CD14: A Soluble Pattern Recognition Receptor in Milk

  • Karine Vidal
  • Anne Donnet-Hughes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)


An innate immune system capable of distinguishing among self, non-self, and danger is a prerequisite for health. Upon antigenic challenge, pattern recognition receptors (PRRs), such as the Toll-like receptor (TLR) family of proteins, enable this system to recognize and interact with a number of microbial components and endogenous host proteins. In the healthy host, such interactions culminate in tolerance to self-antigen, dietary antigen, and commensal microorganisms but in protection against pathogenic attack. This duality implies tightly regulated control mechanisms that are not expected of the inexperienced neonatal immune system. Indeed, the increased susceptibility of newborn infants to infection and to certain allergens suggests that the capacity to handle certain antigenic challenges is not inherent. The observation that breast-fed infants experience a lower incidence of infections, inflammation, and allergies than formula-fed infants suggests that exogenous factors in milk may play a regulatory role.

There is increasing evidence to suggest that upon exposure to antigen, breast milk educates the neonatal immune system in the decision-making processes underlying the immune response to microbes. Breast milk contains a multitude of factors such as immunoglobulins, glycoproteins, glycolipids, and antimicrobial peptides that, qualitatively or quantitatively, may modulate how neonatal cells perceive and respond to microbial components. The specific role of several of these factors is highlighted in other chapters in this book. However, an emerging concept is that breast milk influences the neonatal immune system’s perception of “danger.” Here we discuss how CD14, a soluble PRR in milk, may contribute to this education.


Atopic Dermatitis Breast Milk Kawasaki Disease Human Milk Biological Chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abreu, M. T., Vora, P., Faure, E., Thomas, L. S., Arnold, E. T., & Arditi, M. (2001). Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. Journal of Immunology, 167, 1609–1616.Google Scholar
  2. Aderem, A. & Ulevitch, R. J. (2000). Toll-like receptors in the induction of the innate immune response. Nature, 406, 782–787.Google Scholar
  3. Arditi, M., Zhou, J., Dorio, R., Rong, G. W., Goyert, S. M., & Kim, K. S. (1993). Endotoxin-mediated endothelial cell injury and activation: Role of soluble CD14. Infectious Immunology, 61, 3149–3156.Google Scholar
  4. Arias, M. A., Rey Nores, J. E., Vita, N., Stelter, F., Borysiewicz, L. K., Ferrara, P., et al. (2000). Cutting edge: Human B cell function is regulated by interaction with soluble CD14: Opposite effects on IgG1 and IgE production. Journal of Immunology, 164, 3480–3486.Google Scholar
  5. Baldini, M., Lohman, I. C., Halonen, M., Erickson, R. P., Holt, P. G., & Martinez, F. D. (1999). A polymorphism∗ in the 5' flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. American Journal of Respiriratory Cell and Molecular Biology, 20, 976–983.Google Scholar
  6. Bannerman, D. D., Paape, M. J., Hare, W. R., & Sohn, E. J. (2003). Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. Journa of Dairy Science, 86, 3128–3137.Google Scholar
  7. Bas, S., Gauthier, B. R., Spenato, U., Stingelin, S., & Gabay, C. (2004). CD14 is an acute-phase protein. Journal of Immunology, 172, 4470–4479.Google Scholar
  8. Baveye, S., Elass, E., Fernig, D. G., Blanquart, C., Mazurier, J., & Legrand, D. (2000). Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infectious Immunology, 68, 6519–6525.Google Scholar
  9. Bazil, V., & Strominger, J. L. (1991). Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. Journal of Immunology, 147, 1567–1574.Google Scholar
  10. Bazil, V., Horejsi, V., Baudys, M., Kristofova, H., Strominger, J. L., Kostka, W., et al. (1986). Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. European Journal of Immunology, 16, 1583–1589.Google Scholar
  11. Bazil, V., Baudys, M., Hilgert, I., Stefanova, I., Low, M. G., Zbrozek, J., et al. (1989). Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Molecular Immunology, 26, 657–662.Google Scholar
  12. Berg, R. D. (1996). The indigenous gastrointestinal microflora. Trends in Microbiology, 4, 430–435.Google Scholar
  13. Blais, D. R., Vascotto, S. G., Griffith, M., & Altosaar, I. (2005). LBP and CD14 secreted in tears by the lacrimal glands modulate the LPS response of corneal epithelial cells. Investigative Ophthalmology and Visual Science, 46, 4235–4244.Google Scholar
  14. Blais, D. R., Harrold, J., & Altosaar, I. (2006). Killing the messenger in the nick of time: Persistence of breast milk sCD14 in the neonatal gastrointestinal tract. Pediatric Research, 59, 371–376.Google Scholar
  15. Bloomfield, S. F., Stanwell-Smith, R., Crevel, R. W., & Pickup, J. (2006). Too clean, or not too clean: The hygiene hypothesis and home hygiene. Clinical and Experimental Allergy, 36, 402–425.Google Scholar
