and Practice, G. D. Foster, and D. Twell, eds., J. Wiley & Sons Ltd., N.Y., pp. 75-99.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Metaxia Koutsika-Sotiriou
    • 1
  • Ekaterini Traka-Mavrona
    • 2
  1. 1.Laboratory of Genetics and Plant BreedingAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Agricultural Research Center of Macedonia-ThraceNAGREFThermi, ThessalonikiGreece

Personalised recommendations