• Shigeji Fujita
  • Kei Ito


Magnetoresistance (MR) in general is nonzero and anisotropic. A spectacular anisotropy observed in Cu is explained based on the nonspherical Fermi surface of this metal in this chapter. Magnetic oscillations found in the susceptibility also manifest themselves in magnetoresistance at low temperatures. A quantum theory is developed for the Shubnikov–de Haas oscillation for a 2D system.


Landau Level Hall Resistance Magnetic Oscillation Lower Landau Level Fermi Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.B. Pippard, Magnetoresistance in Metals (Cambridge University Press, Cambridge, UK, 1989), pp. 3–5.Google Scholar
  2. 2.
    J.R. Klauder and J.E. Kunzler, in The Fermi Surface, eds. Harrison and Webb (Wiley, New York, 1960).Google Scholar
  3. 3.
    L.W. Shubnikov and W.J. de Haas, Proc. Netherlands Royal Acad. Sci.. 33, 130 and 163 (1930).Google Scholar
  4. 4.
    F.E. Richard, Phys. Rev. B 8, 2552 (1973).CrossRefADSGoogle Scholar
  5. 5.
    M.A. Zudov et al., Phys. Rev. B 64 201311 (2001).CrossRefADSGoogle Scholar
  6. 6.
    R.G. Mani et al., Nature 420, 646 (2002).CrossRefADSGoogle Scholar
  7. 7.
    M.A. Zudov et al., Phys. Rev. Lett. 90, 046807 (2003).CrossRefADSGoogle Scholar
  8. 8.
    R.E. Prange and S.M. Girvin, eds., The Quantum Hall Effect, 2nd ed., (Springer-Verlag, New York, 1990); B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).Google Scholar
  9. 9.
    R.G. Mani, Physica E 22, 1 (2004).CrossRefADSGoogle Scholar
  10. 10.
    R.B. Dingle, Proc. Roy. Soc. A 211, 500 (1952).CrossRefADSGoogle Scholar
  11. 11.
    D.C. Tsui, 4. DFG-Rundgespräch über den Quanten Hall Effekt, (Schleching, Germany, 1989).Google Scholar
  12. 12.
    P. Ehrenfest and J.R. Oppenheimer, Phys. Rev. 37, 333 (1931); H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8, 193 (1936); S. Fujita and D.L. Morabito, Mod. Phys. Lett. B 12, 753 (1998).MATHCrossRefADSGoogle Scholar
  13. 13.
    S. Fujita et al., Phys. Rev. B 70, 075304 (2004).CrossRefADSGoogle Scholar
  14. 14.
    J.K. Jain, Phys. Rev. Lett. 63, 199 (1989); Phys. Rev. B 40, 8079 (1989); ibid. 41, 7653 (1990); J.K. Jain, Surf. Sci. 263, 65 (1992).CrossRefADSGoogle Scholar
  15. 15.
    R.R. Du et al., Phys. Rev. Lett. 70, 2944 (1993).CrossRefADSGoogle Scholar
  16. 16.
    S. Fujita and K. Ito, Quantum Theory of Conducting Matter 2. Superconductivity and Quantum Hall Effect (Springer-Verlag, New York).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsUniversity at Buffalo, The State University of New YorkBuffaloUSA
  2. 2.Research DivisionThe National Center for University Entrance ExaminationsTokyoJapan

Personalised recommendations