Probiotics, Immunomodulation, and Health Benefits

  • Harsharn Gill
  • Jaya Prasad
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)


Probiotics are defined as live microorganisms that, when administered in adequate amount, confer a health benefit on the host. Amongst the many benefits associated with the consumption of probiotics, modulation of the immune system has received the most attention. Several animal and human studies have provided unequivocal evidence that specific strains of probiotics are able to stimulate as well as regulate several aspects of natural and acquired immune responses. There is also evidence that intake of probiotics is effective in the prevention and/or management of acute gastroenteritis and rotavirus diarrhoea, antibiotic-associated diarrhoea and intestinal inflammatory disorders such as Crohn’s disease and pouchitis, and paediatric atopic disorders. The efficacy of probiotics against bacterial infections and immunological disorders such as adult asthma, cancers, diabetes, and arthritis in humans remains to be proven. Also, major gaps exist in our knowledge about the mechanisms by which probiotics modulate immune function. Optimum dose, frequency and duration of treatment required for different conditions in different population groups also remains to be determined. Different probiotic strains vary in their ability to modulate the immune system and therefore efficacy of each strain needs to be carefully demonstrated through rigorously designed (randomised, doubleblind, placebo-controlled) studies. This chapter provides an over view of the immunomodulatory effects of probiotics in health and disease, and discusses possible mechanisms through which probiotics mediate their disparate effects.


Atopic Dermatitis Lactic Acid Bacterium Treg Cell Probiotic Bacterium Probiotic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aattouri, N.,&Lemonnier, D. (1997). Production of interferon induced by Streptococcus thermophilus: Role of CD4+ and CD8+ lymphocytes. Journal of Nutritional Biochemistry, 8, 25–31.Google Scholar
  2. Ahmed, M., Prasad, J., Gill, H., Stevenson, L.,&Gopal, P. (2007). Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. Journal of Nutrition, Health, and Aging, 11, 26–31.Google Scholar
  3. Arunachalam, K., Gill, H. S.,&Chandra, R. K. (2000). Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). European Journal of Clinical Nutrition, 54, 263–267.Google Scholar
  4. Aso, Y., Akaza, H., Kotake, T., Tsukamoto, T., Imai, K.,&Naito, S. (1995). Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. The BLP Study Group. European Urology, 27(2), 104–109.Google Scholar
  5. Bartram, H. P., Scheppach, W., Gerlach, S., Ruckdeschel, G., Kelber, E.,&Kasper, H. (1994). Does yogurt enriched with Bifidobacterium longum affect colonic microbiology and fecal metabolites in health subjects? American Journal of Clinical Nutrition, 59, 428–432.Google Scholar
  6. Bauer, H., Paronetto, F., Burns, W.,&Einheber, A. (1965). The non-specific enhancement of the immune response by the bacterial flora. Studies in germfree mice. Federation Proceedings.Google Scholar
  7. Benno, Y.,&Mitsuoka, T. (1992). Impact of Bifidobacterium longum on human fecal microflora. Microbiology and Immunology, 36, 683–694.Google Scholar
  8. Bibiloni, R., Fedorak, R. N., Tannock, G. W., Madsen, K. L., Gionchetti, P., Campieri, M., De Simone, C.,&Sartor, R. B. (2005). VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. American Journal of Gastroenterology, 100, 1539–1546.Google Scholar
  9. Bjorksten, B., Sepp, E., Julge, K., Voor, T.,&Mikelsaar, M. (2001). Allergy development and the intestinal microflora during the first year of life. Journal of Allergy and Clinical Immunology, 108, 516–520.Google Scholar
  10. Bonen, D. K.,&Cho, J. H. (2003). The genetics of inflammatory bowel disease. Gastroenterology, 124, 521–536.Google Scholar
  11. Braat, H., van den Brande, J., van Tol, E., Hommes, D., Peppelenbosch, M.,&van Deventer, S. (2004). Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. American Journal of Clinical Nutrition, 80, 1618–1625.Google Scholar
  12. Calcinaro, F., Dionisi, S., Marinaro, M., Candeloro, P., Bonato, V., Marzotti, S., Corneli, R. B., Ferretti, E., Gulino, A., Grasso, F., De Simone, C., Di Mario, U., Falorni, A., Boirivant, M.,&Dotta, F. (2005). Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia, 48, 1565–1575.Google Scholar
  13. Capurso, G., Marignani, M.,&Fave, G. D. (2006). Probiotics and the incidence of colorectal cancer: When evidence is not evident. Digestive and Liver Disease, 38 (Suppl 2), S277–S282.Google Scholar
