Skip to main content

CD14: A Soluble Pattern Recognition Receptor in Milk

  • Chapter
Bioactive Components of Milk

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 606))

Abstract

An innate immune system capable of distinguishing among self, non-self, and danger is a prerequisite for health. Upon antigenic challenge, pattern recognition receptors (PRRs), such as the Toll-like receptor (TLR) family of proteins, enable this system to recognize and interact with a number of microbial components and endogenous host proteins. In the healthy host, such interactions culminate in tolerance to self-antigen, dietary antigen, and commensal microorganisms but in protection against pathogenic attack. This duality implies tightly regulated control mechanisms that are not expected of the inexperienced neonatal immune system. Indeed, the increased susceptibility of newborn infants to infection and to certain allergens suggests that the capacity to handle certain antigenic challenges is not inherent. The observation that breast-fed infants experience a lower incidence of infections, inflammation, and allergies than formula-fed infants suggests that exogenous factors in milk may play a regulatory role.

There is increasing evidence to suggest that upon exposure to antigen, breast milk educates the neonatal immune system in the decision-making processes underlying the immune response to microbes. Breast milk contains a multitude of factors such as immunoglobulins, glycoproteins, glycolipids, and antimicrobial peptides that, qualitatively or quantitatively, may modulate how neonatal cells perceive and respond to microbial components. The specific role of several of these factors is highlighted in other chapters in this book. However, an emerging concept is that breast milk influences the neonatal immune system’s perception of “danger.” Here we discuss how CD14, a soluble PRR in milk, may contribute to this education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abreu, M. T., Vora, P., Faure, E., Thomas, L. S., Arnold, E. T., & Arditi, M. (2001). Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. Journal of Immunology, 167, 1609–1616.

    CAS  Google Scholar 

  • Aderem, A. & Ulevitch, R. J. (2000). Toll-like receptors in the induction of the innate immune response. Nature, 406, 782–787.

    CAS  Google Scholar 

  • Arditi, M., Zhou, J., Dorio, R., Rong, G. W., Goyert, S. M., & Kim, K. S. (1993). Endotoxin-mediated endothelial cell injury and activation: Role of soluble CD14. Infectious Immunology, 61, 3149–3156.

    CAS  Google Scholar 

  • Arias, M. A., Rey Nores, J. E., Vita, N., Stelter, F., Borysiewicz, L. K., Ferrara, P., et al. (2000). Cutting edge: Human B cell function is regulated by interaction with soluble CD14: Opposite effects on IgG1 and IgE production. Journal of Immunology, 164, 3480–3486.

    CAS  Google Scholar 

  • Baldini, M., Lohman, I. C., Halonen, M., Erickson, R. P., Holt, P. G., & Martinez, F. D. (1999). A polymorphism∗ in the 5' flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. American Journal of Respiriratory Cell and Molecular Biology, 20, 976–983.

    CAS  Google Scholar 

  • Bannerman, D. D., Paape, M. J., Hare, W. R., & Sohn, E. J. (2003). Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. Journa of Dairy Science, 86, 3128–3137.

    CAS  Google Scholar 

  • Bas, S., Gauthier, B. R., Spenato, U., Stingelin, S., & Gabay, C. (2004). CD14 is an acute-phase protein. Journal of Immunology, 172, 4470–4479.

    CAS  Google Scholar 

  • Baveye, S., Elass, E., Fernig, D. G., Blanquart, C., Mazurier, J., & Legrand, D. (2000). Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infectious Immunology, 68, 6519–6525.

    CAS  Google Scholar 

  • Bazil, V., & Strominger, J. L. (1991). Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. Journal of Immunology, 147, 1567–1574.

    CAS  Google Scholar 

  • Bazil, V., Horejsi, V., Baudys, M., Kristofova, H., Strominger, J. L., Kostka, W., et al. (1986). Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. European Journal of Immunology, 16, 1583–1589.

    CAS  Google Scholar 

  • Bazil, V., Baudys, M., Hilgert, I., Stefanova, I., Low, M. G., Zbrozek, J., et al. (1989). Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Molecular Immunology, 26, 657–662.

    CAS  Google Scholar 

  • Berg, R. D. (1996). The indigenous gastrointestinal microflora. Trends in Microbiology, 4, 430–435.

    CAS  Google Scholar 

  • Blais, D. R., Vascotto, S. G., Griffith, M., & Altosaar, I. (2005). LBP and CD14 secreted in tears by the lacrimal glands modulate the LPS response of corneal epithelial cells. Investigative Ophthalmology and Visual Science, 46, 4235–4244.

    Google Scholar 

  • Blais, D. R., Harrold, J., & Altosaar, I. (2006). Killing the messenger in the nick of time: Persistence of breast milk sCD14 in the neonatal gastrointestinal tract. Pediatric Research, 59, 371–376.

    Google Scholar 

  • Bloomfield, S. F., Stanwell-Smith, R., Crevel, R. W., & Pickup, J. (2006). Too clean, or not too clean: The hygiene hypothesis and home hygiene. Clinical and Experimental Allergy, 36, 402–425.

    CAS  Google Scholar 

  • Bufler, P., Stiegler, G., Schuchmann, M., Hess, S., Kruger, C., Stelter, F., et al. (1995). Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. European Journal of Immunology, 25, 604–610.

    CAS  Google Scholar 

  • Burgmann, H., Winkler, S., Locker, G. J., Presterl, E., Laczika, K., Staudinger, T., et al. (1996). Increased serum concentration of soluble CD14 is a prognostic marker in Gram-positive sepsis. Clinical Immunology and Immunopathology, 80, 307–310.

    CAS  Google Scholar 

  • Caplan, M. S., & MacKendrick, W. (1993). Necrotizing enterocolitis: A review of pathogenetic mechanisms and implications for prevention. Pediatric Pathology, 13, 357–369.

