Manipulation of Milk Fat Composition Through Transgenesis

  • A. L. Van Eenennaam
  • J. F. Medrano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)


Mammary Gland Saturated Fatty Acid Positional Distribution Desaturase Gene Fatty Acid Desaturase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. R., Collier, R. J., Guidry, A. J., Heald, C. W., Jenness, R., Larson, B.,&Tucker, H. A. (1985). Lactation. Ames: Iowa State University Press.Google Scholar
  2. Bauman, D. E., Mather, I. H., Wall, R. J.,&Lock, A. L. (2006). Major advances associated with the biosynthesis of milk. Journal of Dairy Science, 89, 1235–1243.Google Scholar
  3. Borgeson, C. E., de Renobales, M.,&Blomquist, G. J. (1990). Characterization of the delta 12 desaturase in the American cockroach, Periplaneta americana: The nature of the substrate. Biochimica et Biophysica Acta, 1047, 135–140.Google Scholar
  4. Cahoon, E. B., Marillia, E. F., Stecca, K. L., Hall, S. E., Taylor, D. C.,&Kinney, A. J. (2000). Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiology, 124, 243–251.CrossRefGoogle Scholar
  5. Carnielli, V. P., Wattimena, D. J., Luijendijk, I. H., Boerlage, A., Degenhart, H. J.,&Sauer, P. J. (1996). The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatric Research, 40, 169–174.CrossRefGoogle Scholar
  6. Cripps, C., Borgeson, C., Blomquist, G. J.,&de Renobales, M. (1990). The delta 12-desaturase from the house cricket, Acheta domesticus (Orthoptera: Gryllidae): Characterization and form of the substrate. Archives in Biochemistry and Biophysics, 278, 46–51.CrossRefGoogle Scholar
  7. Dircks, L.,&Sul, H. S. (1999). Acyltransferases of de novo glycerophospholipid biosynthesis. Progress in Lipid Research, 38, 461–479.CrossRefGoogle Scholar
  8. German, J. B., Morand, L. Z., Dillard, C. J.,&Xu, R. (1997). Milk fat composition: Targets for alteration of function and nutrition. In R. A. S. Welch, D. J. W. Burns, S. R. Davis, A. I. Popay, and C. G. Prosser (Eds.), Milk Composition, Production and Biotechnology (pp. 35–72). Cambridge, UK: CAB International.Google Scholar
  9. Grigor, M. R. (1980). Structure of milk triacylglycerols of five marsupials and one monotreme—Evidence for an unusual pattern common to marsupials and eutherians but not found in the echidna, a monotreme. Comparative Biochemistry and Physiology B—Biochemistry&Molecular Biology, 65, 427–430.CrossRefGoogle Scholar
  10. Grummer, R. R. (1991). Effect of feed on the composition of milk fat. Journal of Dairy Science, 74, 3244–3257.Google Scholar
  11. Houdebine, L. M. (2005). Use of transgenic animals to improve human health and animal production. Reproduction in Domestic Animals, 40, 269–281.CrossRefGoogle Scholar
  12. Jensen, R. G. (1989). The Lipids of Human Milk. Boca Raton, FL: CRC Press.Google Scholar
  13. Kang, J. X., Wang, J., Wu, L.&Kang, Z. B. (2004). Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature, 427, 504.CrossRefGoogle Scholar
  14. Kang, Z. B., Ge, Y. L., Chen, Z. H., Cluette-Brown, J., Laposata, M., Leaf, A.,&Kang, J. X. (2001). Adenoviral gene transfer of Caenorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proceedings of the National Academy of Sciences USA, 98, 4050–4054.CrossRefGoogle Scholar
  15. Kao, B. T., DePeters, E. J.,&Van Eenennaam, A. L. (2006a). Mice raised on milk transgenically enriched with n-3 PUFA have increased brain docosahexaenoic acid. Lipids, 41, 543–549.CrossRefGoogle Scholar
  16. Kao, B. T., Lewis, K. A., DePeters, E. J.,&Van Eenennaam, A. L. (2006b). Endogenous production and elevated levels of long-chain n-3 fatty acids in the milk of transgenic mice. Journal of Dairy Science, 89, 3195–3201.Google Scholar
  17. Kelder, B., Mukeji, P., Kirchner, S., Hovanec, G., Leonard, A. E., Chuang, L. T., Kopchick, J. J.,&Huang, Y. S. (2001). Expression of fungal desaturase genes in cultured mammalian cells. Molecular and Cellular Biochemistry, 219, 7–11.CrossRefGoogle Scholar
  18. Kennedy, E. P. (1961). Biosynthesis of complex lipids. Federation Proceedings, 20, 934–940.Google Scholar
  19. Kubow, S. (1996). The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis. Journal of Nutritional Biochemistry, 7, 530–541.CrossRefGoogle Scholar
  20. Lai, L. X., Kang, J. X., Li, R. F., Wang, J. D., Witt, W. T., Yong, H. Y., Hao, Y. H., Wax, D. M., Murphy, C. N., Rieke, A., Samuel, M., Linville, M. L., Korte, S. W., Evans, R. W., Starzl, T. E., Prather, R. S.,&Dai, Y. F. (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 24, 435–436.CrossRefGoogle Scholar
  21. Lock, A. L.,&Bauman, D. E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids, 39, 1197–1206.Google Scholar
  22. Melo, E. O., Canavessi, A. M. O., Franco, M. M.,&Rumpf, R. (2007). Animal transgenesis: State of the art and applications. Journal of Applied Genetics, 48, 47–61.Google Scholar