  14. Chapat, L., Chemin, K., Dubois, B., Bourdet-Sicard, R.,&Kaiserlian, D. (2004). Lactobacillus casei reduces CD8+ T cell-mediated skin inflammation. European Journal of Immunology, 34, 2520–2528.Google Scholar
  15. Chen, R. M., Wu, J. J., Lee, S. C., Huang, A. H.,&Wu, H. M. (1999). Increase of intestinal Bifidobacterium and suppression of coliform bacteria with short-term yogurt ingestion. Journal of Dairy Science, 82(11), 2308–2314.Google Scholar
  16. Chiang, B. L., Sheih, Y. H., Wang, L. H., Liao, C. K.,&Gill, H. S. (2000). Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): Optimization and definition of cellular immune responses. European Journal of Clinical Nutrition, 54, 849–855.Google Scholar
  17. Chouraqui, J. P., Van Egroo, L. D.,&Fichot, M. C. (2004). Acidified milk formula supplemented with Bifidobacterium lactis: Impact on infant diarrhea in residential care settings. Journal of Pediatric Gastroenterology and Nutrition, 38, 288–292.Google Scholar
  18. Christensen, H. R., Frokiaer, H.,&Pestka, J. J. (2002). Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. Journal of Immunology, 168, 171–178.Google Scholar
  19. Ciprandi, G., Tosca, M. A., Milanese, M., Caligo, G.,&Ricca, V. (2004). Cytokines evaluation in nasal lavage of allergic children after Bacillus clausii administration: A pilot study. Pediatric Allergy and Immunology, 15, 148–151.Google Scholar
  20. Ciprandi, G., Vizzaccaro, A., Cirillo, I.,&Tosca, M. A. (2005). Bacillus clausii exerts immuno-modulatory activity in allergic subjects: A pilot study. Allergie und Immunologie (Paris), 37, 129–134.Google Scholar
  21. Crabbe, J. C., Wahlsten, D.,&Dudek, B. C. (1999). Genetics of mouse behavior: Interactions with laboratory environment. Science, 284(5420), 1670–1672.Google Scholar
  22. Crabbe, P. A. (1968). The lymphoid tissue of human gastrointestinal mucous membrane. II. Its role. Presse Medicine, 76, 1875–1878.Google Scholar
  23. Crabbe, P. A., Nash, D. R., Bazin, H., Eyssen, H.,&Heremans, J. F. (1970). Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Laboratory Investigation, 22, 448–457.Google Scholar
  24. Cross, M. L. (2002). Microbes versus microbes: Immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunology and Medical Microbiology, 34, 245–253.Google Scholar
  25. Cross, M. L., Mortensen, R. R., Kudsk, J.,&Gill, H. S. (2002). Dietary intake of Lactobacillus rhamnosus HN001 enhances production of both Th1 and Th2 cytokines in antigen-primed mice. Medical Microbiology and Immunology, 191, 49–53.Google Scholar
  26. Cui, H. H., Chen, C. L., Wang, J. D., Yang, Y. J., Cun, Y., Wu, J. B., Liu, Y. H., Dan, H. L., Jian, Y. T.,&Chen, X. Q. (2004). Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World Journal of Gastroenterology, 10, 1521–1525.Google Scholar
  27. De Simone, C., Salvadori, B. B., Negri, R., Ferrazzi, M., Baldinelli, L.,&Vesely, R. (1986). The adjuvant effect of yogurt on production of gamma interferon by ConA-stimulated human peripheral blood lymphocytes. Nutrition Reports International, 33, 419–433.Google Scholar
  28. De Simone, C., Rosati, E., Moretti, S., et al. (1991). Probiotics and stimulation of the immune response. European Journal of Clinical Nutrition, 45 (Suppl), 32–34.Google Scholar
  29. de Vrese, M., Fenselau, S., Feindt, F., et al. (2001). Einfluss von Probiotika auf die immunantwort auf eine polioschluckimpfung [Effects of probiotics on immune response to polio vaccination]. Proceedings of the German Nutrition Society, 3, 7.Google Scholar
  30. de Vrese, M., Winkler, P., Rautenberg, P., Harder, T., Noah, C., Laue, C., Ott, S., Hampe, J., Schreiber, S., Heller, K.,&Schrezenmeir, J. (2006). Probiotic bacteria reduced duration and severity but not the incidence of common cold episodes in a double blind, randomized, controlled trial. Vaccine, 24, 6670–6674.Google Scholar
  31. Di Giacinto, C., Marinaro, M., Sanchez, M., Strober, W.,&Boirivant, M. (2005). Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing regulatory cells. Journal of Immunology, 174, 3237–3246.Google Scholar
  32. Donnet-Hughes, A., Rochat, F., Serrant, P., et al. (1999). Modulation of nonspecific mechanisms of defense by lactic acid bacteria: Effective dose. Journal of Dairy Science, 82, 863–869.Google Scholar
  33. Drakes, M., Blanchard, T.,&Czinn, S. (2004). Bacterial probiotic modulation of dendritic cells. Infectious Immunology, 72, 3299–3309.Google Scholar