  16. Bufler, P., Stiegler, G., Schuchmann, M., Hess, S., Kruger, C., Stelter, F., et al. (1995). Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. European Journal of Immunology, 25, 604–610.Google Scholar
  17. Burgmann, H., Winkler, S., Locker, G. J., Presterl, E., Laczika, K., Staudinger, T., et al. (1996). Increased serum concentration of soluble CD14 is a prognostic marker in Gram-positive sepsis. Clinical Immunology and Immunopathology, 80, 307–310.Google Scholar
  18. Caplan, M. S., & MacKendrick, W. (1993). Necrotizing enterocolitis: A review of pathogenetic mechanisms and implications for prevention. Pediatric Pathology, 13, 357–369.Google Scholar
  19. Cauwels, A., Frei, K., Sansano, S., Fearns, C., Ulevitch, R., Zimmerli, W., et al. (1999). The origin and function of soluble CD14 in experimental bacterial meningitis. Journal of Immunology, 162, 4762–4772.Google Scholar
  20. Cebra, J. J. (1999). Influences of microbiota on intestinal immune system development. American Journal of Clinical Nutrition, 69, 1046S–1051S.Google Scholar
  21. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J., & Gusovsky, F. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry, 274, 10689–10692.Google Scholar
  22. Claud, E. C., Lu, L., Anton, P. M., Savidge, T., Walker, W. A., & Cherayil, B. J. (2004). Developmentally regulated IκB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proceedings of the National Academy of Sciences USA, 101, 7404–7408.Google Scholar
  23. Cleveland, M. G., Gorham, J. D., Murphy, T. L., Tuomanen, E., & Murphy, K. M. (1996). Lipoteichoic acid preparations of Gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infectious Immunology, 64, 1906–1912.Google Scholar
  24. da Silva, C. J., Soldau, K., Christen, U., Tobias, P. S., & Ulevitch, R. J. (2001). Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. Journal of Biological Chemistry, 276, 21129–21135.Google Scholar
  25. Dentener, M. A., Bazil, V., Von Asmuth, E. J., Ceska, M., & Buurman, W. A. (1993). Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-α, IL-6 and IL-8 release by human monocytes and alveolar macrophages. Journal of Immunology, 150, 2885–2891.Google Scholar
  26. Diamond, G., Russell, J. P., & Bevins, C. L. (1996). Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proceedings of the National Academy of Sciences USA, 93, 5156–5160.Google Scholar
  27. Dunstan, J. A., Roper, J., Mitoulas, L., Hartmann, P. E., Simmer, K., & Prescott, S. L. (2004). The effect of supplementation with fish oil during pregnancy on breast milk immunoglobulin A, soluble CD14, cytokine levels and fatty acid composition. Clinical and Experimental Allergy, 34, 1237–1242.Google Scholar
  28. Durieux, J. J., Vita, N., Popescu, O., Guette, F., Calzada-Wack, J., Munker, R., et al. (1994). The two soluble forms of the lipopolysaccharide receptor, CD14: Characterization and release by normal human monocytes. European Journal of Immunology, 24, 2006–2012.Google Scholar
  29. Dziarski, R., Tapping, R. I., & Tobias, P. S. (1998). Binding of bacterial peptidoglycan to CD14. Journal of Biological Chemistry, 273, 8680–8690.Google Scholar
  30. Edwards, C. A., & Parrett, A. M. (2002). Intestinal flora during the first months of life: New perspectives. British Journal of Nutrition, 88(Suppl 1), S11–S18.Google Scholar
  31. Egerer, K., Feist, E., Rohr, U., Pruss, A., Burmester, G. R., & Dorner, T. (2000). Increased serum soluble CD14, ICAM-1 and E-selectin correlate with disease activity and prognosis in systemic lupus erythematosus. Lupus, 9, 614–621.Google Scholar
  32. Elass, E., Masson, M., Mazurier, J., & Legrand, D. (2002). Lactoferrin inhibits the lipopolysaccharide-induced expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells. Infectious Immunology, 70, 1860–1866.Google Scholar
  33. Endo, S., Inada, K., Kasai, T., Takakuwa, T., Nakae, H., Kikuchi, M., et al. (1994). Soluble CD14 (sCD14) levels in patients with multiple organ failure (MOF). Research Communications in Chemical Pathology and Pharmocology, 84, 17–25.Google Scholar
  34. Espevik, T., Otterlei, M., Skjak-Braek, G., Ryan, L., Wright, S. D., & Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 23, 255–261.Google Scholar
  35. Espinoza, J., Chaiworapongsa, T., Romero, R., Gomez, R., Kim, J. C., Yoshimatsu, J., et al. (2002). Evidence of participation of soluble CD14 in the host response to microbial invasion of the amniotic cavity and intra-amniotic inflammation in term and preterm gestations. Journal of Maternal and Fetal Neonatal Medicine, 12, 304–312.Google Scholar
  36. Falk, P. G., Hooper, L. V., Midtvedt, T., & Gordon, J. I. (1998). Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiology and .Molecular Biology Reviews, 62, 1157–1170.Google Scholar
  37. Fernandez-Real, J. M., Broch, M., Richart, C., Vendrell, J., Lopez-Bermejo, A., & Ricart, W. (2003). CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. Journal of Clinical Endocrinology and Metabolism, 88, 1780–1784.Google Scholar
  38. Ferrero, E., & Goyert, S. M. (1988). Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Research, 16, 4173.Google Scholar
  39. Ferrero, E., Hsieh, C. L., Francke, U., & Goyert, S. M. (1990). CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. Journal of Immunology, 145, 331–336.Google Scholar