    CAS  Google Scholar 

  • Cauwels, A., Frei, K., Sansano, S., Fearns, C., Ulevitch, R., Zimmerli, W., et al. (1999). The origin and function of soluble CD14 in experimental bacterial meningitis. Journal of Immunology, 162, 4762–4772.

    CAS  Google Scholar 

  • Cebra, J. J. (1999). Influences of microbiota on intestinal immune system development. American Journal of Clinical Nutrition, 69, 1046S–1051S.

    CAS  Google Scholar 

  • Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J., & Gusovsky, F. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry, 274, 10689–10692.

    CAS  Google Scholar 

  • Claud, E. C., Lu, L., Anton, P. M., Savidge, T., Walker, W. A., & Cherayil, B. J. (2004). Developmentally regulated IκB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proceedings of the National Academy of Sciences USA, 101, 7404–7408.

    CAS  Google Scholar 

  • Cleveland, M. G., Gorham, J. D., Murphy, T. L., Tuomanen, E., & Murphy, K. M. (1996). Lipoteichoic acid preparations of Gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infectious Immunology, 64, 1906–1912.

    CAS  Google Scholar 

  • da Silva, C. J., Soldau, K., Christen, U., Tobias, P. S., & Ulevitch, R. J. (2001). Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. Journal of Biological Chemistry, 276, 21129–21135.

    Google Scholar 

  • Dentener, M. A., Bazil, V., Von Asmuth, E. J., Ceska, M., & Buurman, W. A. (1993). Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-α, IL-6 and IL-8 release by human monocytes and alveolar macrophages. Journal of Immunology, 150, 2885–2891.

    CAS  Google Scholar 

  • Diamond, G., Russell, J. P., & Bevins, C. L. (1996). Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proceedings of the National Academy of Sciences USA, 93, 5156–5160.

    CAS  Google Scholar 

  • Dunstan, J. A., Roper, J., Mitoulas, L., Hartmann, P. E., Simmer, K., & Prescott, S. L. (2004). The effect of supplementation with fish oil during pregnancy on breast milk immunoglobulin A, soluble CD14, cytokine levels and fatty acid composition. Clinical and Experimental Allergy, 34, 1237–1242.

    CAS  Google Scholar 

  • Durieux, J. J., Vita, N., Popescu, O., Guette, F., Calzada-Wack, J., Munker, R., et al. (1994). The two soluble forms of the lipopolysaccharide receptor, CD14: Characterization and release by normal human monocytes. European Journal of Immunology, 24, 2006–2012.

    CAS  Google Scholar 

  • Dziarski, R., Tapping, R. I., & Tobias, P. S. (1998). Binding of bacterial peptidoglycan to CD14. Journal of Biological Chemistry, 273, 8680–8690.

    CAS  Google Scholar 

  • Edwards, C. A., & Parrett, A. M. (2002). Intestinal flora during the first months of life: New perspectives. British Journal of Nutrition, 88(Suppl 1), S11–S18.

    CAS  Google Scholar 

  • Egerer, K., Feist, E., Rohr, U., Pruss, A., Burmester, G. R., & Dorner, T. (2000). Increased serum soluble CD14, ICAM-1 and E-selectin correlate with disease activity and prognosis in systemic lupus erythematosus. Lupus, 9, 614–621.

    CAS  Google Scholar 

  • Elass, E., Masson, M., Mazurier, J., & Legrand, D. (2002). Lactoferrin inhibits the lipopolysaccharide-induced expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells. Infectious Immunology, 70, 1860–1866.

    CAS  Google Scholar 

  • Endo, S., Inada, K., Kasai, T., Takakuwa, T., Nakae, H., Kikuchi, M., et al. (1994). Soluble CD14 (sCD14) levels in patients with multiple organ failure (MOF). Research Communications in Chemical Pathology and Pharmocology, 84, 17–25.

    Google Scholar 

  • Espevik, T., Otterlei, M., Skjak-Braek, G., Ryan, L., Wright, S. D., & Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 23, 255–261.

    CAS  Google Scholar 

  • Espinoza, J., Chaiworapongsa, T., Romero, R., Gomez, R., Kim, J. C., Yoshimatsu, J., et al. (2002). Evidence of participation of soluble CD14 in the host response to microbial invasion of the amniotic cavity and intra-amniotic inflammation in term and preterm gestations. Journal of Maternal and Fetal Neonatal Medicine, 12, 304–312.

    CAS  Google Scholar 

  • Falk, P. G., Hooper, L. V., Midtvedt, T., & Gordon, J. I. (1998). Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiology and .Molecular Biology Reviews, 62, 1157–1170.

    CAS  Google Scholar 

  • Fernandez-Real, J. M., Broch, M., Richart, C., Vendrell, J., Lopez-Bermejo, A., & Ricart, W. (2003). CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. Journal of Clinical Endocrinology and Metabolism, 88, 1780–1784.

    CAS  Google Scholar 

  • Ferrero, E., & Goyert, S. M. (1988). Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Research, 16, 4173.

    CAS  Google Scholar 

  • Ferrero, E., Hsieh, C. L., Francke, U., & Goyert, S. M. (1990). CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. Journal of Immunology, 145, 331–336.

    CAS  Google Scholar 

  • Filipp, D., Alizadeh-Khiavi, K., Richardson, C., Palma, A., Paredes, N., Takeuchi, O., et al. (2001). Soluble CD14 enriched in colostrum and milk induces B cell growth and differentiation. Proceedings of the National Academy of Sciences USA, 98, 603–608.

    CAS  Google Scholar 

  • Frey, E. A., Miller, D. S., Jahr, T. G., Sundan, A., Bazil, V., Espevik, T., et al. (1992). Soluble CD14 participates in the response of cells to lipopolysaccharide. Journal of Experimental Medicine, 176, 1665–1671.

