Lipophilic Microconstituents of Milk

  • Antonella Baldi
  • Luciano Pinotti
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)


Milk has long been recognized as a source of macro- and micronutrients, immunological components, and biologically active substances, which not only allow growth but also promote health in mammalian newborns. Many milk lipids, lipid-soluble substances, and their digested products are bioactive, including vitamins and vitamin-like substances. Vitamins A, E, D, and K and carotenoids are known as highly lipophilic food microconstituents (HLFMs), and all occur in milk. HLFMs also include phytosterols, which, although they are not vitamins, are nevertheless biologically active and present in milk. Fat-soluble micronutrients, including fat-soluble vitamins, are embedded in the milk fat fraction, and this has important implications for their bioaccessibility and bioavailability from milk. In fact, the fat component of milk is an effective delivery system for highly lipophilic microconstituents. The vitamin content of animal products can be enhanced by increasing the feed content of synthetic or natural vitamins or precursors. An advantage of augmenting milk microconstituents by animal nutrition rather than milk fortification is that it helps safeguard animal health, which is a primary factor in determining the quality, safety, and wholesomeness of animal-origin foods for human consumption. The milk fat delivery system offers numerous possibilities for exploitation by nutritionists. For example, the payload could consist of enhanced levels of several micronutrients, opening possibilities for synergic effects that are as yet incompletely understood.


Bovine Milk Somatic Cell Count Milk Lipid Bovine Mammary Epithelial Cell Plant Stanol Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, R. D., & Laven, R. A. (2001). Vitamin E for milk production in dairy cows: A review. Nutrition Abstracts and Reviews, Series B: Livestock Feeds and Feeding, 71, 43R–51R.Google Scholar
  2. Atwal, A. S., Hidiroglou, M., Kramer, J. K. G., & Binns, M. R. (1990). Effects of feeding α-tocopherol and calcium salts of fatty acids on vitamin E and fatty acid composition of cow's milk. Journal of Dairy Science, 73, 2832–2841.Google Scholar
  3. Azzi, A., Breyer, I., Feher, M., Pastori, M., Ricciarelli, R., Spycher, S., Staffieri, M., Stocker, A., Zimmer, S., & Zingg, J.-M. (2000). Specific cellular responses to α-tocopherol. Journal of Nutrition, 130, 1649–1652.Google Scholar
  4. Baldi, A. (2005). Vitamin E in dairy cows. Livestock Production Science, 98, 117–122.CrossRefGoogle Scholar
  5. Baldi, A., Bontempo, V., Cheli, F., Carli, S., Sgoifo Rossi, C., & Dell’Orto, V. (1997). Relative bioavailability of vitamin E in dairy cows following intraruminal administration of three different preparations of DL-α-tocopheryl acetate. Veterinary Research, 28, 512–524.Google Scholar
  6. Baldi, A., Savoini, G., Pinotti, L., Monfardini, E., Cheli, F., & Dell’Orto, V. (2000). Effects of vitamin E and different energy sources on vitamin E status, milk quality and reproduction in transition cows. Journal of Veterinary Medicine Series A, 47, 599–608.CrossRefGoogle Scholar
  7. Baldi, A., Losio, M. N., Cheli, F., Rebucci, R., Sangalli, L., Fusi, E., Bertasi, B., Pavoni, E., Carli, S., & Politis, I. (2004). Evaluation of the protective effects of α-tocopherol and retinol against ochratoxin A cytotoxicity. British Journal of Nutrition, 91, 507–512.CrossRefGoogle Scholar
  8. Baldi, A., Pinotti, L., & Fusi, E. (2006). Influence of antioxidants on ruminant health. Feed Compounder, 26, 19–25.Google Scholar