  40. Filipp, D., Alizadeh-Khiavi, K., Richardson, C., Palma, A., Paredes, N., Takeuchi, O., et al. (2001). Soluble CD14 enriched in colostrum and milk induces B cell growth and differentiation. Proceedings of the National Academy of Sciences USA, 98, 603–608.Google Scholar
  41. Frey, E. A., Miller, D. S., Jahr, T. G., Sundan, A., Bazil, V., Espevik, T., et al. (1992). Soluble CD14 participates in the response of cells to lipopolysaccharide. Journal of Experimental Medicine, 176, 1665–1671.Google Scholar
  42. Funda, D. P., Tuckova, L., Farre, M. A., Iwase, T., Moro, I., & Tlaskalova-Hogenova, H. (2001). CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: Lipopolysaccharide activation of epithelial cells revisited. Infectious Immunology, 69, 3772–3781.Google Scholar
  43. Fusunyan, R. D., Nanthakumar, N. N., Baldeon, M. E., & Walker, W. A. (2001). Evidence for an innate immune response in the immature human intestine: Toll-like receptors on fetal enterocytes. Pediatric Research, 49, 589–593.Google Scholar
  44. Gallay, P., Jongeneel, C. V., Barras, C., Burnier, M., Baumgartner, J. D., Glauser, M. P., et al. (1993). Short time exposure to lipopolysaccharide is sufficient to activate human monocytes. Journal of Immunology, 150, 5086–5093.Google Scholar
  45. Gardella, C., Hitti, J., Martin, T. R., Ruzinski, J. T., & Eschenbach, D. (2001). Amniotic fluid lipopolysaccharide-binding protein and soluble CD14 as mediators of the inflammatory response in preterm labor. American Journal of Obstetrics and Gynecology, 184, 1241–1248.Google Scholar
  46. Gegner, J. A., Ulevitch, R. J., & Tobias, P. S. (1995). Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14. Journal of Biological Chemistry, 270, 5320–5325.Google Scholar
  47. Goldblum, S. E., Brann, T. W., Ding, X., Pugin, J., & Tobias, P. S. (1994). Lipopolysaccharide (LPS)-binding protein and soluble CD14 function as accessory molecules for LPS-induced changes in endothelial barrier function, in vitro. Journal of Clinical Investigations, 93, 692–702.Google Scholar
  48. Goyert, S. M., & Ferrero, E. (1987). Biochemical analysis of myeloid antigens and cDNA expression of gp 55 (CD14). In A. McMichael (Ed.), Leucocyte Typing III (pp. 613–619). Oxford: Oxford University Press.Google Scholar
  49. Goyert, S. M., Ferrero, E., Rettig, W. J., Yenamandra, A. K., Obata, F., & Le Beau, M. M. (1988). The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science, 239, 497–500.Google Scholar
  50. Grunwald, U., Kruger, C., Westermann, J., Lukowsky, A., Ehlers, M., & Schutt, C. (1992). An enzyme-linked immunosorbent assay for the quantification of solubilized CD14 in biological fluids. Journal of .Immunology Methods, 155, 225–232.Google Scholar
  51. Grunwald, U., Kruger, C., & Schutt, C. (1993). Endotoxin-neutralizing capacity of soluble CD14 is a highly conserved specific function. Circulatory Shock, 39, 220–225.Google Scholar
  52. Grunwald, U., Fan, X., Jack, R. S., Workalemahu, G., Kallies, A., Stelter, F., et al. (1996). Monocytes can phagocytose Gram-negative bacteria by a CD14-dependent mechanism. Journal of Immunology, 157, 4119–4125.Google Scholar
  53. Guerra, S., Carla, L., I, LeVan, T. D., Wright, A. L., Martinez, F. D., & Halonen, M. (2004a). The differential effect of genetic variation on soluble CD14 levels in human plasma and milk. American Journal of Reproductive Immunology, 52, 204–211.Google Scholar
  54. Guerra, S., Lohman, I. C., Halonen, M., Martinez, F. D., & Wright, A. L. (2004b). Reduced interferon gamma production and soluble CD14 levels in early life predict recurrent wheezing by 1 year of age. American Journal of Respiration and Critical Care Medicine, 169, 70–76.Google Scholar
  55. Gupta, D., Kirkland, T. N., Viriyakosol, S., & Dziarski, R. (1996). CD14 is a cell-activating receptor for bacterial peptidoglycan. Journal of Biological Chemistry, 271, 23310–23316.Google Scholar
  56. Hailman, E., Lichenstein, H. S., Wurfel, M. M., Miller, D. S., Johnson, D. A., Kelley, M., et al. (1994). Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. Journal of Experimental Medicine, 179, 269–277.Google Scholar
  57. Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J., & Blum, S. (2000). Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut, 47, 79–87.Google Scholar
  58. Harris, C. L., Vigar, M. A., Rey Nores, J. E., Horejsi, V., Labeta, M. O., & Morgan, B. P. (2001). The lipopolysaccharide co-receptor CD14 is present and functional in seminal plasma and expressed on spermatozoa. Immunology, 104, 317–323.Google Scholar
  59. Hattor, Y., Kasai, K., Akimoto, K., & Thiemermann, C. (1997). Induction of NO synthesis by lipoteichoic acid from Staphylococcus aureus in J774 macrophages: Involvement of a CD14-dependent pathway. Biochemistry and Biophysics Research Community, 233, 375–379.Google Scholar
  60. Haversen, L., Ohlsson, B. G., Hahn-Zoric, M., Hanson, L. A., & Mattsby-Baltzer, I. (2002). Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cell Immunology, 220, 83–95.Google Scholar
