Garden Pea

  • Mike Ambrose
Part of the Handbook of Plant Breeding book series (HBPB, volume 2)

The variability of the garden pea (Pisum sativum L.) and the variety of forms in which it is consumed are a testimony to its long history of cultivation, adaptability and popularity as a crop in countries around the world. The different crop forms are based on different harvest times during the development of either the fruit or the embryo and the presence of particular gene combinations characterize the market product. Those relating to the embryo are those of the fresh vegetable or picked pea, canned, frozen and dehydrated or freeze dried pea markets (Fig. 1 a–d), while those associated with the immature pod are the snow, sugar or mangetout and the sugar snap types (Fig. 1, e and f).


Downy Mildew Pisum Sativum Core Collection Powdery Mildew Resistance Thin Seed Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, S, M., Sharma, B., and Ambrose, M. J. 1994. Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses, Euphytica 73, 115-126.Google Scholar
  2. Ambrose, M. J. 1996. Pisum Genetic Stocks Catalogue, John Innes Centre, Norwich. Google Scholar
  3. Ambrose, M. J. 2004. A novel allele at the afila (Af) locus and new alleles at the tendril-less (Tl) locus, Pisum Gen. 36, 1-2.Google Scholar
  4. Ambrose, M. J., and Green, F. N. 1991. A review of Pisum genetic resources and germplasm utilisation, Asp. Appl. Biol. 27, 243-251.Google Scholar
  5. Ambrose, M. J., Knox, M., Vershinin, A., Flavell, A. J., Moulton, V., and Ellis, T. H. N. 2004. Exploration of germplasm resources: Progress and results from the application of molecular markers to the whole JIC Pisum collection, in: Proceeding of the 5th European Conference on Grain Legumes, June 7-11, 2004, Dijon, AEP, Paris, pp. 157-160.Google Scholar
  6. Amurrio, J. M., de Ron, A. M., and Zeven, A. C. 1995. Numerical taxonomy of Iberian pea landraces based on quantitative and qualitative characters, Eucarpia, 82, 195-205.Google Scholar
  7. Baranger, A., Aubert, G., Arnau, G., Lain, A. L., Deniot, G., Potier, J., Weinachter, C., Lejeune-Hanaut, I., Lallemand, J., and Burstin, J. 2004. Genetic diversity within Pisum sativum using protein and PCR-based markers. TAG, 108, 1309-1321.CrossRefPubMedGoogle Scholar
  8. Bean, S. J., Gooding, P. S., Mullineaux, P. M., and Davies, D. R. 1997. A simple system for pea transformation, Plant Cell Reports, 16, 513-519.Google Scholar
  9. Ben-Ze’ev, N., and Zohary, D. 1973. Species relationships in the genus Pisum L., Isr. J. Bot., 22, 73-91.Google Scholar
  10. Biddle, A. J. 1980. Production factors affecting vining pea-seed quality, in: Seed Production, P. D. Hebblethwaite, ed., Butterworths, London, pp. 527-535.Google Scholar
  11. Blixt, S. 1963. A presentation of the Lamprechtian Pisum-material. Weibullsholm Plant Breed. Inst. Sweden.Google Scholar
  12. Blixt, S. 1972. Mutation genetics in Pisum, Agri. Hort. Genet., 30, 1-293.Google Scholar
  13. Blixt, S., and Williams, J. T. 1982. Documentation of Genetic Resources: A Model, S. Blixt and J. T. Williams eds., IBPGR Secretariat, Rome.Google Scholar
  14. Blixt, S., Folkeson, D., and Gottschalk, G. 1991. Use of mutations for chromosome mapping and breeding in Pisum, in: Chromosome Engineering in Plants: Genetics, Breeding, Evolution, T. Tsuchiya and P. K. Gupta, eds., Elsevier Sci., Amsterdam, pp. 33-52.Google Scholar