  34. Drasar, B. S. (1974). Some factors associated with geographical variations in the intestinal microflora. Society for Applied Bacteriology Symposium Series, 3, 187–196.Google Scholar
  35. Erickson, K. L.,&Hubbard, N. E. (2000). Probiotic immunomodulation in health and disease. Journal of Nutrition, 130 (2S Suppl), 403S–409S.Google Scholar
  36. Fanaro, S., Chierici, R., Guerrini, P.,&Vigi, V. (2003). Intestinal microflora in early infancy: Composition and development. Acta Paediatrics Supplement, 91, 48–55.Google Scholar
  37. Fang, H., Elina, T., Heikki, A.,&Seppo, S. (2000). Modulation of humoral immune response through probiotic intake. FEMS Immunology and Medical Microbiology, 29, 47–52.Google Scholar
  38. FAO/WHO (2001). Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Cordoba, Argentina, October 1–4, 2001. Available at
  39. Fedorak, R. N.,&Madsen, K. L. (2004). Probiotics and prebiotics in gastrointestinal disorders. Current Opinion in Gastroenterology, 20, 146–155.Google Scholar
  40. Fukushima, Y., Li, S.-T., Hara, H., Terada, A.,&Mitsuoka, T. (1997). Effect of follow-up formula containing bifidobacteria (NAN-BF) on fecal flora and fecal metabolites in healthy children. Bioscience Microflora, 16, 65–72.Google Scholar
  41. Fukushima, Y., Kawata, Y., Hara, H., Mitsuoka, T., et al. (1998). Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. International Journal of Food Microbiology, 42, 39–44.Google Scholar
  42. Furrie, E., Macfarlane, S., Kennedy, A., Cummings, J. H., Walsh, S. V., O'Neil, D. A.,&Macfarlane, G. T. (2005). Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut, 54, 242–249.Google Scholar
  43. Ghosh, S., van Heel, D.,&Playford, R. J. (2004). Probiotics in inflammatory bowel disease: Is it all gut flora modulation? Gut, 53, 620–622.Google Scholar
  44. Gill, H. S. (1998). Stimulation of the immune system by lactic cultures. International Dairy Journal, 8, 535–544.Google Scholar
  45. Gill, H. (2003). Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Practice&Research in Clinical Gastroenterology, 17, 755–773.Google Scholar
  46. Gill, H. S.,&Guarner, F. (2004). Probiotics and human health: A clinical perspective. Postgraduate Medical Journal, 80, 516–526.Google Scholar
  47. Gill, H. S.,&Rutherfurd, K. J. (2001). Immune enhancement conferred by oral delivery of Lactobacillus rhamnosus HN001 in different milk-based substrates. Journal of Dairy Research, 68, 611–616.Google Scholar
  48. Gill, H. S., Cross, M. L., Rutherfurd, K. J.,&Gopal, P. K. (2001a). Dietary probiotic supplementation to enhance cellular immunity in the elderly. British Journal of Biomedical Science, 58, 94–96.Google Scholar
  49. Gill, H. S., Rutherfurd, K. J.,&Cross, M. L. (2001b). Dietary probiotic supplementation enhances natural killer cell activity in the elderly: An investigation of age-related immunological changes. Journal of Clinical Immunology, 21, 264–271.Google Scholar
  50. Gill, H. S,, Rutherfurd, K. J., Cross, M. L.,&Gopal, P. K. (2001c). Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. American Journal of Clinical Nutrition, 74, 833–839.Google Scholar
  51. Gill, H. S., Shu, Q., Lin, H., Rutherfurd, K. J.,&Cross, M. L. (2001d). Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Medical Microbiology and Immunology, 190, 97–104.Google Scholar
  52. Gionchetti, P., Rizzello, F., Venturi, A., Brigidi, P., Matteuzzi, D., Bazzocchi, G., Poggioli, G., Miglioli, M.,&Campieri, M. (2000). Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology, 119, 305–309.Google Scholar
  53. Gionchetti, P., Rizzello, F., Helwig, U., Venturi, A., Lammers, K. M., Brigidi, P., Vitali, B., Poggioli, G., Miglioli, M.,&Campieri, M. (2003). Prophylaxis of pouchitis onset with probiotic therapy: A double-blind, placebo-controlled trial. Gastroenterology,.124, 1202–1209.Google Scholar
  54. Glaister, J. R. (1973). Factors affecting the lymphoid cells in the small intestinal epithelium of the mouse. International Archives of Allergy and Applied Immunology, 45, 719–730.Google Scholar
  55. Goldin, B. R.,&Gorbach, S. L. (1992). Probiotics. The Scientific Basis. New York: Chapman and Hall.Google Scholar
  56. Gopal, P. K., Prasad, J.,&Gill, H. S. (2003). Effect of consumption of Bifidobacterium lactis DR10 and galactooligosaccharides on the microecology of the gastrointestinal tract in human subjects. Nutrition Research, 23, 1313–1328.Google Scholar
  57. Gordon, H. A.,&Bruckner-Kardoss, E. (1961). Effect of the normal microbial flora on various tissue elements of the small intestine. Acta Anatomica (Basel), 44, 210–225.Google Scholar
  58. Gordon, H. A.,&Pesti, L. (1971). The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriology Reviews, 35, 390–429.Google Scholar
  59. Gronlund, M. M., Arvilommi, H., Kero, P., Lehtonen, O. P.,&Isolauri, E. (2000). Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: A prospective follow up study of healthy infants aged 0–6 months. Archives of Disease in Childhood. Fetal and Neonatal Edition, 83, F186–F192.Google Scholar
  60. Guandalini, S., Pensabene, L., Zikri, M. A., Dias, J. A., Casali, L. G., Hoekstra, H., Kolacek, S., Massar, K., Micetic-Turk, D., Papadopoulou, A., de Sousa, J. S., Sandhu, B., Szajewska, H.,&Weizman, Z. (2000). Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: A multicenter European trial. Journal of Pediatric Gastroenterology and Nutrition, 30, 54–60.Google Scholar
  61. Guarner, F.,&Malagelada, J.-R. (2002). Gut flora in health and disease. Lancet, 360, 512–519.Google Scholar
  62. Guarner, F., Bourdet-Sicard, R., Brandtzaeg, P., Gill, H. S., McGuirk, P., van Eden, W., Versalovic, J., Weinstock, J. V.,&Rook, G. A. (2006). Mechanisms of disease: The hygiene hypothesis revisited. National Clinical Practice in Gastroenterology and Hepatology, 3, 275–284.Google Scholar
  63. Habermann, W., Zimmermann, K., Skarabis, H., Kunze, R.,&Rusch, V. (2001). The effect of a bacterial immunostimulant (human Enterococcus faecalis bacteria) on the occurrence of relapse in patients with chronic recurrent bronchitis. Arzneimittelforschung, 51, 931–937.Google Scholar
  64. Halpern, G. M., Vruwink, K. G., Van De Water, J., Keen, C. L.,&Gershwin, M. E. (1991). Influence of long-term yoghurt consumption in young adults. International Journal of Immunotherapy, 7, 205–210.Google Scholar
  65. Hart, A. L., Lammers, K., Brigidi, P., Vitali, B., Rizzello, F., Gionchetti, P., Campieri, M., Kamm, M. A., Knight, S. C.,&Stagg, A. J. (2004). Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut, 53, 1602–1609.Google Scholar
  66. Hatakka, K., Savilahti, E., Ponka, A., Meurman, J. H., Poussa, T., Nase, L., Saxelin, M.,&Korpela, R. (2001). Effect of long term consumption of probiotic milk on infections in children attending day care centres: Double blind, randomised trial. British Medical Journal, 322(7298), 1327.Google Scholar
  67. He, F., Tuomola, E., Arvilommi, H., et al. (2000). Modulation of humoral immune response through probiotic intake. FEMS Immunology and Medical Microbiology, 29, 47–52.Google Scholar
  68. Heyman, M. (2001). Symposium on “dietary influences on mucosal immunity.” How dietary antigens access the mucosal immune system. Proceedings of the Nutrition Society, 60, 419–426.Google Scholar
  69. Hosoda, M., Hashimoto, H., He, F., Morita, H.,&Hosono, A. (1996). Effect of administration of milk fermented with Lactobacillus acidophilus LA-2 on fecal mutagenicity and microflora in the human intestine. Journal of Dairy Science, 79, 745–749.Google Scholar
  70. Ishibashi, N., Yaeshima, T.,&Hayasawa, H. (1997). Bifidobacteria: Their significance in human intestinal health. Malaysian Journal of Nutrition, 3, 149–159.Google Scholar
  71. Isolauri, E., Juntunen, M., Rautanen, T., Sillanaukee, P.,&Koivula, T. (1991). A human Lactobacillus strain (Lactobacillus casei sp GG) promotes recovery from acute diarrhoea in children. Pediatrics, 88, 90–97.Google Scholar
  72. Isolauri, E., Aila, M., Mykkanen, H., Ling, W. H.,&Salminen, S. (1994). Oral bacteriotherapy for viral gastroenteritis. Digestive Diseases and Science, 39, 2595–2600.Google Scholar
  73. Isolauri, E., Joensus, J., Suomalainen, H., Luomala, M.,&Vesikari, T. (1995). Improved immunogenicity of oral DxRRX reabsorbant rotavirus vaccine by Lactobacillus casei GG. Vaccine,13, 310–312.Google Scholar
  74. Isolauri, E., Arvola, T., Sutas, Y., Moilanen, E.,&Salminen, S. (2000). Probiotics in the management of atopic eczema. Clinical and Experimental Allergy, 30, 1604–1610.Google Scholar
  75. Kaila, M., Isolauri, E., Soppi, E., Virtanen, E., Laine, S.,&Arvilommi, H. (1992). Enhancement of the circulating antibody secreting cell response in human diarrhoea by a human Lactobacillus strain. Pediatric Research, 32, 141–144.Google Scholar
  76. Kaila, M., Isolauri, E., Saxelin, M., et al. (1995). Viable versus inactivated Lactobacillus strain GG in acute rotavirus diarrhoea. Archives of Diseases in Childhood, 72, 51–53.Google Scholar
  77. Kalliomaki, M., Salminen, S., Arvilommi, H., Kero, P., Koskinen, P.,&Isolauri, E. (2001). Probiotics in primary prevention of atopic disease: a randomized placebo-controlled trial. Lancet, 357(9262), 1076–1079.Google Scholar
  78. Kalliomaki, M., Salminen, S., Poussa, T., Arvilommi, H.,&Isolauri, E. (2003). Probiotics and prevention of atopic disease: 4-year follow-up of a randomized placebo-controlled trial. Lancet, 361(9372), 1869–1871.Google Scholar
  79. Kelly, D.,&Coutts, A. G. (2000). Early nutrition and the development of immune function in the neonate. Proceedings of the Nutrition Society, 59, 177–185.Google Scholar
  80. Kishi, A., Uno, K., Matsubara, Y., Okuda, C.,&Kishida, T. (1996). Effect of the oral administration of Lactobacillus brevis subsp. coagulans on interferon-a producing capacity in humans. Journal of American College of Nutrition, 15, 408–412.Google Scholar
  81. Kukkonen, K., Savilahti, E., Haahtela, T., Juntunen-Backman, K., Korpela, R., Poussa, T., Tuure, T.,&Kuitunen, M. (2007). Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: A randomized, double-blind, placebo-controlled trial. Journal of Allergy and Clinical Immunology, 119, 192–198.Google Scholar
  82. Laake, K. O., Bjorneklett, A., Aamodt, G., Aabakken, L., Jacobsen, M., Bakka, A.,&Vatn, M. H. (2005). Outcome of four weeks' intervention with probiotics on symptoms and endoscopic appearance after surgical reconstruction with a J-configurated ileal-pouch-anal-anastomosis in ulcerative colitis. Scandinavian Journal of Gastroenterology, 40, 43–51.Google Scholar
  83. Lammers, K. M., Brigidi, P., Vitali, B., Gionchetti, P., Rizzello, F., Caramelli, E., Matteuzzi, D.,&Campieri, M. (2003). Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunology and Medical Microbiology, 38, 165–172.Google Scholar
  84. Lammers, K. M., Vergopoulos, A., Babel, N., Gionchetti, P., Rizzello, F., Morselli, C., Caramelli, E., Fiorentino, M., d'Errico, A., Volk, H. D.,&Campieri, M. (2005). Probiotic therapy in the prevention of pouchitis onset: Decreased interleukin-1β, interleukin-8, and interferon-γ gene expression. Inflammatory Bowel Diseases, 11, 447–454.Google Scholar
  85. Langhendries, J. P., Detry, J., Van Hees, J., Lamboray, J. M., Darimont, J., Mozin, M. J., Secretin, M. C.,&Senterre, J. (1995). Effect of a fermented infant formula containing viable bifidobacteria on the fecal flora composition and pH of healthy full-term infants. Journal of Pediatric Gastroenterology and Nutrition, 21, 177–181.Google Scholar
  86. Larsen, C. N., Nielsen, S., Kaestel, P., Brockmann, E., Bennedsen, M., Christensen, H. R., Eskesen, D. C., Jacobsen, B. L.,&Michaelsen, K. F. (2006). Dose-response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and Lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults. European Journal of Clinical Nutrition, 60, 1284–1293.Google Scholar
  87. Link-Amster, H., Rochat, F., Saudan, K. Y., et al. (1994). Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunology and Medical Microbiology, 10, 55–64.Google Scholar
  88. Lodinova-Zadnikova, R., Cukrowska, B.,&Tlaskalova-Hogenova, H. (2003). Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years). International Archives of Allergy and Immunology, 121, 209–211.Google Scholar
  89. Mahida, Y. R.,&Rolfe, V. E. (2004). Host-bacterial interactions in inflammatory bowel disease. Clinical Science, 107, 331–341.Google Scholar
  90. Majamaa, H., Isolauri, E., Saxelin, M.,&Vesikari, T. (1995). Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. Journal of Pediatric Gastroenterology and Nutrition. 20, 333–338.Google Scholar
  91. Malchow, H. A. (1997). Crohn's disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn's disease? Journal of Clinical Gastroenterology, 25, 653–658.Google Scholar
  92. McCarthy, J., O'Mahony, L., O'Callaghan, L., Sheil, B., Vaughan, E. E., Fitzsimons, N., Fitzgibbon, J., O'Sullivan, G. C., Kiely, B., Collins, J. K.,&Shanahan, F. (2003). Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut, 52, 975–980.Google Scholar
  93. Metchnikoff, E. (1907). The prolongation of life. Revised edition from 1907, translated by Mitchell. London: C. Heinemann; also in (1974) Dairy Science Abstracts, 36, 656.Google Scholar
  94. Miettinen, M., Vuopio-Varkila, J.,&Varkila, K. (1996). Production of human tumour necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infectious Immunology, 64, 5403–5405.Google Scholar
  95. Miettinen, M., Matikainen, S., Vuopio-Varkila, J., Pirhonen, J., Varkila, K., Kurimoto, M.,&Julkunen, I. (1998). Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and γ-interferon production in human peripheral blood mononuclear cells. Infectious Immunology, 66, 6058–6062.Google Scholar
  96. Mikelsaar, M., Mander, R.,&Sepp, E. (1998). Lactic acid microflora in the human microbial ecosystem and its development. In S. Salminen and A. von Wright (Eds.), Lactic Acid Bacteria: Microbiology and Functional Aspects (pp. 279–342), 2nd ed. New York: Marcel Dekker.Google Scholar
  97. Mikes, Z., Ferenicik, M., Jahnova, E., et al. (1995). Hypocholesterolemic and immunostimulatory effects of orally applied Enterococcus faecium M-74 in man. Folia Microbiologica, 40, 639–646.Google Scholar
  98. Mimura, T., Rizzello, F., Helwig, U., Poggioli, G., Schreiber, S., Talbot, I. C., Nicholls, R. J., Gionchetti, P., Campieri, M.,&Kamm, M. A. (2004). Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis . Gut, 53, 108–114.Google Scholar
  99. Mitsuoka, T. (1992). Intestinal flora and aging. Nutrition Reviews, 50, 438–446.Google Scholar
  100. Mitsuoka, T. (1996). Intestinal flora and human health. Asia Pacific Journal of Clinical Nutrition, 5, 2–9.Google Scholar
  101. Moreau, M. C., Ducluzeau, R., Guy-Grand, D.,&Muller, M. C. (1978). Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infectious Immunology, 21, 532–539.Google Scholar
  102. Morita, H., He, F., Kawase, M., Kubota, A., Hiramatsu, M., Kurisaki, J.,&Salminen, S. (2006). Preliminary human study for possible alteration of serum immunoglobulin E production in perennial allergic rhinitis with fermented milk prepared with Lactobacillus gasseri TMC0356. Microbiology and Immunology, 50, 701–706.Google Scholar
  103. Niers, L. E., Timmerman, H. M., Rijkers, G. T., van Bleek, G. M., van Uden, N. O., Knol, E. F.,Google Scholar
  104. Nussler, A. K.,&Thomson, A. W. (1992). Immunomodulatory agents in the laboratory and clinic. Parasitology, 105 (Suppl), S5–S23.Google Scholar
  105. Oberhelman, R., Gilman, R. H., Sheen, P., Taylor, D., Black, R., Cabrera, L., Lescano, A., Mesa, R.,&Madico, G. (1999). A placebo controlled trial of Lactobacillus GG to prevent diarrhoea in undernourished Peruvian children. Journal of Paediatrics, 134, 15–20.Google Scholar
  106. Olivares, M., Paz Diaz-Ropero, M., Gomez, N., Sierra, S., Lara-Villoslada, F., Martin, R., Miguel Rodriguez, J.,&Xaus, J. (2006). Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. Journal of Dairy Research, 73, 492–498.Google Scholar
  107. Ouwehand, A. C. (2007). Antiallergic effects of probiotics. Journal of Nutrition, 137 (Suppl 2), 794S–797S.Google Scholar
  108. Ouwehand, A., Isolauri, E.,&Salminen, S. (2002). The role of the intestinal microflora for the development of the immune system in early childhood. European Journal of Nutrition, 41 (Suppl 1), I32–I37.Google Scholar
  109. Parra, M. D., Martinez de Morentin, B. E., Cobo, J. M., Mateos, A.,&Martinez, J. A. (2004). Daily ingestion of fermented milk containing Lactobacillus casei DN114001 improves innate-defense capacity in healthy middle-aged people. Journal of Physiology and Biochemistry, 60, 85–91.Google Scholar
  110. Pathmakanthan, S., Li, C. K., Cowie, J.,&Hawkey, C. J. (2004). Lactobacillus plantarum 299: Beneficialin vitro immunomodulation in cells extracted from inflamed human colon. Journal of Gastroenterology and Hepatology, 19, 166–173.Google Scholar
  111. Pedone, C., Bernabeu, A., Postaire, E., Bouley, A.,&Reinert, P. (1999). The effect of supplementation with milk fermented by Lactobacilus casei (strain DN-114 001) on acute diarrhoea in children attending day care centres. International Journal of Clinical Practice, 53, 179–184.Google Scholar
  112. Pelto, L., Isolauri, E., Lilius, E. M., Nuutila, J.,&Salminen, S. (1998). Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects . Clinical and Experimental Allergy, 28, 1474–1479.Google Scholar
  113. Pessi, T., Sutas, Y., Hurme, M.,&Isolauri, E. (2000). Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clinical and Experimental Allergy, 30, 1804–1808.Google Scholar
  114. Phuapradit, P., Varavithya, W., Vathanophas, K., Sangchai, R., Podhipak, A., Suthutvoravut, U., Nopchinda, S., Chantraruksa, V.,&Haschke, F. (1999). Reduction of rotavirus infection in children receiving bifidobacteria-supplemented formula. Journal of the Medical Association of Thailand, 82 (Suppl 1), S43–S48.Google Scholar
  115. Prasad, J., Gill, H. S., Smart, J. B.,&Gopal, P. K. (1999). Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal, 8, 993–1002.Google Scholar
  116. Prescott, S. L., Dunstan, J. A., Hale, J., Breckler, L., Lehmann, H., Weston, S.,&Richmond, P. (2005). Clinical effects of probiotics are associated with increased interferon-γ responses in very young children with atopic dermatitis. Clinical and Experimental Allergy, 35, 1557–1564.Google Scholar
  117. Quigley, E. M.,&Flourie, B. (2007). Probiotics and irritable bowel syndrome: A rationale for their use and an assessment of the evidence to date. Neurogastroenterology and Motility, 19, 166–172.Google Scholar
  118. Rachmilewitz, D., Katakura, K., Karmeli, F., Hayashi, T., Reinus, C., Rudensky, B., Akira, S., Takeda, K., Lee, J., Takabayashi, K.,&Raz, E. (2004). Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology, 126, 520–528.Google Scholar
  119. Rafter, J. (2002). Scientific basis of biomarkers and benefits of functional foods for reduction of disease risk: Cancer. British Journal of Nutrition, 88 (Suppl 2), S219–S224.Google Scholar
  120. Rafter, J., Bennett, M., Caderni, G., Clune, Y., Hughes, R., Karlsson, P. C., Klinder, A., O'Riordan, M., O'Sullivan, G. C., Pool-Zobel, B., Rechkemmer, G., Roller, M., Rowland, I., Salvadori, M., Thijs, H., Van Loo, J., Watzl, B.,&Collins, J. K. (2007). Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. American Journal of Clinical Nutrition, 85, 488–496.Google Scholar
  121. Rautava, S., Kalliomaki, M.,&Isolauri, E. (2002). Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. Journal of Allergy and Clinical Immunology, 109, 119–121.Google Scholar
  122. Renz-Polster, H., David, M. R., Buist, A. S., Vollmer, W. M., O'Connor, E. A., Frazier, E. A.,&Wall, M. A. (2005). Caesarean section delivery and the risk of allergic disorders in childhood. Clinical and Experimental Allergy, 35, 1466–1472.Google Scholar
  123. Roach, S.,&Tannock, G. W. (1980). Indigenous bacteria that influence the number of Salmonella typhimurium in the spleen of intravenously challenged mice. Canadian Journal of Microbiology, 26, 408–411.Google Scholar
  124. Roberfroid, M. B. (1998). Prebiotics and synbiotics: Concepts and nutritional properties. British Journal of Nutrition, 80, S197–S202.Google Scholar
  125. Rokka, T., Syvaoja, E. L., Tuomine, J., et al. (1997). Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT milk. Milchwissenschaft, 52, 675–678.Google Scholar
  126. Rook, G. A.,&Brunet, L. R. (2005). Old friends for breakfast. Clinical and Experimental Allergy, 35, 841–842.Google Scholar
  127. Rook, G. A.,&Stanford, J. L. (1998). Give us this day our daily germs. Immunology Today, 19, 113–116.Google Scholar
  128. Rosenfeldt, V., Benfeldt, E., Nielsen, S. D., Michaelsen, K. F., Jeppesen, D. L., Valerius, N. H.,&Paerregaard, A. (2003). Effect of probiotic Lactobacillus strains in children with atopic dermatitis. Journal of Allergy and Clinical Immunology, 111, 389–395.Google Scholar
  129. Saavedra, J. M., Bauman, N. A., Oung, I., Perman, J. A.,&Yolken, R. H. (1994). Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet, 344(8929), 1046–1049.Google Scholar
  130. Sawamura, A., Yamaguchi, Y., Toge, T., et al. (1994). Enhancement of immuno-activities by oral administration of Lactobacillus casei in colorectal cancer patients. Biotherapy, 8, 1567–1572.Google Scholar
  131. Schiffrin, E. J., Rochar, F., Link-Amster, H., et al. (1995). Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. Journal of Dairy Science, 78, 491–497.Google Scholar
  132. Sheih, Y. H., Chiang, B. L., Wang, L. H., Liao, C. K.,&Gill, H. S. (2001). Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. Journal of the American College of Nutrition, 20(2 Suppl), 149–156.Google Scholar
  133. Sheil, B., McCarthy, J., O'Mahony, L., Bennett, M. W., Ryan, P., Fitzgibbon, J. J., Kiely, B., Collins, J. K.,&Shanahan, F. (2004). Is the mucosal route of administration essential for probiotic function? Subcutaneous administration is associated with attenuation of murine colitis and arthritis. Gut, 53, 694–700.Google Scholar
  134. Sheil, B., Shanahan, F.,&O'Mahony, L. (2007). Probiotic effects on inflammatory bowel disease. Journal of Nutrition, 137(3 Suppl 2), 819S–824S.Google Scholar
  135. Shornikova, A. V., Casas, I. A., Isolauri, E., et al. (1997). Lactobacillus reuteri as a therapeutic agent in acute diarrhoea in young children. Journal of Pediatric Gastroenterology and Nutrition, 24, 399–404.Google Scholar
  136. Shu, Q.,&Gill, H. S. (2002). Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20) against Escherichia coli O157:H7 infection in mice. FEMS Immunology and Medical Microbiology, 34, 59–64.Google Scholar