  61. Haziot, A., Chen, S., Ferrero, E., Low, M. G., Silber, R., & Goyert, S. M. (1988). The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. Journal of Immunology, 141, 547–552.Google Scholar
  62. Haziot, A., Rong, G. W., Silver, J., & Goyert, S. M. (1993a). Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. Journal of Immunology, 151, 1500–1507.Google Scholar
  63. Haziot, A., Tsuberi, B. Z., & Goyert, S. M. (1993b). Neutrophil CD14: Biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. Journal of Immunology, 150, 5556–5565.Google Scholar
  64. Haziot, A., Rong, G. W., Bazil, V., Silver, J., & Goyert, S. M. (1994). Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood. Journal of Immunology, 152, 5868–5876.Google Scholar
  65. Haziot, A., Rong, G. W., Lin, X. Y., Silver, J., & Goyert, S. M. (1995). Recombinant soluble CD14 prevents mortality in mice treated with endotoxin (lipopolysaccharide). Journal of Immunology, 154, 6529–6532.Google Scholar
  66. Heumann, D., Glauser, M. P., & Calandra, T. (1998). Molecular basis of host-pathogen interaction in septic shock. Current Opinions in Microbiology, 1, 49–55.Google Scholar
  67. Hollak, C. E., Evers, L., Aerts, J. M., & van Oers, M. H. (1997). Elevated levels of M-CSF, sCD14 and IL8 in type 1 Gaucher disease. Blood Cells Molecular Disease, 23, 201–212.Google Scholar
  68. Horneff, G., Sack, U., Kalden, J. R., Emmrich, F., & Burmester, G. R. (1993). Reduction of monocyte-macrophage activation markers upon anti-CD4 treatment. Decreased levels of IL-1, IL-6, neopterin and soluble CD14 in patients with rheumatoid arthritis. Clinical Experiments in Immunology, 91, 207–213.Google Scholar
  69. Hoy, C., Millar, M. R., MacKay, P., Godwin, P. G., Langdale, V., & Levene, M. I. (1990). Quantitative changes in faecal microflora preceding necrotising enterocolitis in premature neonates. Archives of Disease in Childhood, 65, 1057–1059.Google Scholar
  70. Humphries, J. D., & Humphries, M. J. (2007). CD14 is a ligand for the integrin α4β1. FEBS Letters, 581, 757–763.Google Scholar
  71. Ikeda, A., Takata, M., Taniguchi, T., & Sekikawa, K. (1997). Molecular cloning of bovine CD14 gene. Journal of Veterinary Medicine and Science, 59, 715–719.Google Scholar
  72. Ismail, A. S., & Hooper, L. V. (2005). Epithelial cells and their neighbors. IV. Bacterial contributions to intestinal epithelial barrier integrity. American Journal of Physiology: Gastrointestinal and Liver Physiology, 289, G779–G784.Google Scholar
  73. Jack, R. S., Grunwald, U., Stelter, F., Workalemahu, G., & Schutt, C. (1995). Both membrane-bound and soluble forms of CD14 bind to Gram-negative bacteria. European Journal of Immunology, 25, 1436–1441.Google Scholar
  74. Jack, R. S., Fan, X., Bernheiden, M., Rune, G., Ehlers, M., Weber, A., et al. (1997). Lipopolysaccharide-binding protein is required to combat a murine Gram-negative bacterial infection. Nature, 389, 742–745.Google Scholar
  75. Jackson, K. M., & Nazar, A. M. (2006). Breastfeeding, the immune response, and long-term health. Journal of American Osteopath Association, 106, 203–207.Google Scholar
  76. Jacque, B., Stephan, K., Smirnova, I., Kim, B., Gilling, D., & Poltorak, A. (2006). Mice expressing high levels of soluble CD14 retain LPS in the circulation and are resistant to LPS-induced lethality. European Journal of Immunology, 36, 3007–3016.Google Scholar
  77. Jilling, T., Simon, D., Lu, J., Meng, F. J., Li, D., Schy, R., et al. (2006). The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. Journal of Immunology, 177, 3273–3282.Google Scholar
  78. Jones, C. A., Holloway, J. A., Popplewell, E. J., Diaper, N. D., Holloway, J. W., Vance, G. H., et al. (2002). Reduced soluble CD14 levels in amniotic fluid and breast milk are associated with the subsequent development of atopy, eczema, or both. Journal of Allergy and Clinical Immunology, 109, 858–866.Google Scholar
  79. Kaisho, T., & Akira, S. (2006). Toll-like receptor function and signaling. Journal of Allergy and Clinical Immunology, 117, 979–987.Google Scholar
  80. Kirjavainen, P. V., Arvola, T., Salminen, S. J., Isolauri, E. (2002). Aberrant composition of gut microbiota of allergic infants: A target of bifidobacterial therapy at weaning? Gut, 51, 51–55.Google Scholar
  81. Kirkland, T. N., Finley, F., Leturcq, D., Moriarty, A., Lee, J. D., Ulevitch, R. J., et al. (1993). Analysis of lipopolysaccharide binding by CD14. Journal of Biological Chemistry, 268, 24818–24823.Google Scholar
  82. Kitchens, R. L., & Munford, R. S. (1995). Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. Journal of Biological Chemistry, 270, 9904–9910.Google Scholar
  83. Kitchens, R. L., & Thompson, P. A. (2005). Modulatory effects of sCD14 and LBP on LPS-host cell interactions. Journal of Endotoxin Research, 11, 225–229.Google Scholar
  84. Kitchens, R. L., Wolfbauer, G., Albers, J. J., & Munford, R. S. (1999). Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface. Journal of Biological Chemistry, 274, 34116–34122.Google Scholar
  85. Kitchens, R. L., Thompson, P. A., Viriyakosol, S., O'Keefe, G. E., & Munford, R. S. (2001). Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. Journal of Clinical Investigations, 108, 485–493.Google Scholar