  15. Brewin, N. J., Ambrose, M. J., and Downie, J. A. 1993. Root nodules, Rhizobium and nitrogen fixation, in: Peas: Genetics, molecular biology and biotechnology, R. Casey and D. R. Davies eds., CABI Pub., Wallingford, pp. 237-290.Google Scholar
  16. Burstin, J., Deniot, G., Potier, J., Weinachter, C., Aubert, G., and Baranger, A. 2001.Google Scholar
  17. Microsatellite polymorphism in Pisum sativum, Plant Breed., 120, 311-317.Google Scholar
  18. Cannon, W. A. 1903. Studies in plant hybrids: The spermatogenesis in hybrid peas, Bull. Tor. Bot. Club, 30, 519-543.CrossRefGoogle Scholar
  19. Clement, S. L., Hardie, D. C., and Elberson, L. R. 2002. Variation among Accessions of Pisum fulvum for Resistance to Pea Weevil, Crop Sci. 42, 2167-2173.Google Scholar
  20. Coyne, C. J., Brown, A. F., Timmerman-Vaughan, G. M., McPhee, K. E., and Grusak, M. A. 2005. Refined USDA-ARS pea core collection based on 26 quantitative traits, Pisum Gen. 37, 3-6.Google Scholar
  21. Davies, D. R. 1977. Restructuring the pea plant, Sci. Prog. Oxford, 64, 201-214.Google Scholar
  22. Doss, R. P., Oliver, J. E., Proebsting, W. W., Potter, S. W., Kuy, S., Clement, S. L., Williamson, R. T., Carney, J. R., and DeVilbiss, E. D. 2000. Bruchins: Insect-derived plant regulators that stimulate neoplasm formation, PNAS, 97, 6218-6223. ECP/GR;
  23. Ek, M., Eklund, M., Von Post, R., Dayteg, C., Henriksson, T., Weibull, P., Ceplitus, A., Isaac, P., and Tuvesson, S. 2005. Microsatellite markers of powdery mildew resistance in pea (Pisum sativum L.), Hereditas, 142, 86-91.CrossRefPubMedGoogle Scholar
  24. Ellis, T. H. N., Turner, L., Hellens, R. P., Lee, D., Harker, C. L., Enard, C., Domoney, C., and Davies, D. R. 1992. linkage maps in pea, Genetics, 130, 649-663.Google Scholar
  25. Ellis, T. H. N., Poyser, S. J., Knox, M. R., Vershinin, A. V., and Ambrose, M. J. 1998. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea, Mol. Gen. Genet., 200, 9-19.Google Scholar
  26. Ellis, T.H.N., and Poyser, J. 2002. An integrated and comparative view of pea genetic and cytogenetic maps, New Phytol. 153, 17-25.CrossRefGoogle Scholar
  27. Enngqvist, G. 2001. Breeding and Agronomy, in: Carbohydrates in Grain Legume Seeds, Hedley, C. L. ed., CABI Pub., Wallingford, pp. 208-232.Google Scholar
  28. Flavell, A. J., Knox, M. R., Pearse, S. R., and Ellis, T. H. N. 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis, Plant J., 16, 643-650.CrossRefPubMedGoogle Scholar
  29. Flavell, A. J., Bolshakov, V. N., Booth, A., Jing, R., Russell, J., Ellis, T. H. N., and Isaac, P. 2003. A microarray-based high throughput molecular marker genotyping method-the tagged microrray (TAM) marker approach, Nucl. Acids. Res., 31, e115.CrossRefPubMedGoogle Scholar
  30. Folkeson, D. 1990. A revised genetic map of Pisum sativum, University of Lund, Sweden.Google Scholar
  31. Fourmont, R. 1956. Les Varéités de Pois (Pisum sativum L.) Cultivés en France, INRA, Paris.Google Scholar
  32. Gao, Z., Eyers, S., Thomas, C., Ellis, N., and Maule, A. 2004. Identification of makers tightly linked to sbm recessive genes for resistance to pea seed borne mosaic virus, TAG, 109, 488-494.PubMedGoogle Scholar
  33. Gelin, O., Studies on the x-ray mutation stral pea., 1955, Agr. Hort. Gen., 13, 183-193.Google Scholar
  34. Gentry, H. S. 1974. Pisum resources: a preliminary survey, Plant Genet. Res. Newsl., 25, 3-13.Google Scholar
