De Haas–Van Alphen Oscillations

  • Shigeji Fujita
  • Kei Ito


The de Haas–van Alphen oscillations in susceptibility are often analyzed, using Onsager’s formula, which is derived. The statistical mechanical theory of the oscillations for the quasifree electron is also discussed in this chapter.


Fermi Surface Oscillatory Term Kinetic Momentum Statistical Mechanical Theory Landau State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.J. de Haas and P.M. van Alphen, Leiden Comm. 208d, 212a (1930); Leiden Comm. 220d (1932).Google Scholar
  2. 2.
    L. Onsager, Phil. Mag. 43, 1006 (1952).Google Scholar
  3. 3.
    M.R. Halse, Phil. Trans. Roy. Soc. A 265, 507 (1969); D. Schönberg and A.V. Gold, Physics of Metals-1, in Electrons ed. J.M. Ziman (Cambridge University Press, Cambridge, UK, 1969), p. 112.CrossRefADSGoogle Scholar
  4. 4.
    B.S. Deaver and W.M. Fairbank, Phys. Rev. Lett. 7, 43 (1961).CrossRefADSGoogle Scholar
  5. 5.
    R. Doll and M. Näbauer, Phys. Rev. Lett. 7, 51 (1961).CrossRefADSGoogle Scholar
  6. 6.
    L. Shubnikov and W.J. de Haas, Leiden Comm. 207a, 207c, 207d, 210a (1930).Google Scholar
  7. 7.
    H.L. Störmer et al., J. Vac. Sci. Thechnol. B, 1(2):423 (1983).CrossRefGoogle Scholar
  8. 8.
    S. Godoy and S. Fujita, J. Eng. Sci. 29, 1201 (1991).CrossRefGoogle Scholar
  9. 9.
    W. Shockley, Phys. Rev. 90, 491 (1953).MATHCrossRefADSGoogle Scholar
  10. 10.
    J. Wosnitza et al., Phys. Rev. Lett. 67, 263 (1991).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsUniversity at Buffalo, The State University of New YorkBuffaloUSA
  2. 2.Research DivisionThe National Center for University Entrance ExaminationsTokyoJapan

Personalised recommendations