  86. Kol, A., Lichtman, A. H., Finberg, R. W., Libby, P., & Kurt-Jones, E. A. (2000). Cutting edge: Heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. Journal of Immunology, 164, 13–17.Google Scholar
  87. Kruger, C., Schutt, C., Obertacke, U., Joka, T., Muller, F. E., Knoller, J., et al. (1991). Serum CD14 levels in polytraumatized and severely burned patients. Clinical Experiments in Immunology, 85, 297–301.Google Scholar
  88. Kull, I., Almqvist, C., Lilja, G., Pershagen, G., & Wickman, M. (2004). Breast-feeding reduces the risk of asthma during the first 4 years of life. Journal of Allergy and Clinical Immunology, 114, 755–760.Google Scholar
  89. Kusunoki, T., & Wright, S. D. (1996). Chemical characteristics of Staphylococcus aureus molecules that have CD14-dependent cell-stimulating activity. Journal of Immunology, 157, 5112–5117.Google Scholar
  90. Kusunoki, T., Hailman, E., Juan, T. S., Lichenstein, H. S., & Wright, S. D. (1995). Molecules from Staphylococcus aureus that bind CD14 and stimulate innate immune responses. Journal of Experimental Medicine, 182, 1673–1682.Google Scholar
  91. Labeta, M. O., Durieux, J. J., Fernandez, N., Herrmann, R., & Ferrara, P. (1993). Release from a human monocyte-like cell line of two different soluble forms of the lipopolysaccharide receptor, CD14. European Journal of Immunology, 23, 2144–2151.Google Scholar
  92. Labeta, M. O., Vidal, K., Nores, J. E., Arias, M., Vita, N., Morgan, B. P., et al. (2000). Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. Journal of Experimental Medicine, 191, 1807–1812.Google Scholar
  93. Laitinen, K., Hoppu, U., Hamalainen, M., Linderborg, K., Moilanen, E., & Isolauri, E. (2006). Breast milk fatty acids may link innate and adaptive immune regulation: Analysis of soluble CD14, prostaglandin E2, and fatty acids. Pediatric Research, 59, 723–727.Google Scholar
  94. Landmann, R., Fisscher, A. E., & Obrecht, J. P. (1992). Interferon-γ and interleukin-4 down-regulate soluble CD14 release in human monocytes and macrophages. Journal of Leukocyte Biology, 52, 323–330.Google Scholar
  95. Landmann, R., Zimmerli, W., Sansano, S., Link, S., Hahn, A., Glauser, M. P., et al. (1995). Increased circulating soluble CD14 is associated with high mortality in Gram-negative septic shock. Journal of Infectious Diseases, 171, 639–644.Google Scholar
  96. Landmann, R., Reber, A. M., Sansano, S., & Zimmerli, W. (1996). Function of soluble CD14 in serum from patients with septic shock. Journal of Infectious Disease, 173, 661–668.Google Scholar
  97. Lauener, R. P., Birchler, T., Adamski, J., Braun-Fahrlander, C., Bufe, A., Herz, U., et al. (2002). Expression of CD14 and Toll-like receptor 2 in farmers' and non-farmers' children. Lancet, 360, 465–466.Google Scholar
  98. Lawrence, R. M. (2005). Host-resistance factors and immunologic significance of human milk. In R. A. Lawrence & R. M. Lawrence (Eds.), Breastfeeding. A Guide for the Medical Profession (pp. 171–214). Philadelphia: Elsevier Mosby.Google Scholar
  99. Lebouder, E., Rey-Nores, J. E., Raby, A. C., Affolter, M., Vidal, K., Thornton, C. A., et al. (2006). Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk. Journal of Immunology, 176, 3742–3752.Google Scholar
  100. Lee, J. W., Paape, M. J., Elsasser, T. H., & Zhao, X. (2003a). Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide. Journal of Dairy Science, 86, 2382–2389.Google Scholar
  101. Lee, J. W., Paape, M. J., Elsasser, T. H., & Zhao, X. (2003b). Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli. Infectious Immunology, 71, 4034–4039.Google Scholar
  102. Lee, J. W., Paape, M. J., & Zhao, X. (2003c). Recombinant bovine soluble CD14 reduces severity of experimental Escherichia coli mastitis in mice. Veterinary Research, 34, 307–316.Google Scholar
  103. LeVan, T. D., Guerra, S., Klimecki, W., Vasquez, M. M., Lohman, I. C., Martinez, F. D., et al. (2006). The impact of CD14 polymorphisms on the development of soluble CD14 levels during infancy. Genes and Immunology, 7, 77–80.Google Scholar
  104. Liu, S., Khemlani, L. S., Shapiro, R. A., Johnson, M. L., Liu, K., Geller, D. A., et al. (1998). Expression of CD14 by hepatocytes: Upregulation by cytokines during endotoxemia. Infectious Immunology, 66, 5089–5098.Google Scholar
  105. Lonnerdal, B. (2003). Nutritional and physiologic significance of human milk proteins. American Journal of Clinical Nutrition, 77, 1537S–1543S.Google Scholar
  106. Loppnow, H., Stelter, F., Schonbeck, U., Schluter, C., Ernst, M., Schutt, C., et al. (1995). Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14. Infectious Immunology, 63, 1020–1026.Google Scholar
  107. Lotz, M., Gutle, D., Walther, S., Menard, S., Bogdan, C., & Hornef, M. W. (2006). Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. Journal of Experimental Medicine, 203, 973–984.Google Scholar
  108. Lutterotti, A., Kuenz, B., Gredler, V., Khalil, M., Ehling, R., Gneiss, C., et al. (2006). Increased serum levels of soluble CD14 indicate stable multiple sclerosis. Journal of Neuroimmunology, 181, 145–149.Google Scholar