    CAS  Google Scholar 

  • Funda, D. P., Tuckova, L., Farre, M. A., Iwase, T., Moro, I., & Tlaskalova-Hogenova, H. (2001). CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: Lipopolysaccharide activation of epithelial cells revisited. Infectious Immunology, 69, 3772–3781.

    CAS  Google Scholar 

  • Fusunyan, R. D., Nanthakumar, N. N., Baldeon, M. E., & Walker, W. A. (2001). Evidence for an innate immune response in the immature human intestine: Toll-like receptors on fetal enterocytes. Pediatric Research, 49, 589–593.

    CAS  Google Scholar 

  • Gallay, P., Jongeneel, C. V., Barras, C., Burnier, M., Baumgartner, J. D., Glauser, M. P., et al. (1993). Short time exposure to lipopolysaccharide is sufficient to activate human monocytes. Journal of Immunology, 150, 5086–5093.

    CAS  Google Scholar 

  • Gardella, C., Hitti, J., Martin, T. R., Ruzinski, J. T., & Eschenbach, D. (2001). Amniotic fluid lipopolysaccharide-binding protein and soluble CD14 as mediators of the inflammatory response in preterm labor. American Journal of Obstetrics and Gynecology, 184, 1241–1248.

    CAS  Google Scholar 

  • Gegner, J. A., Ulevitch, R. J., & Tobias, P. S. (1995). Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14. Journal of Biological Chemistry, 270, 5320–5325.

    CAS  Google Scholar 

  • Goldblum, S. E., Brann, T. W., Ding, X., Pugin, J., & Tobias, P. S. (1994). Lipopolysaccharide (LPS)-binding protein and soluble CD14 function as accessory molecules for LPS-induced changes in endothelial barrier function, in vitro. Journal of Clinical Investigations, 93, 692–702.

    CAS  Google Scholar 

  • Goyert, S. M., & Ferrero, E. (1987). Biochemical analysis of myeloid antigens and cDNA expression of gp 55 (CD14). In A. McMichael (Ed.), Leucocyte Typing III (pp. 613–619). Oxford: Oxford University Press.

    Google Scholar 

  • Goyert, S. M., Ferrero, E., Rettig, W. J., Yenamandra, A. K., Obata, F., & Le Beau, M. M. (1988). The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science, 239, 497–500.

    CAS  Google Scholar 

  • Grunwald, U., Kruger, C., Westermann, J., Lukowsky, A., Ehlers, M., & Schutt, C. (1992). An enzyme-linked immunosorbent assay for the quantification of solubilized CD14 in biological fluids. Journal of .Immunology Methods, 155, 225–232.

    CAS  Google Scholar 

  • Grunwald, U., Kruger, C., & Schutt, C. (1993). Endotoxin-neutralizing capacity of soluble CD14 is a highly conserved specific function. Circulatory Shock, 39, 220–225.

    CAS  Google Scholar 

  • Grunwald, U., Fan, X., Jack, R. S., Workalemahu, G., Kallies, A., Stelter, F., et al. (1996). Monocytes can phagocytose Gram-negative bacteria by a CD14-dependent mechanism. Journal of Immunology, 157, 4119–4125.

    CAS  Google Scholar 

  • Guerra, S., Carla, L., I, LeVan, T. D., Wright, A. L., Martinez, F. D., & Halonen, M. (2004a). The differential effect of genetic variation on soluble CD14 levels in human plasma and milk. American Journal of Reproductive Immunology, 52, 204–211.

    Google Scholar 

  • Guerra, S., Lohman, I. C., Halonen, M., Martinez, F. D., & Wright, A. L. (2004b). Reduced interferon gamma production and soluble CD14 levels in early life predict recurrent wheezing by 1 year of age. American Journal of Respiration and Critical Care Medicine, 169, 70–76.

    Google Scholar 

  • Gupta, D., Kirkland, T. N., Viriyakosol, S., & Dziarski, R. (1996). CD14 is a cell-activating receptor for bacterial peptidoglycan. Journal of Biological Chemistry, 271, 23310–23316.

    CAS  Google Scholar 

  • Hailman, E., Lichenstein, H. S., Wurfel, M. M., Miller, D. S., Johnson, D. A., Kelley, M., et al. (1994). Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. Journal of Experimental Medicine, 179, 269–277.

    CAS  Google Scholar 

  • Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J., & Blum, S. (2000). Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut, 47, 79–87.

    CAS  Google Scholar 

  • Harris, C. L., Vigar, M. A., Rey Nores, J. E., Horejsi, V., Labeta, M. O., & Morgan, B. P. (2001). The lipopolysaccharide co-receptor CD14 is present and functional in seminal plasma and expressed on spermatozoa. Immunology, 104, 317–323.

    CAS  Google Scholar 

  • Hattor, Y., Kasai, K., Akimoto, K., & Thiemermann, C. (1997). Induction of NO synthesis by lipoteichoic acid from Staphylococcus aureus in J774 macrophages: Involvement of a CD14-dependent pathway. Biochemistry and Biophysics Research Community, 233, 375–379.

    CAS  Google Scholar 

  • Haversen, L., Ohlsson, B. G., Hahn-Zoric, M., Hanson, L. A., & Mattsby-Baltzer, I. (2002). Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cell Immunology, 220, 83–95.

    CAS  Google Scholar 

  • Haziot, A., Chen, S., Ferrero, E., Low, M. G., Silber, R., & Goyert, S. M. (1988). The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. Journal of Immunology, 141, 547–552.

    CAS  Google Scholar 

  • Haziot, A., Rong, G. W., Silver, J., & Goyert, S. M. (1993a). Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. Journal of Immunology, 151, 1500–1507.

    CAS  Google Scholar 

  • Haziot, A., Tsuberi, B. Z., & Goyert, S. M. (1993b). Neutrophil CD14: Biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. Journal of Immunology, 150, 5556–5565.

