Advertisement

Probabilistic networks are graphical models of (causal) interactions among a set of variables, where the variables are represented as vertices (nodes) of a graph and the interactions (direct dependences) as directed edges (links or arcs) between the vertices. Any pair of unconnected vertices of such a graph indicates (conditional) independence between the variables represented by these vertices under particular circumstances that can easily be read from the graph. Hence, probabilistic networks capture a set of (conditional) dependence and independence properties associated with the variables represented in the network.

Keywords

Serial Connection Undirected Edge Causal Network Hard Evidence Independence Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations