Skip to main content
  • 2227 Accesses

Abstract

Cyclotron resonance will be treated in this chapter. The most direct probe of the Fermi surface can be made by observing the cyclotron resonance. A magnetic field is applied to a pure sample at liquid helium temperatures. The sign of the charge carrier can be determined by using the circularly polarized lasers. The data are analyzed in terms of Shockley’s formula or its simplified version. Most often the effective masses for a conductor are determined directly after simple analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 

  1. G. Dresselhaus, A.F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).

    Article  ADS  Google Scholar 

  2. A. Lempicki, D.R. Frankl, and V.A. Brophy, Phys. Rev. 107, 1238 (1957).

    Article  ADS  Google Scholar 

  3. E. HĂĽckel, Zeits. f. Physik 70, 204 (1931).

    Article  MATH  ADS  Google Scholar 

  4. S. Fujita and S. Watanabe, Phys. Stat. Sol. (b) 159, K69 (1990).

    Article  ADS  Google Scholar 

  5. M.Y. Azbel and E.A. Kaner, J. Phys. Chem. Solids 6, 113 (1958).

    Article  ADS  Google Scholar 

  6. F.W. Spong and A.F. Kip, Phys. Rev. 137, A431 (1965).

    Article  ADS  Google Scholar 

  7. W. Shockley, Phys. Rev. 90, 491 (1953).

    Article  MATH  ADS  Google Scholar 

  8. M.S. Khaikin and R.T. Mina, Sov. Phys. JETP 15, 24 (1962); ibid., 18, 896 (1964).

    Google Scholar 

  9. Y. Onuki, H. Suematsu, and S. Tokura, J. Phys. Chem. Solids 38, 419 (1977); ibid., 431 (1977).

    Article  ADS  Google Scholar 

  10. S. Watanabe and S. Fujita, J. Phys. Chem. Solids 52, 985 (1991); S. Fujita and S. Watanabe, Solid State Comm. 72, 581 (1989).

    Article  ADS  Google Scholar 

  11. M.P. Shaw, T.G. Eck, and D.A. Zych, Phys. Rev. 142, 406 (1966).

    Article  ADS  Google Scholar 

  12. J.J. Sabo, Phys. Rev. 118, 1325 (1970).

    Google Scholar 

  13. D.F. Gibbons and L.M. Falicov, Phil. Mag. 8, 177 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeji Fujita .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fujita, S., Ito, K. (2007). Cyclotron Resonance. In: Quantum Theory of Conducting Matter. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74103-1_13

Download citation

Publish with us

Policies and ethics