    CAS  Google Scholar 

  • Haziot, A., Rong, G. W., Bazil, V., Silver, J., & Goyert, S. M. (1994). Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood. Journal of Immunology, 152, 5868–5876.

    CAS  Google Scholar 

  • Haziot, A., Rong, G. W., Lin, X. Y., Silver, J., & Goyert, S. M. (1995). Recombinant soluble CD14 prevents mortality in mice treated with endotoxin (lipopolysaccharide). Journal of Immunology, 154, 6529–6532.

    CAS  Google Scholar 

  • Heumann, D., Glauser, M. P., & Calandra, T. (1998). Molecular basis of host-pathogen interaction in septic shock. Current Opinions in Microbiology, 1, 49–55.

    CAS  Google Scholar 

  • Hollak, C. E., Evers, L., Aerts, J. M., & van Oers, M. H. (1997). Elevated levels of M-CSF, sCD14 and IL8 in type 1 Gaucher disease. Blood Cells Molecular Disease, 23, 201–212.

    CAS  Google Scholar 

  • Horneff, G., Sack, U., Kalden, J. R., Emmrich, F., & Burmester, G. R. (1993). Reduction of monocyte-macrophage activation markers upon anti-CD4 treatment. Decreased levels of IL-1, IL-6, neopterin and soluble CD14 in patients with rheumatoid arthritis. Clinical Experiments in Immunology, 91, 207–213.

    CAS  Google Scholar 

  • Hoy, C., Millar, M. R., MacKay, P., Godwin, P. G., Langdale, V., & Levene, M. I. (1990). Quantitative changes in faecal microflora preceding necrotising enterocolitis in premature neonates. Archives of Disease in Childhood, 65, 1057–1059.

    CAS  Google Scholar 

  • Humphries, J. D., & Humphries, M. J. (2007). CD14 is a ligand for the integrin α4β1. FEBS Letters, 581, 757–763.

    CAS  Google Scholar 

  • Ikeda, A., Takata, M., Taniguchi, T., & Sekikawa, K. (1997). Molecular cloning of bovine CD14 gene. Journal of Veterinary Medicine and Science, 59, 715–719.

    CAS  Google Scholar 

  • Ismail, A. S., & Hooper, L. V. (2005). Epithelial cells and their neighbors. IV. Bacterial contributions to intestinal epithelial barrier integrity. American Journal of Physiology: Gastrointestinal and Liver Physiology, 289, G779–G784.

    CAS  Google Scholar 

  • Jack, R. S., Grunwald, U., Stelter, F., Workalemahu, G., & Schutt, C. (1995). Both membrane-bound and soluble forms of CD14 bind to Gram-negative bacteria. European Journal of Immunology, 25, 1436–1441.

    CAS  Google Scholar 

  • Jack, R. S., Fan, X., Bernheiden, M., Rune, G., Ehlers, M., Weber, A., et al. (1997). Lipopolysaccharide-binding protein is required to combat a murine Gram-negative bacterial infection. Nature, 389, 742–745.

    CAS  Google Scholar 

  • Jackson, K. M., & Nazar, A. M. (2006). Breastfeeding, the immune response, and long-term health. Journal of American Osteopath Association, 106, 203–207.

    Google Scholar 

  • Jacque, B., Stephan, K., Smirnova, I., Kim, B., Gilling, D., & Poltorak, A. (2006). Mice expressing high levels of soluble CD14 retain LPS in the circulation and are resistant to LPS-induced lethality. European Journal of Immunology, 36, 3007–3016.

    CAS  Google Scholar 

  • Jilling, T., Simon, D., Lu, J., Meng, F. J., Li, D., Schy, R., et al. (2006). The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. Journal of Immunology, 177, 3273–3282.

    CAS  Google Scholar 

  • Jones, C. A., Holloway, J. A., Popplewell, E. J., Diaper, N. D., Holloway, J. W., Vance, G. H., et al. (2002). Reduced soluble CD14 levels in amniotic fluid and breast milk are associated with the subsequent development of atopy, eczema, or both. Journal of Allergy and Clinical Immunology, 109, 858–866.

    CAS  Google Scholar 

  • Kaisho, T., & Akira, S. (2006). Toll-like receptor function and signaling. Journal of Allergy and Clinical Immunology, 117, 979–987.

    CAS  Google Scholar 

  • Kirjavainen, P. V., Arvola, T., Salminen, S. J., Isolauri, E. (2002). Aberrant composition of gut microbiota of allergic infants: A target of bifidobacterial therapy at weaning? Gut, 51, 51–55.

    CAS  Google Scholar 

  • Kirkland, T. N., Finley, F., Leturcq, D., Moriarty, A., Lee, J. D., Ulevitch, R. J., et al. (1993). Analysis of lipopolysaccharide binding by CD14. Journal of Biological Chemistry, 268, 24818–24823.

    CAS  Google Scholar 

  • Kitchens, R. L., & Munford, R. S. (1995). Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. Journal of Biological Chemistry, 270, 9904–9910.

    CAS  Google Scholar 

  • Kitchens, R. L., & Thompson, P. A. (2005). Modulatory effects of sCD14 and LBP on LPS-host cell interactions. Journal of Endotoxin Research, 11, 225–229.

    CAS  Google Scholar 

  • Kitchens, R. L., Wolfbauer, G., Albers, J. J., & Munford, R. S. (1999). Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface. Journal of Biological Chemistry, 274, 34116–34122.

    CAS  Google Scholar 

  • Kitchens, R. L., Thompson, P. A., Viriyakosol, S., O'Keefe, G. E., & Munford, R. S. (2001). Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. Journal of Clinical Investigations, 108, 485–493.

    CAS  Google Scholar 

  • Kol, A., Lichtman, A. H., Finberg, R. W., Libby, P., & Kurt-Jones, E. A. (2000). Cutting edge: Heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. Journal of Immunology, 164, 13–17.