  109. Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews Immunology, 4, 478–485.Google Scholar
  110. Maliszewski, C. R., Ball, E. D., Graziano, R. F., & Fanger, M. W. (1985). Isolation and characterization of My23, a myeloid cell-derived antigen reactive with the monoclonal antibody AML-2-23. Journal of Immunology, 135, 1929–1936.Google Scholar
  111. Martin, T. R., Mathison, J. C., Tobias, P. S., Leturcq, D. J., Moriarty, A. M., Maunder, R. J., et al. (1992). Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injured lungs. Journal of Clinical Investigations, 90, 2209–2219.Google Scholar
  112. Mathison, J. C., Tobias, P. S., Wolfson, E., & Ulevitch, R. J. (1992). Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of Gram-negative LPS. Journal of Immunology, 149, 200–206.Google Scholar
  113. Matsuura, K., Ishida, T., Setoguchi, M., Higuchi, Y., Akizuki, S., & Yamamoto, S. (1994). Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. Journal of Experimental Medicine, 179, 1671–1676.Google Scholar
  114. Matzinger, P. (2002). The danger model: A renewed sense of self. Science, 296, 301–305.Google Scholar
  115. Nasu, N., Yoshida, S., Akizuki, S., Higuchi, Y., Setoguchi, M., & Yamamoto, S. (1991). Molecular and physiological properties of murine CD14. International Immunology, 3, 205–213.Google Scholar
  116. Nemchinov, L. G., Paape, M. J., Sohn, E. J., Bannerman, D. D., Zarlenga, D. S., & Hammond, R. W. (2006). Bovine CD14 receptor produced in plants reduces severity of intramammary bacterial infection. FASEB Journal, 20, 1345–1351.Google Scholar
  117. Newman, S. L., Chaturvedi, S., & Klein, B. S. (1995). The WI-1 antigen of Blastomyces dermatitidis yeasts mediates binding to human macrophage CD11b/CD18 (CR3) and CD14. Journal of Immunology, 154, 753–761.Google Scholar
  118. Nockher, W. A., Wigand, R., Schoeppe, W., & Scherberich, J. E. (1994). Elevated levels of soluble CD14 in serum of patients with systemic lupus erythematosus. Clinical Experiments in Immunology, 96, 15–19.Google Scholar
  119. O'Neill, L. A. (2002). Signal transduction pathways activated by the IL-1 receptor/Toll-like receptor superfamily. Current Topics in Microbiology and Immunology, 270, 47–61.Google Scholar
  120. O'Neill, L. A., Dunne, A., Edjeback, M., Gray, P., Jefferies, C., & Wietek, C. (2003). Mal and MyD88: Adapter proteins involved in signal transduction by Toll-like receptors. Journal of Endotoxin Research, 9, 55–59.Google Scholar
  121. Otte, J. M., Cario, E., & Podolsky, D. K. (2004). Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology, 126, 1054–1070.Google Scholar
  122. Pugin, J., Schurer-Maly, C. C., Leturcq, D., Moriarty, A., Ulevitch, R. J., & Tobias, P. S. (1993). Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proceedings of the National Academy of Sciences USA, 90, 2744–2748.Google Scholar
  123. Pugin, J., Heumann, I. D., Tomasz, A., Kravchenko, V. V., Akamatsu, Y., Nishijima, M., et al. (1994). CD14 is a pattern recognition receptor. Immunity, 1, 509–516.Google Scholar
  124. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell, 118, 229–241.Google Scholar
  125. Re, F., & Strominger, J. L. (2001). Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. Journal of Biological Chemistry, 276, 37692–37699.Google Scholar
  126. Read, M. A., Cordle, S. R., Veach, R. A., Carlisle, C. D., & Hawiger, J. (1993). Cell-free pool of CD14 mediates activation of transcription factor NF-κB by lipopolysaccharide in human endothelial cells. Proceedings of the National Academy of Sciences USA, 90, 9887–9891.Google Scholar
  127. Rey Nores, J. E., Bensussan, A., Vita, N., Stelter, F., Arias, M. A., Jones, M., et al. (1999). Soluble CD14 acts as a negative regulator of human T cell activation and function. European Journal of Immunology, 29, 265–276.Google Scholar
  128. Rinne, M., Kalliomaki, M., Arvilommi, H., Salminen, S., & Isolauri, E. (2005). Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. Journal of Pediatrics, 147, 186–191.Google Scholar
  129. Ronnestad, A., Abrahamsen, T. G., Medbo, S., Reigstad, H., Lossius, K., Kaaresen, P. I., et al. (2005). Septicemia in the first week of life in a Norwegian national cohort of extremely premature infants. Pediatrics, 115, e262–e268.Google Scholar
  130. Rothenbacher, D., Weyermann, M., Beermann, C., & Brenner, H. (2005). Breastfeeding, soluble CD14 concentration in breast milk and risk of atopic dermatitis and asthma in early childhood: Birth cohort study. Clinical and Experimental Allergy, 35, 1014–1021.Google Scholar
  131. Sano, H., Chiba, H., Iwaki, D., Sohma, H., Voelker, D. R., & Kuroki, Y. (2000). Surfactant proteins A and D bind CD14 by different mechanisms. Journal of Biological Chemistry, 275, 22442–22451.Google Scholar
  132. Savedra, R., Jr., Delude, R. L., Ingalls, R. R., Fenton, M. J., & Golenbock, D. T. (1996). Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system. Journal of Immunology, 157, 2549–2554.Google Scholar
  133. Schmitz, G., & Orso, E. (2002). CD14 signalling in lipid rafts: New ligands and co-receptors. Current Opinions in Lipidology, 13, 513–521.Google Scholar
