Bloch Electron Dynamics

  • Shigeji Fujita
  • Kei Ito


Newtonian equations of motion for the Bloch electron are derived and discussed in this chapter. “Electrons” (“holes”), which appear in the Hall coefficient mesurements, are generated near the Fermi surface on the negative (positive) curvature side of the surface.


Wave Packet Fermi Surface Lorentz Force Newtonian Equation Centripetal Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.H. Wilson, Theory of Metals, 2nd ed. (Cambridge University Press, London, 1953), pp. 50–51.Google Scholar
  2. 2.
    R. Becker, Theorie der Elektrizität, Vol. 2 (Teubner, Berlin, 1933), Sec. 56; see also Ref. 3, p. 194.Google Scholar
  3. 3.
    N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976), pp. 213–235.Google Scholar
  4. 4.
    G.H. Wannier, Elements of Solid State Theory (Cambridge University Press, London, 1960), pp. 190–194.Google Scholar
  5. 5.
    W.A. Harrison, Solid State Theory (Dover, New York, 1979), pp. 64–71.Google Scholar
  6. 6.
    C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), pp. 187–193.Google Scholar
  7. 7.
    A. Sommerfeld and H. Bethe, in Handbuch der Physik 24, Part 2 (Springer, Berlin, 1933), pp. 333–622 (in particular, pp. 506–509); F. Seitz, Modern Theory of Solids (McGraw-Hill, New York, 1940), pp. 316–319.Google Scholar
  8. 8.
    P.A.M. Dirac, Principles of Quantum Mechanics, 4th ed. (Oxford University Press, London, 1958), pp. 121–125.MATHGoogle Scholar
  9. 9.
    S. Fujita, S. Godoy, and D. Nguyen, Found. Phys. 25, 1209 (1995).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    L. P. Eisenhart, Introduction to Differential Geometry (Princeton University Press, Princeton, 1940).Google Scholar
  11. 11.
    T.W.B. Kibble, Classical Mechanics (McGraw-Hill, Maidenhead, England, 1966), pp. 166–171.Google Scholar
  12. 12.
    H. R. Ott et al., Phys. Rev. Lett. 52, 1915 (1984); K. Hasselbach et al., Phys. Rev. Lett. 63, 93 (1989).CrossRefADSGoogle Scholar
  13. 13.
    S. Fujita and K. Ito, Quantum Theory of Conducting Matter 2. Superconductivity and Quantum Hall Effect (Springer-Verlag, New York), Chapters 19 and 20.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsUniversity at Buffalo, The State University of New YorkBuffaloUSA
  2. 2.Research DivisionThe National Center for University Entrance ExaminationsTokyoJapan

Personalised recommendations