    CAS  Google Scholar 

  • Kruger, C., Schutt, C., Obertacke, U., Joka, T., Muller, F. E., Knoller, J., et al. (1991). Serum CD14 levels in polytraumatized and severely burned patients. Clinical Experiments in Immunology, 85, 297–301.

    CAS  Google Scholar 

  • Kull, I., Almqvist, C., Lilja, G., Pershagen, G., & Wickman, M. (2004). Breast-feeding reduces the risk of asthma during the first 4 years of life. Journal of Allergy and Clinical Immunology, 114, 755–760.

    Google Scholar 

  • Kusunoki, T., & Wright, S. D. (1996). Chemical characteristics of Staphylococcus aureus molecules that have CD14-dependent cell-stimulating activity. Journal of Immunology, 157, 5112–5117.

    CAS  Google Scholar 

  • Kusunoki, T., Hailman, E., Juan, T. S., Lichenstein, H. S., & Wright, S. D. (1995). Molecules from Staphylococcus aureus that bind CD14 and stimulate innate immune responses. Journal of Experimental Medicine, 182, 1673–1682.

    CAS  Google Scholar 

  • Labeta, M. O., Durieux, J. J., Fernandez, N., Herrmann, R., & Ferrara, P. (1993). Release from a human monocyte-like cell line of two different soluble forms of the lipopolysaccharide receptor, CD14. European Journal of Immunology, 23, 2144–2151.

    CAS  Google Scholar 

  • Labeta, M. O., Vidal, K., Nores, J. E., Arias, M., Vita, N., Morgan, B. P., et al. (2000). Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. Journal of Experimental Medicine, 191, 1807–1812.

    CAS  Google Scholar 

  • Laitinen, K., Hoppu, U., Hamalainen, M., Linderborg, K., Moilanen, E., & Isolauri, E. (2006). Breast milk fatty acids may link innate and adaptive immune regulation: Analysis of soluble CD14, prostaglandin E2, and fatty acids. Pediatric Research, 59, 723–727.

    CAS  Google Scholar 

  • Landmann, R., Fisscher, A. E., & Obrecht, J. P. (1992). Interferon-γ and interleukin-4 down-regulate soluble CD14 release in human monocytes and macrophages. Journal of Leukocyte Biology, 52, 323–330.

    CAS  Google Scholar 

  • Landmann, R., Zimmerli, W., Sansano, S., Link, S., Hahn, A., Glauser, M. P., et al. (1995). Increased circulating soluble CD14 is associated with high mortality in Gram-negative septic shock. Journal of Infectious Diseases, 171, 639–644.

    CAS  Google Scholar 

  • Landmann, R., Reber, A. M., Sansano, S., & Zimmerli, W. (1996). Function of soluble CD14 in serum from patients with septic shock. Journal of Infectious Disease, 173, 661–668.

    CAS  Google Scholar 

  • Lauener, R. P., Birchler, T., Adamski, J., Braun-Fahrlander, C., Bufe, A., Herz, U., et al. (2002). Expression of CD14 and Toll-like receptor 2 in farmers' and non-farmers' children. Lancet, 360, 465–466.

    CAS  Google Scholar 

  • Lawrence, R. M. (2005). Host-resistance factors and immunologic significance of human milk. In R. A. Lawrence & R. M. Lawrence (Eds.), Breastfeeding. A Guide for the Medical Profession (pp. 171–214). Philadelphia: Elsevier Mosby.

    Google Scholar 

  • Lebouder, E., Rey-Nores, J. E., Raby, A. C., Affolter, M., Vidal, K., Thornton, C. A., et al. (2006). Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk. Journal of Immunology, 176, 3742–3752.

    CAS  Google Scholar 

  • Lee, J. W., Paape, M. J., Elsasser, T. H., & Zhao, X. (2003a). Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide. Journal of Dairy Science, 86, 2382–2389.

    CAS  Google Scholar 

  • Lee, J. W., Paape, M. J., Elsasser, T. H., & Zhao, X. (2003b). Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli. Infectious Immunology, 71, 4034–4039.

    CAS  Google Scholar 

  • Lee, J. W., Paape, M. J., & Zhao, X. (2003c). Recombinant bovine soluble CD14 reduces severity of experimental Escherichia coli mastitis in mice. Veterinary Research, 34, 307–316.

    CAS  Google Scholar 

  • LeVan, T. D., Guerra, S., Klimecki, W., Vasquez, M. M., Lohman, I. C., Martinez, F. D., et al. (2006). The impact of CD14 polymorphisms on the development of soluble CD14 levels during infancy. Genes and Immunology, 7, 77–80.

    CAS  Google Scholar 

  • Liu, S., Khemlani, L. S., Shapiro, R. A., Johnson, M. L., Liu, K., Geller, D. A., et al. (1998). Expression of CD14 by hepatocytes: Upregulation by cytokines during endotoxemia. Infectious Immunology, 66, 5089–5098.

    CAS  Google Scholar 

  • Lonnerdal, B. (2003). Nutritional and physiologic significance of human milk proteins. American Journal of Clinical Nutrition, 77, 1537S–1543S.

    Google Scholar 

  • Loppnow, H., Stelter, F., Schonbeck, U., Schluter, C., Ernst, M., Schutt, C., et al. (1995). Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14. Infectious Immunology, 63, 1020–1026.

    CAS  Google Scholar 

  • Lotz, M., Gutle, D., Walther, S., Menard, S., Bogdan, C., & Hornef, M. W. (2006). Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. Journal of Experimental Medicine, 203, 973–984.

    CAS  Google Scholar 

  • Lutterotti, A., Kuenz, B., Gredler, V., Khalil, M., Ehling, R., Gneiss, C., et al. (2006). Increased serum levels of soluble CD14 indicate stable multiple sclerosis. Journal of Neuroimmunology, 181, 145–149.

    CAS  Google Scholar 

  • Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews Immunology, 4, 478–485.