  35. Gerard, J. 1597. The herbal or, general historie of plantes gathered by John Gerard of London master in chirurgerie, John Norton, London.Google Scholar
  36. Grant J. E., Pither-Joyce, M., Fifield, W., Cooper, P. A., and Timmerman-Vaughan, G. 1998. Opportunities for high quality, healthy and added value crops to meet European demands, Proceedings of 3rd European Conference on Grain Legumes, Valladolid, Spain, AEP, Paris, pp. 372-373.Google Scholar
  37. Gritton, E. T. 1980. Field pea, in: Hybridization of crop plants, W. R. Fehr and Hadley, H. H. eds., American Soc. of Agron., Madison, pp. 345-356.Google Scholar
  38. Gottschalk, W. 1977. Fasciated peas-unusual mutants for breeding and research, J. Nucl. Agric. Biol., 6, 27-33.Google Scholar
  39. Gottschalk, W., and Wolff, G. 1977. Problems of mutation breeding in Pisum, Leg. Res., 1, 1-16.Google Scholar
  40. Govorov, L. I. 1937. Peas, in: Flora of cultivated plants IV, N. I. Vavilov and E. V. Wulff eds., Moscow, pp. 231-336.Google Scholar
  41. Hagedorn, D. J. 1984. Diseases of peas: their importance and opportunities for breeding for disease resistance, in: The pea crop: A basis for improvement, P. D. Hebblethwaite, M. C. Heath and T. C. K. Dawkins, eds., Butterworths, London, pp. 205-213.Google Scholar
  42. Hall, K. J., Parker, J. S., and Ellis, T. H. N. 1997a. The relationship between genetic and cytogenetic maps of pea. I. standard and translocation karyotypes, Genome, 40, 744-754.Google Scholar
  43. Hall, K. J., Ellis, T. H. N., Turner, L., Knox, M. R., Hofer, J. M., Lu, J., Ferrandiz, C., Hunter, P. J., Taylor, J. D., and Baird, K. 1997b. The relationship between genetic and physical maps of pea. II. physical maps of linage mapping populations, Genome, 40, 755-769.Google Scholar
  44. Hardie, D. C. 1990. Pea weevil Bruchus pisorum (L.) resistance in peas, in: Proc. Natl. Pea weevil workshop, Melbourne, Australia, A. M. Smith ed., Dep. Of Agric and Rural Affairs, Melbourne Australia, pp. 72-79.Google Scholar
  45. Harland, S. C. 1948. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum, Hered. 2, 263-269.CrossRefGoogle Scholar
  46. Harrison, C. J., Mould, R. M., Leech, M. J., Johnson, S. A., Turner, L., Schreck, S. L., Baird, K. M., Jack, P. L., Rawsthorne, S., Hedley, C. L., and Wang, T. L. 2000. The rug3 locus of pea encodes plastidial phosphoglucomutase, Plant Phisiol., 122, 1187-1192.CrossRefGoogle Scholar
  47. Hardwick, R. C., Andrews, D. J., Hole, C. C., and Salter, P. J. 1979. Variability in number of pods and yield in commercial crops of vining peas (Pisum sativum L.), J. Agric. Sci., 92, 675-681.CrossRefGoogle Scholar
  48. Hedley, C. L., and Ambrose, M. J. 1981. Designing ‘leafless’ plants for improving the dried pea crop, Adv. Agron., 34, 225-277.CrossRefGoogle Scholar
  49. Hendrick, U. P. 1928. Peas of New York, in: Vegetables of New York, 1, J. B. Lyon Coy., Albany.Google Scholar
  50. Hobbs, S. L. A., and Mahon, J. D. 1982. Effects of pea (Pisum sativum) genotypes and Rhizobium leguminosarum strains of N2(C2H2) fixation and Growth, Can. J. Bot., 60, 2594-2600.CrossRefGoogle Scholar
  51. HU9903062, 1999. Method for increasing sucrose content of plants; textdoc?DB=EPODOC&IDX=HU9903062&F=0. Irish Seed Savers Association;
  52. Jaranowski, J., and Mickle, A. 1985. Mutation breeding in peas, Mutation Breed. Rev., 2, 1-23.Google Scholar
  53. Kalo, P., Seres, A., Taylor, S. A., Jakab, J., Kevei, Z., Kereszt, A., Endre, G., Ellis, T. H. N., and Kiss, G.2004. Comparative mapping between Medicago sativa and Pisum sativum L., Mol. Gen. Genet., 272, 235-246.Google Scholar
  54. Kraft, J. M. 1988. Aphanomyces root rot resistance in peas, Phytopathology, 78, 1545.Google Scholar
  55. Kraft, J. M., and Kaiser, W. J. 1993. Screening for disease resistance in pea, in: Breeding for stress tolerance in cool-season food legumes, K. B. Singh and M. C. Saxena eds., Wiley-Sayce Co-production.Google Scholar
  56. Kraft, J. M., and Pfleger, F. L. 2001. Compendium of pea diseases and pests. American Phytopathological Society, 2nd edition.Google Scholar
  57. Kosterin, O., and Rozov, S. M. 1993. Mapping of the new mutant blb and the problem of integrity of linkage group 1, Pisum. Gen., 23, 27-31.Google Scholar
  58. Lacou, V., Haurogné, K., Ellis, N., and Rameau, C. 1998. Genetic mapping in pea. 1-RAPD-based genetic linkage map for Pisum sativum, TAG, 97, 905-915.CrossRefGoogle Scholar
  59. Lamm, R. 1951. Cytogenetical studies on translocations in Pisum, Hereditas, 37, 356-372.CrossRefGoogle Scholar
  60. Lamm, R., and Mairavalle, R. J. 1959. A translocation tester set in Pisum, Hereditas, 45, 417-440.Google Scholar
  61. Lamprecht, H. 1948. The variation in linkage and course of crossing over, Agri. Hort. Genet. 6, 10-48.Google Scholar
  62. Lamprecht, H. 1974. Monographie der Gattung Pisum, Steiermarkische, Landesdruckerei, Graz.Google Scholar
  63. Lewis, B. G., and Matthews, P. 1984. The world germplasm of Pisum sativum: could it be used more effectively to produce healthy crops?, in: The pea crop: A basis for improvement, P. D. Hebblethwaite, M. C. Heath and T. C. K. Dawkins, eds., Butterworths, London, pp. 215-221.Google Scholar
  64. Lie, T. A. 1978. Symbiotic specialisation in pea plants: the requirement of specific Rhizobium strains for peas from Afghanistan, Ann. Appl. Biol., 88, 462-465.CrossRefGoogle Scholar
  65. Loridon, K., McPhee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M. L., Aubert, G., Rameau, C., Baranger, A., Coyne, C., Lejeune-Henaut, I., and Burstin, J. 2005. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.), TAG, 111, 1022-1031.CrossRefPubMedGoogle Scholar
  66. Lu, J., Knox, M. R., Ambrose, M. J., Brown, J. K. M., and Ellis, T. H. N. 1996. Comparative analysis of genetic diversity in pea assessed by RFLP-and PCR-based methods, TAG, 93, 1103-1111.CrossRefGoogle Scholar
  67. Marx, G. A. 1977. Classification, Genetics and Breeding, in: The Physiology of the Garden Pea, J. F. Sutcliffe and J. S. Pate, eds., Academic Press, London, pp. 21-43.Google Scholar
  68. Marx, G. A., Schroeder, W. T., Provvidenti, R., and Mishanec, W. 1972. A genetic study of tolerance in pea (Pisum sativum L.) to Aphanomyces root rot, J. Amer. Hort. Soc., 97, 619-621.Google Scholar
  69. Mateo Box, J. 1955. Guisantes variedades y cultivo, Manuales Tecnicos, Ministeroi de Agricultura, Madrid, 19, pp. 1-187.Google Scholar
  70. Matthews, P., and Dow, K. P. 1976. Sources and inheritance of resistance to downy mildew of the pea, Peronospora pisi, Ann. Appl. Biol., 84, 281.CrossRefGoogle Scholar
  71. Matthews, P., and Ambrose, M. J. 1995. in: Proc. 2nd Eur. Conf. On Grain Legumes, 9-13th July, Copenhagen, AEP, pp. 194-195.Google Scholar