  137. Sistek, D., Kelly, R., Wickens, K., Stanley, T., Fitzharris, P.,&Crane, J. (2006). Is the effect of probiotics on atopic dermatitis confined to food sensitized children? Clinical and Experimental Allergy, 36, 629–633.Google Scholar
  138. Solis Pereyra, B.,&Lemonnier, D. (1991). Induction of 2′-5′ A synthetase activity and interferon in humans by bacteria used in dairy products. European Cytokine Network, 2, 137–140.Google Scholar
  139. Solis Pereyra, B.,&Lemonnier, D. (1993). Induction of human cytokines by bacteria in dairy foods. Nutrition Research, 13, 1127–1140.Google Scholar
  140. Spanhaak, S., Havenaar, R.,&Schaafsma, G. (1998). The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. European Journal of Clinical Nutrition, 52, 899–907.Google Scholar
  141. Sudo, N., Sawamura, S., Tanaka, K., Aiba, Y., Kubo, C.,&Koga, Y. (1997). The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. Journal of Immunology, 159, 1739–1745.Google Scholar
  142. Sullivan, A.,&Nord, C. E. (2006). Probiotic lactobacilli and bacteraemia in Stockholm. Scandinavian Journal of Infectious Disease, 38, 327–331.Google Scholar
  143. Suskovic, J., Kos, B., Goreta, J.,&Matosic, S. (2001). Lactic acid bacteria and Bifidobacteria in synbiotic effect. Food Technology and Biotechnology, 39, 227–235.Google Scholar
  144. Szymanski, H., Chmielarczyk, A., Strus, M., Pejcz, J., Jawien. M., Kochan, P.,&Heczko, P. B. (2006). Colonisation of the gastrointestinal tract by probiotic L. rhamnosus strains in acute diarrhoea in children. Digest of Liver Diseases, 38 (Suppl 2), S274–S276.Google Scholar
  145. Tamura, M., Shikina, T., Morihana, T., Hayama, M., Kajimoto, O., Sakamoto, A., Kajimoto, Y., Watanabe, O., Nonaka, C., Shida, K.,&Nanno, M. (2007). Effects of probiotics on allergic rhinitis induced by Japanese cedar pollen: Randomized double-blind, placebo-controlled clinical trial. International Archives of Allergy and Immunology, 143, 75–82.Google Scholar
  146. Tannock, G. W., Munro, K., Harmsen, H. J. M., Welling, G. W., Smart, J.,&Gopal, P. K. (2000). Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnsous DR20. Applied and Environmental Microbiology, 66, 2578–2588.Google Scholar
  147. Turchet, P., Laurenzano, M., Auboiron, S.,&Antoine, J. M. (2003). Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: A randomised, controlled pilot study. Journal of Nutrition, Health and Aging, 7, 75–77.Google Scholar
  148. Viljanen, M., Savilahti, E., Haahtela, T., Juntunen-Backman, K., Korpela, R., Poussa, T., Tuure, T.,&Kuitunen, M. (2005). Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: A double-blind placebo-controlled trial. Allergy, 60, 494–500.Google Scholar
  149. Weizman, Z., Asli, G.,&Alsheikh, A. (2005). Effect of a probiotic infant formula on infections in child care centers: Comparison of two probiotic agents. Pediatrics, 115, 5–9.Google Scholar
  150. Weston, S., Halbert, A., Richmond, P.,&Prescott, S. L. (2005). Effects of probiotics on atopic dermatitis: A randomised controlled trial. Archives of Diseases in Childhood, 90, 892–897.Google Scholar
  151. Wheeler, J. G., Shema, S. J., Bogle, M. L., et al. (1997). Immune and clinical impact of Lactobacillus acidophilus on asthma. Annals in Allergy, Asthma and Immunology, 79, 229–233.Google Scholar
  152. Winkler, P., De Vrese, M., Laue, C.,,&Schrezenmeir, J. (2005). Effect of dietary supplement containing probiotic bacteria plus vitamins and minerals on common cold infections and cellular immune parameters. International Journal of Clinical Pharmacology and Therapeutics, 43, 318–326.Google Scholar
  153. Woodmansey, E. J., McMurdo, M. E., Macfarlane, G. T.,&Macfarlane, S. (2004). Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in non-antibiotic-treated elderly subjects. Applied and Environmental Microbiology, 70, 6113–6122.Google Scholar
  154. Xiao, J. Z., Kondo, S., Yanagisawa, N., Takahashi, N., Odamaki, T., Iwabuchi, N., Miyaji, K., Iwatsuki, K., Togashi, H., Enomoto, K.,&Enomoto, T. (2006). Probiotics in the treatment of Japanese cedar pollinosis: A double-blind placebo-controlled trial. Clinical and Experimental Allergy, 36, 1425–1435.Google Scholar
  155. Yamazaki, S., Kamimura, H., Momose, H., Kawashima, T.,&Ueda, K. (1982). Protective effect of Bifidobacterium-monoassociation against lethal activity of Escherichia coli. Bifidobacteria Microflora, 1, 55.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Harsharn Gill
    • 1
  • Jaya Prasad
    • 2
  1. 1.Department of Primary IndustriesWerribeeAustralia
  2. 2.School of Molecular Sciences, Victoria UniversityMelbourneAustralia

Personalised recommendations