  23. Mistry, D. H.,&Medrano, J. F. (2002). Cloning and localization of the bovine and ovine lysophosphatidic acid acyltransferase (LPAAT) genes that codes for an enzyme involved in triglyceride biosynthesis. Journal of Dairy Science, 85, 28–35.Google Scholar
  24. Morand, L. Z., Morand, J. N., Matson, R.,&German, J. B. (1998a). Effect of insulin and prolactin on acyltransferase activities in MAC-T bovine mammary cells. Journal of Dairy Science, 81, 100–106.Google Scholar
  25. Morand, L. Z., Patil, S., Quasney, M.,&German, J. B. (1998b). Alteration of the fatty acid substrate specificity of lysophosphatidate acyltransferase by site-directed mutagenesis. Biochemical and Biophysical Research Communications, 244, 79–84.CrossRefGoogle Scholar
  26. Morimoto, K. C., Van Eenennaam, A. L., DePeters, E. J.,&Medrano, J. F. (2005). Hot topic: Endogenous production of n-3 and n-6 fatty acids in mammalian cells. Journal of Dairy Science, 88, 1142–1146.Google Scholar
  27. Morris, C. A., Cullen, N. G., Glass, B. C., Hyndman, D. L., Manley, T. R., Hickey, S. M., McEwan, J. C., Pitchford, W. S., Bottema, C. D.,&Lee, M A. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mammalian Genome, 18, 64–74.CrossRefGoogle Scholar
  28. O’Donnell, J. (1989). Milk fat technologies and markets-A summary of the Wisconsin Milk Marketing Board 1988 Milk Fat Roundtable. Journal of Dairy Science, 72, 3109–3115.Google Scholar
  29. Parodi, P. W. (1982). Positional distribution of fatty acids in triglycerides from milk of several species of mammals. Lipids, 17, 437–442.CrossRefGoogle Scholar
  30. Parodi, P. W.,&Griffiths, M. (1983). A comparison of the positional distribution of fatty-acids in milk triglycerides of the extant monotremes platypus (Ornithorhynchus-Anatinus) and echidna (Tachyglossus-Aculeatus). Lipids, 18, 845–847.CrossRefGoogle Scholar
  31. Pereira, S. L., Leonard, A. E.,&Mukerji, P. (2003). Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins, Leukotrienes and Essential Fatty Acids, 68, 97–106.CrossRefGoogle Scholar
  32. Peyou-Ndi, M. M., Watts, J. L.,&Browse, J. (2000). Identification and characterization of an animal Delta(12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 376, 399–408.CrossRefGoogle Scholar
  33. Pintado, B.,&Gutierrez-Adan, A. (1999). Transgenesis in large domestic species: Future development for milk modification. Reproduction Nutrition Development, 39, 535–544.CrossRefGoogle Scholar
  34. Ramirez, M., Amate, L.,&Gil, A. (2001). Absorption and distribution of dietary fatty acids from different sources. Early Human Development, 65 (Suppl), S95-S101.CrossRefGoogle Scholar
  35. Reh, W. A., Maga, E. A., Collette, N. M. B., Moyer, A., Conrad-Brink, J. S., Taylor, S. J., DePeters, S. J., Oppenheim, S., Rowe, J. D., BonDurant, R. H., Anderson, G. B.,&Murray, J. D. (2004). Hot topic: Using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. Journal of Dairy Science, 87, 3510–3514.CrossRefGoogle Scholar
  36. Roberts, B., Ditullio, P., Vitale, J., Hehir, K.,&Gordon, K. (1992). Cloning of the goat beta-casein-encoding gene and expression in transgenic mice. Gene, 121, 255–262.CrossRefGoogle Scholar
  37. Saeki, K., Matsumoto, K., Kinoshita, M., Suzuki, I., Tasaka, Y., Kano, K., Taguchi, Y., Mikami, K., Hirabayashi, M., Kashiwazaki, N., Hosoi, Y., Murata, N.,&Iritani, A. (2004). Functional expression of a Δ12 fatty acid desaturase gene from spinach in transgenic pigs. Proceedings of the National Academy of Sciences USA, 101, 6361–6366.CrossRefGoogle Scholar
  38. Safford, R., de Silva, J., Lucas, C., Windust, J. H., Shedden, J., James, C. M., Sidebottom, C. M., Slabas, A. R., Tombs, M. P.,&Hughes, S. G. (1987). Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase. Biochemistry, 26, 1358–1364.CrossRefGoogle Scholar
  39. Spychalla, J. P., Kinney, A. J.,&Browse, J. (1997). Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proceedings of the National Academy of Sciences USA, 94, 1142–1147.CrossRefGoogle Scholar
  40. Tomarelli, R. M., Meyer, B. J., Weaber, J. R.,&Bernhart, F. W. (1968). Effect of positional distribution on absorption of fatty acids of human milk and infant formulas. Journal of Nutrition, 95, 583.Google Scholar
  41. Voelker, T.,&Kinney, A. J. (2001). Variations in the biosynthesis of seed-storage lipids. Annual Reviews of Plant Physiology and Plant Molecular Biology, 52, 335–361.CrossRefGoogle Scholar
  42. Wall, R. J., Kerr, D. E.,&Bondioli, K. R. (1997). Transgenic dairy cattle: Genetic engineering on a large scale. Journal of Dairy Science, 80, 2213–2224.Google Scholar
  43. Wallis, J. G., Watts, J. L.,&Browse, J. (2002). Polyunsaturated fatty acid synthesis: What will they think of next? Trends in Biochemical Science, 27, 467–473.CrossRefGoogle Scholar
  44. Watts, J. L.,&Browse, J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA, 99, 5854–5859.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. L. Van Eenennaam
    • 1
  • J. F. Medrano
  1. 1.University of California, Davis, Department of Animal ScienceDavis

Personalised recommendations