  72. Matthews, S., Powell, A. A., and Rogerson, N. E. 1980. Physiological aspects of the development and storage of pea seeds and their significance to seed production, in: Seed Production, P. D. Hebblethwaite, ed., Butterworths, London, pp. 513-527.Google Scholar
  73. Maxted, N., and Ambrose, M. 2001. Peas (Pisum L.), in: Plant genetic resources of legumes in the mediterranean, N. Maxted and S.J. Bennett, eds., Kluwer Acad. Pub. The Netherlands, pp. 181-190.Google Scholar
  74. Mendel, G. 1866. Veruche uber pflanzen-hybriden. Verhandlungen des Naturforschenden veereins in Brunn, 4, 3-47.Google Scholar
  75. Muehlbauer, F. J. 1983. Eight germplasm lines of pea resistant to pea seed-borne mosaic virus, Crop Sci. 23, 1019.CrossRefGoogle Scholar
  76. Page, D., Duc, G., Lejeune-Henaut, I., and Domoney, C. 2003. Marker-assisted selection of genetic variants for seed trypsin inhibitor content in peas, Pisum Gen. 35, 19-21. PCGIN, Pulse Crop Genetic Improvement Network;
  77. Pearse, S. R., Knox, M. R., Ellis, T. H. N., Flavell, A. J., and Kumar, A. 2000. Pea Ty1-copia group retrotransposons: Transpositional activity and use as markers to study genetic diversity in Pisum, Mol. Gen. Genet., 263, 898-907.CrossRefGoogle Scholar
  78. Pilet-Nayel, M., Muehlbauer, F., McGee, R., Kraft, J., Baranger, A., and Coyne, C. 2002. Quantitative trait loci for partial resistance to Aphanomyces root rot in pea, TAG, 106, 28-39.PubMedGoogle Scholar
  79. Provorov, N. A., and Tikhonovich, L. A. 2003. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis, Gen. Res. Crop Evol., 50, 89-99.CrossRefGoogle Scholar
  80. Puonti-Kaerlas, J., Eriksson, T., and Engström, P. 1990. Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumerfaciens-mediated gene transfer, TAG, 80, 246-252.Google Scholar
  81. Rameau, C., Denoune, D., Fravel, F., Haurogne, K., Josserand, J., Laucou, V., Batge, S., and Murfet, I. C. 1998. Genetic mapping in pea 2, Identification of RAPD and SCAR markers linked to genes affecting plant architecture, TAG, 97, 916-928.Google Scholar
  82. Saccardo, F., Monti, L. M., and Vitalie, P. 1986. Pea varieties obtained by induced mutants, in: Proc. Eucarpia Meeting on Pea Breeding, R. Casey ed., Sorrento, Italy, pp. 177-190.Google Scholar
  83. Sansome, E. 1950. Reciprocal translocations in Pisum, Nature, 166, 37-38.Google Scholar
  84. Schroeder, H. E., Schotz, A. H., Wardley-Richardson, T., Spencer, D., and Higgins, T. J. V. 1993. Transformation and regeneration of two cultivars of pea (Pisum sativum L.), Plant Physiol., 101, 751-757.CrossRefPubMedGoogle Scholar
  85. Schroeder, H. E., Gollasch, S., Moore, A., Tabe, L. M., Craig, S., Hardie, D. C., Chrispeels, M. J., Spencer, D., and Higgins, T. V. 1995. Bean α -amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.), Plant Physiol., 107, 1233-1239.PubMedGoogle Scholar
  86. Skøt, L. 1983. Cultivar and Rhizobium strain effects on the symbiotic performance of pea (Pisum sativum), Physiol. Plant., 59, 585-589.CrossRefGoogle Scholar
  87. Seed Savers Exchange;
  88. Sneddon, J. L., and Squibbs, F. L. 1958. Classification of garden peas, J. Nat. Inst. Agric. Bot., 8, 378-422.Google Scholar
  89. Snoad, B. 1974. A preliminary assessment of ‘leafless peas’, Euphytica, 23, 257-265.CrossRefGoogle Scholar
  90. Stickland, S. 2001. Backgarden Seed Saving, Eco-logic Books, Bristol, pp. 131-137.Google Scholar
  91. Sutton’s Vegetable Seeds, 1899, pp. 2-15.Google Scholar