  134. Schroder, N. W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., et al. (2003). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. Journal of Biological Chemistry, 278, 15587–15594.Google Scholar
  135. Schumann, R. R., Leong, S. R., Flaggs, G. W., Gray, P. W., Wright, S. D., Mathison, J. C., et al. (1990). Structure and function of lipopolysaccharide binding protein. Science, 249, 1429–1431.Google Scholar
  136. Schumann, R. R., Rietschel, E. T., & Loppnow, H. (1994). The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Medical Microbiology and Immunology (Berlin), 183, 279–297.Google Scholar
  137. Schutt, C., Schilling, T., Grunwald, U., Schonfeld, W., & Kruger, C. (1992). Endotoxin-neutralizing capacity of soluble CD14. Research in Immunology, 143, 71–78.Google Scholar
  138. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., & Kirschning, C. J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. Journal of Biological Chemistry, 274, 17406–17409.Google Scholar
  139. Scott, P., Ma, H., Viriyakosol, S., Terkeltaub, R., & Liu-Bryan, R. (2006). Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. Journal of Immunology, 177, 6370–6378.Google Scholar
  140. Sellati, T. J., Bouis, D. A., Kitchens, R. L., Darveau, R. P., Pugin, J., Ulevitch, R. J., et al. (1998). Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide. Journal of Immunology, 160, 5455–5464.Google Scholar
  141. Setoguchi, M., Nasu, N., Yoshida, S., Higuchi, Y., Akizuki, S., & Yamamoto, S. (1989). Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones. Biochimica et Biophysica Acta, 1008, 213–222.Google Scholar
  142. Simmons, D. L., Tan, S., Tenen, D. G., Nicholson-Weller, A., & Seed, B. (1989). Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood, 73, 284–289.Google Scholar
  143. Soell, M., Lett, E., Holveck, F., Scholler, M., Wachsmann, D., & Klein, J. P. (1995). Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-α release. Journal of Immunology, 154, 851–860.Google Scholar
  144. Sohn, E. J., Paape, M. J., Bannerman, D. D., Connor, E. E., Fetterer, R. H., & Peters, R. R. (2007). Shedding of sCD14 by bovine neutrophils following activation with bacterial lipopolysaccharide results in down-regulation of IL-8. Veterinary Research, 38, 95–108.Google Scholar
  145. Song, P. I., Park, Y. M., Abraham, T., Harten, B., Zivony, A., Neparidze, N., et al. (2002). Human keratinocytes express functional CD14 and Toll-like receptor 4. Journal of Investigations in Dermatology, 119, 424–432.Google Scholar
  146. Steinwender, G., Schimpl, G., Sixl, B., Kerbler, S., Ratschek, M., Kilzer, S., et al. (1996). Effect of early nutritional deprivation and diet on translocation of bacteria from the gastrointestinal tract in the newborn rat. Pediatric Research, 39, 415–420.Google Scholar
  147. Stelter, F., Pfister, M., Bernheiden, M., Jack, R. S., Bufler, P., Engelmann, H., et al. (1996). The myeloid differentiation antigen CD14 is N- and O-glycosylated. Contribution of N-linked glycosylation to different soluble CD14 isoforms. European Journal of Biochemistry, 236, 457–464.Google Scholar
  148. Stelter, F., Witt, S., Furll, B., Jack, R. S., Hartung, T., & Schutt, C. (1998). Different efficacy of soluble CD14 treatment in high- and low-dose LPS models. European Journal of Clinical Investigations, 28, 205–213.Google Scholar
  149. Stoiser, B., Knapp, S., Thalhammer, F., Locker, G. J., Kofler, J., Hollenstein, U., et al. (1998). Time course of immunological markers in patients with the systemic inflammatory response syndrome: Evaluation of sCD14, sVCAM-1, sELAM-1, MIP-1α and TGF-β2. European Journal of Clinical Investigations, 28, 672–678.Google Scholar
  150. Strachan, D. P. (1989). Hay fever, hygiene, and household size. British Medical Journal, 299, 1259–1260.Google Scholar
  151. Sugawara, S., Sugiyama, A., Nemoto, E., Rikiishi, H., & Takada, H. (1998). Heterogeneous expression and release of CD14 by human gingival fibroblasts: Characterization and CD14-mediated interleukin-8 secretion in response to lipopolysaccharide. Infectious Immunology, 66, 3043–3049.Google Scholar
  152. Sugiyama, T., & Wright, S. D. (2001). Soluble CD14 mediates efflux of phospholipids from cells. Journal of Immunology, 166, 826–831.Google Scholar
  153. Takai, N., Kataoka, M., Higuchi, Y., Matsuura, K., & Yamamoto, S. (1997). Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. Journal of Leukocyte Biology, 61, 736–744.Google Scholar
  154. Takeshita, S., Nakatani, K., Tsujimoto, H., Kawamura, Y., Kawase, H., & Sekine, I. (2000). Increased levels of circulating soluble CD14 in Kawasaki disease. Clinical Experiments in Immunology, 119, 376–381.Google Scholar
  155. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., et al. (1999). Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity, 11, 443–451.Google Scholar
  156. Thomas, C. J., Kapoor, M., Sharma, S., Bausinger, H., Zyilan, U., Lipsker, D., et al. (2002). Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Letters, 531, 184–188.Google Scholar
  157. Tobias, P. S., & Ulevitch, R. J. (1993). Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology, 187, 227–232.Google Scholar