  9. Bauman, D. E., Lock, A. L., Corl, B. A., Ip, C., Salter, A. M., & Parodi, P. W. (2006). Milk fatty acids and human health: Potential role of conjugated linoleic acid and trans fatty acids. In K. Sejrsen, T. Hvelplund, & M. O. Nielsen (Eds.), Ruminant Physiology. Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (pp. 529–561). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  10. Beitz, D. C. (2005). Contributions of animal products to healthy diets. In Proceedings 2005 Cornell Nutrition Conference for Feed Manufacture (pp. 117–126). Ithaca, NY: Cornell University Press.Google Scholar
  11. Belitz, H. D., Grosch, W., & Schieberle, P. (2004). Vitamins. In M. M. Burghagen (Ed.),Food Chemistry (pp. 409–426). Berlin: Springer.Google Scholar
  12. Bell, J. A., Griinari, J. M., & Kennelly, J. J. (2006). Effect of safflower oil, flaxseed oil, monensin, and vitamin E on concentration of conjugated linoleic acid in bovine milk fat. Journal of Dairy Science, 89, 733–748.Google Scholar
  13. Blomhoff, R., & Blomhoff, H. K. (2006). Overview of retinoid metabolism and function. Journal of Neurobiology, 66, 606–630.CrossRefGoogle Scholar
  14. Blum, J. W., Hadorn, U., Sallmann, H. P., & Schuep, W. (1997). Delaying colostrum intake by one day impairs plasma lipid, essential fatty acid, carotene, retinol and α-tocopherol status in neonatal calves. Journal of Nutrition, 127, 2024–2029.Google Scholar
  15. Bontempo, V., Baldi, A., Cheli, F., Fantuz, F., Politis, I., Carli, S., & Dell'Orto, V. (2000). Kinetic behavior of three preparations of α-tocopherol after oral administration to postpubertal heifers. American Journal of Veterinary Research, 61, 589–593.CrossRefGoogle Scholar
  16. Borel, P. (2003). Factors affecting absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clinical Chemistry Laboratory Medicine, 41, 979–994.CrossRefGoogle Scholar
  17. Brewington, C. R., Caress, E. A., & Schwartz, D. (1970). Isolation and identification of new constituents in milk fat. Journal of Lipid Research, 11, 355–361.Google Scholar
  18. Brigelius-Flohé, R., Kelly, F. J., Salonen, J. T., Neuzil, J., Zingg, J. M., & Azzi, A. (2002). The European perspective on vitamin E: Current knowledge and future research. American Journal of Clinical Nutrition, 76, 703–716.Google Scholar
  19. Burton, G. W. (1994). Vitamin E: Molecular and biological function. Proceedings of the Nutrition Society, 53, 251–262.CrossRefGoogle Scholar
  20. Burton, G. W., Traber, M. G., Acuff, R. V., Walters, D. N., Kayden, H., Hughes, L., & Ingold, K. U. (1998). Human plasma and tissue α-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E. American Journal of Clinical Nutrition, 67, 669–684.Google Scholar
  21. Calvo, M. S., Whiting, S. J., & Barton, C. N. (2004). Vitamin D fortification in the United States and Canada: Current status and data needs. American Journal of Clinical Nutrition, 80, 1710S–1716S.Google Scholar
  22. Charmley, E., & Nicholson, J. W. G. (1994). Influence of dietary fat source on oxidative stability and fatty acid composition of milk from cows receiving a low or high level of dietary vitamin E. Canadian Journal of Animal Science, 74, 657–664.Google Scholar
  23. Charmley, E., Nicholson, J. W. G., & Zee, J. A. (1993). Effect of supplemental vitamin E and selenium in the diet on vitamin E and selenium levels and control of oxidized flavor in milk from Holstein cows. Canadian Journal of Animal Science, 73, 453–457.Google Scholar
  24. Cheli, F., Politis, I., Rossi, L., Fusi, E., & Baldi, A. (2003). Effects of retinoids on proliferation and plasminogen activator expression in a bovine mammary epithelial cell line. Journal of Dairy Research, 70, 367–372.CrossRefGoogle Scholar
  25. Chew, B. P., & Park, J. S. (2004). Carotenoid action on immune system. Journal of Nutrition, 134, 257–261.Google Scholar
  26. Chilliard, Y., Ferlay, A., & Doreau, M. (2001). Effect of different types of forages, animal fat or marine oils in cow’s diet on milk secretion and composition, especially conjugated linoleic acid (CLA) and polyunsatured fatty acids. Livestock Production Science, 70, 31–48.CrossRefGoogle Scholar
  27. Clifton, P. M., Noakes, M., Sullivan, D., Erichsen, N., Ross, D., Annison, G., Fassoulakis, A., Cehun, M., & Nestel, P. (2004). Cholesterol-lowering effects of plant sterol esters differ in milk, yoghurt, bread and cereal. European Journal of Clinical Nutrition, 58, 503–509.CrossRefGoogle Scholar
  28. Debier, C., & Larondelle, Y. (2005). Vitamins A and E: Metabolism, roles and transfer to offspring. British Journal of Nutrition, 93, 153–174.CrossRefGoogle Scholar
  29. Debier, C., Pottier, J., Goffe, C., & Larondelle, Y. (2005). Present knowledge and unexpected behaviours of vitamins A and E in colostrum and milk. Livestock Production Science, 98, 135–147.CrossRefGoogle Scholar
  30. Durand, D., Scislowski, V., Chilliard, Y., Gruffat, D., & Bauchart, D. (2005). High fat rations and lipid peroxidation in ruminants; consequences on animal health and quality of products. In J. F. Hocquette & S. Gigli (Eds.), Indicators of Milk and Beef Quality (pp. 137–150). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  31. German, J. B., & Dillard, C. J. (2006). Composition, structure and absorption of milk lipids: A source of energy, fat-soluble nutrients and bioactive molecules. Critical Reviews in Food Science and Nutrition, 46, 57–92.CrossRefGoogle Scholar
  32. Goudjil, H., Torrado, S., Fontecha, J., Martínez-Castro, I., Fraga, J. M., & Juárez, M. (2003). Composition of cholesterol and its precursors in ovine milk. Lait, 83, 153–160.CrossRefGoogle Scholar
  33. Gulati, S. K., Cook, L. J., Ashes, J. R., & Scott, T. W. (1978). Effect of feeding protected cholesterol on ruminant milk fat secretion. Lipids, 13, 814–819.CrossRefGoogle Scholar
  34. Gurr, M. I. (1995). The nutritional significance of lipids. In P. F. Fox (Ed.), Lipids (pp. 349–402). London: Chapman & Hall.Google Scholar
  35. Havemose, M. S., Weisbjerg, M. R., Bredie, W. L. P., & Nielsen, J. H. (2004). Influence of feeding different types of roughage on the oxidative stability of milk. International Dairy Journal, 14, 563–570.CrossRefGoogle Scholar
  36. Havemose, M. S., Weisbjerg, M. R., Bredie, W. L. P., Poulsen, H. D., & Nielsen, J. H. (2006). Oxidative stability of milk influenced by fatty acids, antioxidants, and copper derived from feed. Journal of Dairy Science, 89, 1970–1980.Google Scholar
  37. Hayes, K. C., Pronczuk, A., & Perlman, D. (2001). Vitamin E in fortified cow milk uniquely enriches human plasma lipoproteins. American Journal of Clinical Nutrition, 74, 211–218.Google Scholar
  38. Hendy, G. N., Hruska, K. A., Mathew, S., & Goltzman, D. (2006). New insights into mineral and skeletal regulation by active forms of vitamin D. Kidney International, 69, 218–223.CrossRefGoogle Scholar
  39. Herrero, C., Granado, F., Blanco, I., & Olmedilla, B. (2002). Vitamin A and E content in dairy products: Their contribution to the recommended dietary allowances (RDA) for elderly people. Journal of Nutrition, Health & Aging, 6, 57–59.Google Scholar
  40. Herrero, C., Olmedilla, B., Granado, F., & Blanco, I. (2006). Bioavailability of vitamins A and E from whole and vitamin-fortified milks in control subjects. European Journal of Nutrition, 45, 391–398.CrossRefGoogle Scholar
  41. Hidiroglou, M. (1996). Pharmacokinetic profile of plasma tocopherol following intramuscular administration of acetylated alpha-tocopherol to sheep. Journal of Dairy Science, 79, 1027–1030.Google Scholar
  42. Hogan, J. S., Weiss, W. P., Todhunter, D. A., Smith, K. L., & Schoenberger, P. S. (1992). Bovine neutrophil responses to parenteral vitamin E. Journal of Dairy Science, 75, 340–399.Google Scholar
  43. Hogan, J. S., Weiss, W. P., & Smith, K. L. (1993). Role of vitamin E and selenium in host defence against mastitis. Journal of Dairy Science, 76, 2795–2908.Google Scholar
  44. HulShof, P. J. M., van Roekel-Jansen, T., van de Bovenkamp, P., & West, C. E. (2006). Variation in retinol and carotenoid content of milk and milk products in The Netherlands. Journal of Food Composition and Analysis, 19, 67–75.CrossRefGoogle Scholar
  45. Institute of Medicine (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press.Google Scholar
  46. International Dairy Federation (1992). Milk fat and milk fat products. Determination of cholesterol content. Brussels: IDF (FIL-IDF standard no. 159).Google Scholar
  47. Jensen, R. J. (1995). Fat-soluble vitamins in bovine milk. In R. G. Jensen (Ed.), Handbook of Milk Composition (pp. 718–726). San Diego: Academic Press.Google Scholar
  48. Jensen, S. K., & Nielsen, K. N. (1996). Tocopherols, retinol, β-carotene and fatty acids in fat globule membrane and fat globule core in cows' milk. Journal of Dairy Research, 63, 565–574.Google Scholar
  49. Jensen, S. K., Bjørnbak Johannsen, A. K., & Hermansen, J. E. (1999). Quantitative secretion and maximal secretion capacity of retinol, β-carotene and α-tocopherol into cow’s milk. Journal of Dairy Research, 66, 511–522.CrossRefGoogle Scholar
  50. Kaneki, M., Hosoi, T., Ouchi, Y., & Orimo, H. (2006). Pleiotropic actions of vitamin K: Protector of bone health and beyond? Nutrition, 22, 845–852.CrossRefGoogle Scholar
  51. Kaushik, S., Wander, R., Leonard, S., German, B., & Traber, M. G. (2001). Removal of fat from cow’s milk decreases the vitamin E contents of the resulting dairy products. Lipids, 36, 73–78.CrossRefGoogle Scholar
  52. Lamberg-Allardt, C. (2006). Vitamin D in foods and as supplements. Progress in Biophysics and Molecular Biology, 92, 33–38.CrossRefGoogle Scholar
  53. Lauridsen, C., Engel, H., Jensen, S. K., Craig, A. M., & Traber, M. G. (2002). Lactating sows and suckling piglets preferentially incorporate RRR- over all-raca-tocopherol into milk, plasma and tissue. Journal of Nutrition, 132, 1258–1264.Google Scholar
  54. Lindmark-Månsson, H., & Åkesson, B. (2000). Antioxidative factors in milk. British Journal of Nutrition, 84, S103–S110.CrossRefGoogle Scholar
  55. Macias, C., & Schweigert, F. J. (2001). Changes in the concentration of carotenoids, vitamin A, α-tocopherol and total lipids in human milk throughout early lactation. Annals of Nutrition & Metabolism, 45, 82–85.CrossRefGoogle Scholar
  56. Martinez, S., Barbs, C., & Herrera, E. (2002). Uptake of α-tocopherol by the mammary gland but not by white adipose tissue is dependent on lipoprotein lipase activity around parturition and during lactation in the rat. Metabolism, 51, 1444–1451.CrossRefGoogle Scholar
  57. McDowell, L. R. (1989). Vitamins in Animal Nutrition: Comparative Aspects to Human Nutrition, 1st ed. San Diego: Academic Press.Google Scholar
  58. McDowell, L. R. (2006). Vitamin nutrition of livestock animals: Overview from vitamin discovery to today. Canadian Journal of Animal Science, 86, 171–179.Google Scholar
  59. Meglia, G. E., Jensen, S. K., Lauridsen, C., & Persson, W. K. (2006). α-Tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. Journal of Dairy Research, 73, 227–234.CrossRefGoogle Scholar
  60. Mensink, R. P., Ebbing, S., Lindhout, M., Plat, J., & van Heugten, M. M. (2002). Effects of plant stanol esters supplied in low-fat yoghurt on serum lipids and lipoproteins, non-cholesterol sterols and fat soluble antioxidant concentrations. Atherosclerosis, 160, 205–213.CrossRefGoogle Scholar
  61. Meyer, E., Lamote, I., & Burvenich, C. (2005). Retinoids and steroids in bovine mammary gland immunobiology. Livestock Production Science, 98, 33–46.CrossRefGoogle Scholar
  62. Michel, J. J., Chew, B. P., Wong, T. S., Heirman, L. R., & Standaert, F. E. (1994). Modulatory effects of dietary β-carotene on blood and mammary leukocyte function in peripartum dairy cows. Journal of Dairy Science, 77, 1408–1422.Google Scholar
  63. Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 41, 457–500.CrossRefGoogle Scholar
  64. Mulder, H., & Walstra, P. (1974). The Milk Fat Globule. Emulsion Science as Applied to Milk Products and Comparable Foods. Pudoc, Wageningen, and Commonwealth Agricultural Bureaux, Farnham Royal, The Netherlands.Google Scholar
  65. National Research Council (1989). Nutrient Requirements of Dairy Cattle,6th ed. Washington, DC: National Academy Press.Google Scholar
  66. National Research Council (2001). Nutrient Requirements in Dairy Cattle,7th ed. Washington, DC: National Academy Press.Google Scholar
  67. Nicholson, J. W. G., & St-Laurent, A. M. (1991). Effect of forage type and supplemental dietary vitamin E on milk oxidative stability. Canadian Journal of Animal Science, 71, 1181–1186.Google Scholar
  68. Noakes, M., Clifton, P. M., Doornbos, A. M. E., & Trautwein, E. A. (2005). Plant sterol ester-enriched milk and yoghurt effectively reduce serum cholesterol in modestly hypercholesterolemic subjects. European Journal of Nutrition, 44, 214–222.CrossRefGoogle Scholar
  69. Nozière, P., Graulet, B., Lucas, A., Martin, B., Grolier, P., & Doreau, M. (2006a). Carotenoids for ruminants: From forages to dairy products. Animal Feed Science and Technology, 131, 418–450.CrossRefGoogle Scholar
  70. Nozière, P., Grolier, P., Durand, D., Ferlay, A., Pradel, P., & Martin B. (2006b). Variations in carotenoids, fat-soluble micronutrients, and color in cows’ plasma and milk following changes in forage and feeding level. Journal of Dairy Science, 89, 2634–2648.Google Scholar
  71. Ortega, R. M., Palencia, A., & López-Sobaler, A. M. (2006). Improvement of cholesterol levels and reduction of cardiovascular risk via the consumption of phytosterols. British Journal of Nutrition, 96 (Suppl 1), S89–S93.Google Scholar
  72. Patton, S., Kelly, J. J., & Keenan, T. W. (1980). Carotene in bovine milk fat globules: Observations on origin and high content in tissue mitochondria. Lipids, 15, 33–38.CrossRefGoogle Scholar
  73. Politis, I., Hidiroglou, N., Batra, T. R., Gilmore, J. A., Gorewit, R. C., & Scherf, H. (1995). Effects of vitamin E on immune function of dairy cows. American Journal of Veterinary Research, 56, 179–184.Google Scholar
  74. Politis, I., Hidiroglou, N., Cheli, F., & Baldi A. (2001). Effects of vitamin E on urokinase-plasminogen activator receptor expression by bovine neutrophils. American Journal of Veterinary Research, 62, 1934–1938.CrossRefGoogle Scholar
  75. Rombaut, R., & Dewettinck, K. (2006). Properties, analysis and purification of milk polar lipids. International Dairy Journal, 16, 1362–1373.CrossRefGoogle Scholar
  76. Sahlin, A., & House, J. D. (2006). Enhancing the vitamin content of meat and eggs: Implications for the human diet. Canadian Journal of Animal Science, 86, 181–195.Google Scholar