  92. Swiêcicki W. K., Swiêcicki, W., and Czerwinska, S. 1981. The catalogue of Pisum lines. Poznan, Poland.Google Scholar
  93. Swiêcicki W. K., Wolko, B., Apisitwanich, S., and Krajewski, P. 2000. An analysis of isozymic loci polymorphism in the core collection of the polish Pisum genebank, Gen. Res. Crop Evol. 47, 538-590.Google Scholar
  94. Tar’an, B., Warkentin, T., Somers, D. J., Miranda, D., Vandenberg, A., Blade, S., Woods, S., Bing, D., Xue, A., DeKoeyer, D., and Penner, G. 2003. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycospharella blight in field pea (Pisum sativum L.), TAG, 107, 1482-1491.CrossRefPubMedGoogle Scholar
  95. Tar’an, B., Zhang, C., Warkentin, T., Tullu, A., and Vandenberg, A. 2005. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters, Genome, 48, 257-272. TEGERM:
  96. Thomas, J. E., Kenyon, D. M., and Kightley, S. P. J. 1999. Progress in the exploitation of disease resistance in oilseed rape, field peas and field beans, Asp. Appl. Biol. 56, 67- UPOV Guidelines for distinctness, uniformity and stability for pea; publications/tg-rom/tg007/tg_7_9.pdf.
  97. Varshney, R. K., Graner, A., and Sorrells, M. 2005. Genomics-assisted breeding for crop improvement, Trends in Plant Sci., 10, 621-630.CrossRefGoogle Scholar
  98. Vassiliva, M. 1978. Induced genetic variety in P. sativum, in: Experimental Mutagenesis in Plants, Sofia Bulgaria, pp. 440-447.Google Scholar
  99. Vershinin, A. V., Allnutt, T. R., Knox, M. R., Ambrose M. J., and Ellis, T. H. N. 2003. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication, Mol. Biol. & Evol., 20, 2067-2075.CrossRefGoogle Scholar
  100. Warkentin, T., Tar’an, B., Zhang, C., Bett, K., Tullu, A., Somers, D., and Vandenberg, A. 2004. Marker assisted selection for lodging resistance in pea, in: Proceeding of the 5th European Conference on Grain Legumes, June 7-11, 2004, Dijon, AEP, Paris, pp. 140-150.Google Scholar
  101. Waugh, R., Leader, D. J., McCallum, N., and Caldwell, D. 2006. Harvesting the potential of induced biological diversity, Trends in Plant Sci., 11, 71-79.CrossRefGoogle Scholar
  102. Weeden, N. F., and Marx, G. A. 1984. Chromosomal locations of twelve isozyme loci in Pisum sativum, J. Hered., 75, 365-370.Google Scholar
  103. Weeden, N. F., and Providenti, R. 1987. Adh-1, a marker locus for resistance to pea enation mosaic virus, Pisum Newsl., 19, 82-83.Google Scholar
  104. Weeden, N. F., Ellis, T. H. N., Timmerman-Vaughan, G. M., Swiêcicki, W. K., Rozov, S. M., and Berdnikov, V. A. 1998. A consensus linkage map for Pisum sativum, Pisum Genet., 30, 1-4.Google Scholar
  105. Weeden, N., Moffet, M., and McPhee, K. E. 2004. The domestication of pea: An analysis of polygenic characters in the abyssinicum pea supports a semi-independent domestication of this taxon, in: Proceeding of the 5th European Conference on Grain Legumes, June 7-11, 2004, Dijon, France, AEP, Paris pp. 157.Google Scholar
  106. Young, J. P. W., and Matthews, P. 1982. A distinct class of peas (Pisum sativum L.) from Afghanistan that show strain specificity for symbiotic Rhizobium, Heredity, 48, 203-210.CrossRefGoogle Scholar
  107. Zohary, D., and Hopf, M. 1973. Domestication of pulses in the old world, Science, 182, 887-894.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mike Ambrose
    • 1
  1. 1.Department of Applied Genetics, John Innes InstituteNorwich Research ParkNorwichUK

Personalised recommendations