    CAS  Google Scholar 

  • Maliszewski, C. R., Ball, E. D., Graziano, R. F., & Fanger, M. W. (1985). Isolation and characterization of My23, a myeloid cell-derived antigen reactive with the monoclonal antibody AML-2-23. Journal of Immunology, 135, 1929–1936.

    CAS  Google Scholar 

  • Martin, T. R., Mathison, J. C., Tobias, P. S., Leturcq, D. J., Moriarty, A. M., Maunder, R. J., et al. (1992). Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injured lungs. Journal of Clinical Investigations, 90, 2209–2219.

    CAS  Google Scholar 

  • Mathison, J. C., Tobias, P. S., Wolfson, E., & Ulevitch, R. J. (1992). Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of Gram-negative LPS. Journal of Immunology, 149, 200–206.

    CAS  Google Scholar 

  • Matsuura, K., Ishida, T., Setoguchi, M., Higuchi, Y., Akizuki, S., & Yamamoto, S. (1994). Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. Journal of Experimental Medicine, 179, 1671–1676.

    CAS  Google Scholar 

  • Matzinger, P. (2002). The danger model: A renewed sense of self. Science, 296, 301–305.

    CAS  Google Scholar 

  • Nasu, N., Yoshida, S., Akizuki, S., Higuchi, Y., Setoguchi, M., & Yamamoto, S. (1991). Molecular and physiological properties of murine CD14. International Immunology, 3, 205–213.

    CAS  Google Scholar 

  • Nemchinov, L. G., Paape, M. J., Sohn, E. J., Bannerman, D. D., Zarlenga, D. S., & Hammond, R. W. (2006). Bovine CD14 receptor produced in plants reduces severity of intramammary bacterial infection. FASEB Journal, 20, 1345–1351.

    CAS  Google Scholar 

  • Newman, S. L., Chaturvedi, S., & Klein, B. S. (1995). The WI-1 antigen of Blastomyces dermatitidis yeasts mediates binding to human macrophage CD11b/CD18 (CR3) and CD14. Journal of Immunology, 154, 753–761.

    CAS  Google Scholar 

  • Nockher, W. A., Wigand, R., Schoeppe, W., & Scherberich, J. E. (1994). Elevated levels of soluble CD14 in serum of patients with systemic lupus erythematosus. Clinical Experiments in Immunology, 96, 15–19.

    CAS  Google Scholar 

  • O'Neill, L. A. (2002). Signal transduction pathways activated by the IL-1 receptor/Toll-like receptor superfamily. Current Topics in Microbiology and Immunology, 270, 47–61.

    Google Scholar 

  • O'Neill, L. A., Dunne, A., Edjeback, M., Gray, P., Jefferies, C., & Wietek, C. (2003). Mal and MyD88: Adapter proteins involved in signal transduction by Toll-like receptors. Journal of Endotoxin Research, 9, 55–59.

    Google Scholar 

  • Otte, J. M., Cario, E., & Podolsky, D. K. (2004). Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology, 126, 1054–1070.

    CAS  Google Scholar 

  • Pugin, J., Schurer-Maly, C. C., Leturcq, D., Moriarty, A., Ulevitch, R. J., & Tobias, P. S. (1993). Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proceedings of the National Academy of Sciences USA, 90, 2744–2748.

    CAS  Google Scholar 

  • Pugin, J., Heumann, I. D., Tomasz, A., Kravchenko, V. V., Akamatsu, Y., Nishijima, M., et al. (1994). CD14 is a pattern recognition receptor. Immunity, 1, 509–516.

    CAS  Google Scholar 

  • Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell, 118, 229–241.

    CAS  Google Scholar 

  • Re, F., & Strominger, J. L. (2001). Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. Journal of Biological Chemistry, 276, 37692–37699.

    CAS  Google Scholar 

  • Read, M. A., Cordle, S. R., Veach, R. A., Carlisle, C. D., & Hawiger, J. (1993). Cell-free pool of CD14 mediates activation of transcription factor NF-κB by lipopolysaccharide in human endothelial cells. Proceedings of the National Academy of Sciences USA, 90, 9887–9891.

    CAS  Google Scholar 

  • Rey Nores, J. E., Bensussan, A., Vita, N., Stelter, F., Arias, M. A., Jones, M., et al. (1999). Soluble CD14 acts as a negative regulator of human T cell activation and function. European Journal of Immunology, 29, 265–276.

    CAS  Google Scholar 

  • Rinne, M., Kalliomaki, M., Arvilommi, H., Salminen, S., & Isolauri, E. (2005). Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. Journal of Pediatrics, 147, 186–191.

    Google Scholar 

  • Ronnestad, A., Abrahamsen, T. G., Medbo, S., Reigstad, H., Lossius, K., Kaaresen, P. I., et al. (2005). Septicemia in the first week of life in a Norwegian national cohort of extremely premature infants. Pediatrics, 115, e262–e268.

    Google Scholar 

  • Rothenbacher, D., Weyermann, M., Beermann, C., & Brenner, H. (2005). Breastfeeding, soluble CD14 concentration in breast milk and risk of atopic dermatitis and asthma in early childhood: Birth cohort study. Clinical and Experimental Allergy, 35, 1014–1021.

    CAS  Google Scholar 

  • Sano, H., Chiba, H., Iwaki, D., Sohma, H., Voelker, D. R., & Kuroki, Y. (2000). Surfactant proteins A and D bind CD14 by different mechanisms. Journal of Biological Chemistry, 275, 22442–22451.

    CAS  Google Scholar 

  • Savedra, R., Jr., Delude, R. L., Ingalls, R. R., Fenton, M. J., & Golenbock, D. T. (1996). Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system. Journal of Immunology, 157, 2549–2554.

    CAS  Google Scholar 

  • Schmitz, G., & Orso, E. (2002). CD14 signalling in lipid rafts: New ligands and co-receptors. Current Opinions in Lipidology, 13, 513–521.