  77. Sen, C. K., Khanna, S., & Roy, S. (2006). Tocotrienols: Vitamin E beyond tocopherols. Life Sciences, 78, 2088–2098.CrossRefGoogle Scholar
  78. Seymour, W. (2002). Vitamin nutrition of dairy cattle. In D. E. Pritchard (Ed.), North Carolina Dairy Nutrition Management Conference Proceedings(pp. 81–102). Raleigh: North Carolina State University.Google Scholar
  79. Smith, K. L., Harrison, J. H., Hancock, D. D., Todhunter, D. A., & Conrad, H. R. (1984). Effect of vitamin E and selenium supplementation on incidence of clinical mastitis and duration of clinical symptoms. Journal of Dairy Science, 67, 1293–1300.CrossRefGoogle Scholar
  80. Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1740, 101–107.CrossRefGoogle Scholar
  81. Stahl, W., Ale-Agha, N., & Polidori, M. C. (2002). Non-antioxidant properties of carotenoids. Journal of Biological Chemistry, 383, 553–558.CrossRefGoogle Scholar
  82. Tomlinson, J. E., Mitchell, G. E., Jr., Bradley, N. W., Tucker, R. E., Boling, J. A., & Schelling, G. T. (1974). Transfer of vitamin A from bovine liver to milk. Journal of Animal Science, 39, 813–817.Google Scholar
  83. Tylavsky, F. A., Cheng, S., Lyytikäinen, A., Viljakainen, H., & Lamberg-Allardt, C. (2006). Strategies to improve vitamin D status in Northern European children: Exploring the merits of vitamin D fortification and supplementation. Journal of Nutrition, 136, 1130–1134.Google Scholar
  84. Van Metre, D. C., & Callan, R. J. (2001). Selenium and vitamin E. The Veterinary Clinics of North America. Food Animal Practice, 7, 373–402.Google Scholar
  85. Volpe, R., Niittynen, L., Korpela, R., Sirtori, C., Bucci, A., Fraone, N., & Pazzucconi, F. (2001). Effects of yogurt enriched with plant sterols on serum lipids in patients with moderate hypercholesterolaemia. British Journal of Nutrition, 86, 233–239.Google Scholar
  86. Walstra, P., & Jenness, R. (1984). Dairy Chemistry and Physics. New York: John Wiley & Sons.Google Scholar
  87. Weber, P. (2001). Vitamin K and bone health. Nutrition, 17, 880–887.CrossRefGoogle Scholar
  88. Weiss, W. P. (2005). Antioxidant nutrients, cow health, and milk quality. In 2005 Penn State Dairy Cattle Nutrition Workshop (pp. 11–18). Grantville, PA: Pennsylvania State University.Google Scholar
  89. Weiss, W. P., & Spears, J. W. (2006). Vitamin and trace mineral effects on immune function of ruminants. In K. Sejrsen, T. Hvelplund, & M. O. Nielsen (Eds.), Ruminant Physiology. Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (pp. 473–496). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  90. Weiss, W. P., & Wyatt, D. J. (2003). Effect of dietary fat and vitamin E on α-tocopherol in milk from dairy cows. Journal of Dairy Science, 86, 3582–3591.Google Scholar
  91. Wolpowitz, D., & Gilchrest, B. (2006). The vitamin D questions: How much do you need and how should you get it? Journal of the American Academy of Dermatology, 54, 301–317.CrossRefGoogle Scholar
  92. Zahar, M., & Smith, D. E. (1995). Vitamin A distribution among fat globule core, fat globule membrane, and serum fraction in milk. Journal of Dairy Science, 78, 498–505.CrossRefGoogle Scholar
  93. Zanker, I. A., Hammon, H. M., & Blum, J. W. (2000). Beta-carotene, retinol and alpha-tocopherol status in calves fed the first colostrum at 0–2, 6–7, 12–13 or 24–25 hours after birth. International Journal for Vitamin and Nutrition Research, 70, 305–310.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Antonella Baldi
    • 1
  • Luciano Pinotti
  1. 1.Department of Veterinary Sciences and Technology for Food SafetyUniversity of MilanItaly

Personalised recommendations