  158. Tobias, P. S., Soldau, K., & Ulevitch, R. J. (1986). Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. Journal of Experimental Medicine, 164, 777–793.Google Scholar
  159. Tobias, P. S., Mathison, J., Mintz, D., Lee, J. D., Kravchenko, V., Kato, K., et al. (1992). Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. American Journal of Respiratory Cell and Molecular Biology, 7, 239–245.Google Scholar
  160. Uehara, A., Sugawara, S., Watanabe, K., Echigo, S., Sato, M., Yamaguchi, T., et al. (2003). Constitutive expression of a bacterial pattern recognition receptor, CD14, in human salivary glands and secretion as a soluble form in saliva. Clinical and Diagnostic Laboratory Immunology, 10, 286–292.Google Scholar
  161. van Saene, H. K., Taylor, N., Donnell, S. C., Glynn, J., Magnall, V. L., Okada, Y., et al. (2003). Gut overgrowth with abnormal flora: The missing link in parenteral nutrition-related sepsis in surgical neonates. European Journal of Clinical Nutrition, 57, 548–553.Google Scholar
  162. Vangroenweghe, F., Rainard, P., Paape, M., Duchateau, L., & Burvenich, C. (2004). Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. Journal of Dairy Science, 87, 4132–4144.Google Scholar
  163. Verhasselt, V., Buelens, C., Willems, F., De Groote, D., Haeffner-Cavaillon, N., & Goldman, M. (1997). Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: Evidence for a soluble CD14-dependent pathway. Journal of Immunology, 158, 2919–2925.Google Scholar
  164. Vidal, K., Labeta, M. O., Schiffrin, E. J., & Donnet-Hughes, A. (2001). Soluble CD14 in human breast milk and its role in innate immune responses. Acta Odontologica Scandinavica, 59, 330–334.Google Scholar
  165. Vidal, K., Donnet-Hughes, A., & Granato, D. (2002). Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and Gram-negative bacteria. Infectious Immunology, 70, 2057–2064.Google Scholar
  166. Vita, N., Lefort, S., Sozzani, P., Reeb, R., Richards, S., Borysiewicz, L. K., et al. (1997). Detection and biochemical characteristics of the receptor for complexes of soluble CD14 and bacterial lipopolysaccharide. Journal of Immunology, 158, 3457–3462.Google Scholar
  167. Watanabe, A., Takeshita, A., Kitano, S., & Hanazawa, S. (1996). CD14-mediated signal pathway of Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Infectious Immunology, 64, 4488–4494.Google Scholar
  168. Weidemann, B., Brade, H., Rietschel, E. T., Dziarski, R., Bazil, V., Kusumoto, S., et al. (1994). Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infectious Immunology, 62, 4709–4715.Google Scholar
  169. Weidemann, B., Schletter, J., Dziarski, R., Kusumoto, S., Stelter, F., Rietschel, E. T., et al. (1997). Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes. Infectious Immunology, 65, 858–864.Google Scholar
  170. Wooten, R. M., Morrison, T. B., Weis, J. H., Wright, S. D., Thieringer, R., & Weis, J. J. (1998). The role of CD14 in signaling mediated by outer membrane lipoproteins of Borrelia burgdorferi. Journal of Immunology, 160, 5485–5492.Google Scholar
  171. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., & Mathison, J. C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249, 1431–1433.Google Scholar
  172. Wuthrich, B., Kagi, M. K., & Joller-Jemelka, H. (1992). Soluble CD14 but not interleukin-6 is a new marker for clinical activity in atopic dermatitis. Archives in Dermatology Research, 284, 339–342.Google Scholar
  173. Yaegashi, Y., Shirakawa, K., Sato, N., Suzuki, Y., Kojika, M., Imai, S., et al. (2005). Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. Journal of Infectious Chemotherapy, 11, 234–238.Google Scholar
  174. Yu, B., Hailman, E., & Wright, S. D. (1997). Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids. Journal of Clinical Investigations, 99, 315–324.Google Scholar
  175. Yu, S., Nakashima, N., Xu, B. H., Matsuda, T., Izumihara, A., Sunahara, N., et al. (1998). Pathological significance of elevated soluble CD14 production in rheumatoid arthritis: In the presence of soluble CD14, lipopolysaccharides at low concentrations activate RA synovial fibroblasts. Rheumatology International, 17, 237–243.Google Scholar
  176. Zalai, C. V., Kolodziejczyk, M. D., Pilarski, L., Christov, A., Nation, P. N., Lundstrom-Hobman, M., et al. (2001). Increased circulating monocyte activation in patients with unstable coronary syndromes. Journal of the American College of Cardiology, 38, 1340–1347.Google Scholar
  177. Zdolsek, H. A., & Jenmalm, M. C. (2004). Reduced levels of soluble CD14 in atopic children. Clinical Experiments in Allergy, 34, 532–539.Google Scholar
  178. Zhang, Y., Doerfler, M., Lee, T. C., Guillemin, B., & Rom, W. N. (1993). Mechanisms of stimulation of interleukin-1β and tumor necrosis factor-α by Mycobacterium tuberculosis components. Journal of Clinical Investigations, 91, 2076–2083.Google Scholar
  179. Zoetendal, E. G., Akkermans, A. D., & De Vos, W. M. (1998). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology, 64, 3854–3859.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Karine Vidal
    • 1
  • Anne Donnet-Hughes
  1. 1.Nestlé Research Center, Nestec Ltd, Vers-Chez-Les-BlancSwitzerland

Personalised recommendations