    CAS  Google Scholar 

  • Schroder, N. W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., et al. (2003). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. Journal of Biological Chemistry, 278, 15587–15594.

    Google Scholar 

  • Schumann, R. R., Leong, S. R., Flaggs, G. W., Gray, P. W., Wright, S. D., Mathison, J. C., et al. (1990). Structure and function of lipopolysaccharide binding protein. Science, 249, 1429–1431.

    CAS  Google Scholar 

  • Schumann, R. R., Rietschel, E. T., & Loppnow, H. (1994). The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Medical Microbiology and Immunology (Berlin), 183, 279–297.

    CAS  Google Scholar 

  • Schutt, C., Schilling, T., Grunwald, U., Schonfeld, W., & Kruger, C. (1992). Endotoxin-neutralizing capacity of soluble CD14. Research in Immunology, 143, 71–78.

    CAS  Google Scholar 

  • Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., & Kirschning, C. J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. Journal of Biological Chemistry, 274, 17406–17409.

    CAS  Google Scholar 

  • Scott, P., Ma, H., Viriyakosol, S., Terkeltaub, R., & Liu-Bryan, R. (2006). Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. Journal of Immunology, 177, 6370–6378.

    CAS  Google Scholar 

  • Sellati, T. J., Bouis, D. A., Kitchens, R. L., Darveau, R. P., Pugin, J., Ulevitch, R. J., et al. (1998). Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide. Journal of Immunology, 160, 5455–5464.

    CAS  Google Scholar 

  • Setoguchi, M., Nasu, N., Yoshida, S., Higuchi, Y., Akizuki, S., & Yamamoto, S. (1989). Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones. Biochimica et Biophysica Acta, 1008, 213–222.

    CAS  Google Scholar 

  • Simmons, D. L., Tan, S., Tenen, D. G., Nicholson-Weller, A., & Seed, B. (1989). Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood, 73, 284–289.

    CAS  Google Scholar 

  • Soell, M., Lett, E., Holveck, F., Scholler, M., Wachsmann, D., & Klein, J. P. (1995). Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-α release. Journal of Immunology, 154, 851–860.

    CAS  Google Scholar 

  • Sohn, E. J., Paape, M. J., Bannerman, D. D., Connor, E. E., Fetterer, R. H., & Peters, R. R. (2007). Shedding of sCD14 by bovine neutrophils following activation with bacterial lipopolysaccharide results in down-regulation of IL-8. Veterinary Research, 38, 95–108.

    CAS  Google Scholar 

  • Song, P. I., Park, Y. M., Abraham, T., Harten, B., Zivony, A., Neparidze, N., et al. (2002). Human keratinocytes express functional CD14 and Toll-like receptor 4. Journal of Investigations in Dermatology, 119, 424–432.

    CAS  Google Scholar 

  • Steinwender, G., Schimpl, G., Sixl, B., Kerbler, S., Ratschek, M., Kilzer, S., et al. (1996). Effect of early nutritional deprivation and diet on translocation of bacteria from the gastrointestinal tract in the newborn rat. Pediatric Research, 39, 415–420.

    CAS  Google Scholar 

  • Stelter, F., Pfister, M., Bernheiden, M., Jack, R. S., Bufler, P., Engelmann, H., et al. (1996). The myeloid differentiation antigen CD14 is N- and O-glycosylated. Contribution of N-linked glycosylation to different soluble CD14 isoforms. European Journal of Biochemistry, 236, 457–464.

    CAS  Google Scholar 

  • Stelter, F., Witt, S., Furll, B., Jack, R. S., Hartung, T., & Schutt, C. (1998). Different efficacy of soluble CD14 treatment in high- and low-dose LPS models. European Journal of Clinical Investigations, 28, 205–213.

    CAS  Google Scholar 

  • Stoiser, B., Knapp, S., Thalhammer, F., Locker, G. J., Kofler, J., Hollenstein, U., et al. (1998). Time course of immunological markers in patients with the systemic inflammatory response syndrome: Evaluation of sCD14, sVCAM-1, sELAM-1, MIP-1α and TGF-β2. European Journal of Clinical Investigations, 28, 672–678.

    CAS  Google Scholar 

  • Strachan, D. P. (1989). Hay fever, hygiene, and household size. British Medical Journal, 299, 1259–1260.

    CAS  Google Scholar 

  • Sugawara, S., Sugiyama, A., Nemoto, E., Rikiishi, H., & Takada, H. (1998). Heterogeneous expression and release of CD14 by human gingival fibroblasts: Characterization and CD14-mediated interleukin-8 secretion in response to lipopolysaccharide. Infectious Immunology, 66, 3043–3049.

    CAS  Google Scholar 

  • Sugiyama, T., & Wright, S. D. (2001). Soluble CD14 mediates efflux of phospholipids from cells. Journal of Immunology, 166, 826–831.

    CAS  Google Scholar 

  • Takai, N., Kataoka, M., Higuchi, Y., Matsuura, K., & Yamamoto, S. (1997). Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. Journal of Leukocyte Biology, 61, 736–744.

    CAS  Google Scholar 

  • Takeshita, S., Nakatani, K., Tsujimoto, H., Kawamura, Y., Kawase, H., & Sekine, I. (2000). Increased levels of circulating soluble CD14 in Kawasaki disease. Clinical Experiments in Immunology, 119, 376–381.

    CAS  Google Scholar 

  • Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., et al. (1999). Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity, 11, 443–451.

    CAS  Google Scholar 

  • Thomas, C. J., Kapoor, M., Sharma, S., Bausinger, H., Zyilan, U., Lipsker, D., et al. (2002). Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Letters, 531, 184–188.

    CAS  Google Scholar 

  • Tobias, P. S., & Ulevitch, R. J. (1993). Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology, 187, 227–232.

    CAS  Google Scholar 

  • Tobias, P. S., Soldau, K., & Ulevitch, R. J. (1986). Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. Journal of Experimental Medicine, 164, 777–793.

    CAS  Google Scholar 

  • Tobias, P. S., Mathison, J., Mintz, D., Lee, J. D., Kravchenko, V., Kato, K., et al. (1992). Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. American Journal of Respiratory Cell and Molecular Biology, 7, 239–245.

    CAS  Google Scholar 

  • Uehara, A., Sugawara, S., Watanabe, K., Echigo, S., Sato, M., Yamaguchi, T., et al. (2003). Constitutive expression of a bacterial pattern recognition receptor, CD14, in human salivary glands and secretion as a soluble form in saliva. Clinical and Diagnostic Laboratory Immunology, 10, 286–292.

    CAS  Google Scholar 

  • van Saene, H. K., Taylor, N., Donnell, S. C., Glynn, J., Magnall, V. L., Okada, Y., et al. (2003). Gut overgrowth with abnormal flora: The missing link in parenteral nutrition-related sepsis in surgical neonates. European Journal of Clinical Nutrition, 57, 548–553.

    Google Scholar 

  • Vangroenweghe, F., Rainard, P., Paape, M., Duchateau, L., & Burvenich, C. (2004). Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. Journal of Dairy Science, 87, 4132–4144.

    CAS  Google Scholar 

  • Verhasselt, V., Buelens, C., Willems, F., De Groote, D., Haeffner-Cavaillon, N., & Goldman, M. (1997). Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: Evidence for a soluble CD14-dependent pathway. Journal of Immunology, 158, 2919–2925.

    CAS  Google Scholar 

  • Vidal, K., Labeta, M. O., Schiffrin, E. J., & Donnet-Hughes, A. (2001). Soluble CD14 in human breast milk and its role in innate immune responses. Acta Odontologica Scandinavica, 59, 330–334.

    CAS  Google Scholar 

  • Vidal, K., Donnet-Hughes, A., & Granato, D. (2002). Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and Gram-negative bacteria. Infectious Immunology, 70, 2057–2064.

    CAS  Google Scholar 

  • Vita, N., Lefort, S., Sozzani, P., Reeb, R., Richards, S., Borysiewicz, L. K., et al. (1997). Detection and biochemical characteristics of the receptor for complexes of soluble CD14 and bacterial lipopolysaccharide. Journal of Immunology, 158, 3457–3462.

    CAS  Google Scholar 

  • Watanabe, A., Takeshita, A., Kitano, S., & Hanazawa, S. (1996). CD14-mediated signal pathway of Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Infectious Immunology, 64, 4488–4494.

    CAS  Google Scholar 

  • Weidemann, B., Brade, H., Rietschel, E. T., Dziarski, R., Bazil, V., Kusumoto, S., et al. (1994). Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infectious Immunology, 62, 4709–4715.

    CAS  Google Scholar 

  • Weidemann, B., Schletter, J., Dziarski, R., Kusumoto, S., Stelter, F., Rietschel, E. T., et al. (1997). Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes. Infectious Immunology, 65, 858–864.

    CAS  Google Scholar 

  • Wooten, R. M., Morrison, T. B., Weis, J. H., Wright, S. D., Thieringer, R., & Weis, J. J. (1998). The role of CD14 in signaling mediated by outer membrane lipoproteins of Borrelia burgdorferi. Journal of Immunology, 160, 5485–5492.

    CAS  Google Scholar 

  • Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., & Mathison, J. C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249, 1431–1433.

    CAS  Google Scholar 

  • Wuthrich, B., Kagi, M. K., & Joller-Jemelka, H. (1992). Soluble CD14 but not interleukin-6 is a new marker for clinical activity in atopic dermatitis. Archives in Dermatology Research, 284, 339–342.

    CAS  Google Scholar 

  • Yaegashi, Y., Shirakawa, K., Sato, N., Suzuki, Y., Kojika, M., Imai, S., et al. (2005). Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. Journal of Infectious Chemotherapy, 11, 234–238.

    CAS  Google Scholar 

  • Yu, B., Hailman, E., & Wright, S. D. (1997). Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids. Journal of Clinical Investigations, 99, 315–324.

    CAS  Google Scholar 

  • Yu, S., Nakashima, N., Xu, B. H., Matsuda, T., Izumihara, A., Sunahara, N., et al. (1998). Pathological significance of elevated soluble CD14 production in rheumatoid arthritis: In the presence of soluble CD14, lipopolysaccharides at low concentrations activate RA synovial fibroblasts. Rheumatology International, 17, 237–243.

    CAS  Google Scholar 

  • Zalai, C. V., Kolodziejczyk, M. D., Pilarski, L., Christov, A., Nation, P. N., Lundstrom-Hobman, M., et al. (2001). Increased circulating monocyte activation in patients with unstable coronary syndromes. Journal of the American College of Cardiology, 38, 1340–1347.

    CAS  Google Scholar 

  • Zdolsek, H. A., & Jenmalm, M. C. (2004). Reduced levels of soluble CD14 in atopic children. Clinical Experiments in Allergy, 34, 532–539.

    CAS  Google Scholar 

  • Zhang, Y., Doerfler, M., Lee, T. C., Guillemin, B., & Rom, W. N. (1993). Mechanisms of stimulation of interleukin-1β and tumor necrosis factor-α by Mycobacterium tuberculosis components. Journal of Clinical Investigations, 91, 2076–2083.

    CAS  Google Scholar 

  • Zoetendal, E. G., Akkermans, A. D., & De Vos, W. M. (1998). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology, 64, 3854–3859.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vidal, K., Donnet-Hughes, A. (2008). CD14: A Soluble Pattern Recognition Receptor in Milk. In: Bösze, Z. (eds) Bioactive Components of Milk. Advances in Experimental Medicine and Biology, vol 606. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74087-4_7

Download citation

Publish with us

Policies and ethics