Advertisement

Trans Fatty Acids and Bioactive Lipids in Ruminant Milk

  • K. J. Shingfield
  • Y. Chilliard
  • V. Toivonen
  • P. Kairenius
  • D. I. Givens
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)

Keywords

Linoleic Acid Conjugate Linoleic Acid Trans Fatty Acid Coronary Heart Disease Risk Conjugate Linoleic Acid Isomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AbuGhazaleh, A. A., Schingoethe, D. J., Hippen, A. R., Kalscheur, K. F., & Whitlock, L. A. (2002). Fatty acid profiles of milk and rumen digesta from cows fed fish oil, extruded soyabeans or their blend. Journal of Dairy Science, 85, 2266–2276.Google Scholar
  2. Adlof, R. O., Duval, S., & Emken, E. A. (2000). Biosynthesis of conjugated linoleic acid in humans. Lipids, 35, 131–135.CrossRefGoogle Scholar
  3. Alonso, L., Fontecha, J., Lozada, L., Fraga, M. J., & Juárez, M. (1999). Fatty acid composition of caprine milk: Major, branched-chain, and trans fatty acids. Journal of Dairy Science, 82, 878–884.Google Scholar
  4. Aro, A., Mannisto, S., Salminen, I., Ovaskainen, M. L., Kataja, V., & Uusitupa, M. (2000). Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutrition and Cancer, 38, 151–157.CrossRefGoogle Scholar
  5. Ascherio, A., Hennekens, C. H., Buring, J. E., Master, C., Stampfer, M. J., & Willett, W. C. (1994). Trans fatty acids intake and risk of myocardial infarction. Circulation, 89, 94–101.Google Scholar
  6. Ascherio, A., Katan, M. B., Stampfer, M. J., & Willett, W. C. (1999a). Trans fatty acids and coronary heart disease. New England Journal of Medicine, 340, 1994–1998.CrossRefGoogle Scholar
  7. Ascheiro, A., Katan, M. B., Zock, P. L., Stampfer, M. J., & Willett, W. C. (1999b). Trans fatty acids and coronary heart disease. Journal of the American Diet Association, 53, 143–157.Google Scholar
  8. Avalli, A., & Contarini, G. (2005). Determination of phospholipids in dairy products by SPE/HPLC/ELSD. Journal of Chromatography A, 1071, 185–190.CrossRefGoogle Scholar
  9. Banni, S., Angioni, E., Murru, E., Carta, G., Melis, M. P., Bauman, D. E., Dong, Y., & Ip, C. (2001). Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland. Nutrition and Cancer, 41, 91–97.CrossRefGoogle Scholar
  10. Bargo, F., Delahoy, J. E., Schroeder, G. F., & Muller, L. D. (2006). Milk fatty acid composition of dairy cows grazing at two pasture allowances and supplemented with different levels and sources of concentrate. Animal Feed Science and Technology, 125, 17–31.CrossRefGoogle Scholar
  11. Bargo, F., Muller, L. D., Delahoy, J. E., & Cassidy, T. W. (2002). Milk response to concentrate supplementation of high producing dairy cows grazing at two pasture allowances. Journal of Dairy Science, 85, 1777–1792.Google Scholar
  12. Bauchart, D., Roy, A., Lorenz, S., Chardigny, J. M., Ferlay, A., Gruffat, D., Sébédio, J.-L., Chilliard, Y., & Durand, D. (2007). Butters varying in trans 18:1 and cis-9, trans-11conjugated linoleic acid modify plasma lipoproteins in the hypercholesterolemic rabbit. Lipids, 42, 123–133.CrossRefGoogle Scholar
  13. Bauman, D. E., & Davis, C. L. (1974). Biosynthesis of milk fat. In B. L. Larson & V. R. Smith (Eds.), Lactation: A Comprehensive Treatise, Vol. 2 (pp. 31–75). London: Academic Press.Google Scholar
  14. Bauman, D. E., & Griinari, J. M. (2003). Nutritional regulation of milk fat synthesis. Annual Review of Nutrition, 23, 203–227.CrossRefGoogle Scholar
  15. Bauman, D. E., Barbano, D. M., Dwyer, D. A., & Griinari, J. M. (2000). Technical note: Production of butter with enhanced conjugated linoleic acid for use in biomedical studies with animal models. Journal of Dairy Science, 83, 2422–2425.Google Scholar
  16. Bauman, D. E., Lock, A. L., Corl, B. A., Ip, C., Salter, A. M., & Parodi, P. M. (2005). Milk fatty acids and human health: Potential role of conjugated linoleic acid and trans fatty acids. In K. Serjrsen, T. Hvelplund, & M. O. Nielsen (Eds.), Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (pp. 529–561). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  17. Baylin, A., Kabagambe, E. K., Ascherio, A., Spiegelman, D., & Campos, H (2003). High 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in Costa Rican adults. Journal of Nutrition, 133, 1186–1191.Google Scholar
  18. Bayourthe, C., Enjalbert, F., & Moncoulon, R. (2000). Effects of different forms of canola oil fatty acids plus canola meal on milk composition and physical properties of butter. Journal of Dairy Science, 83, 690–696.Google Scholar
  19. Bell, J. A., Griinari, J. M., & Kennelly, J. J. (2006). Effect of safflower oil, flaxseed oil, monensin, and vitamin E on concentration of conjugated linoleic acid in bovine milk fat. Journal of Dairy Science, 89, 733–748.Google Scholar
  20. Belobrajdic, D. P., & McIntosh, G. H. (2000). Dietary butyrate inhibits NMU-induced mammary cancer in rats. Nutrition and Cancer, 36, 217–223.CrossRefGoogle Scholar
  21. Beppu, F., Hosokawa, M., Tanaka, L., Kohno, H., Tanaka, T., & Miyashita, K. (2006). Potent inhibitory effect of trans 9, trans 11 isomer of conjugated linoleic acid on the growth of human colon cancer cells. Journal of Nutritional Biochemestry, 17, 830–836.CrossRefGoogle Scholar
  22. Bernard, L., Leroux, C., Bonnet, M., Rouel, J., Martin, P., & Chilliard, Y. (2005a). Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. Journal of Dairy Research, 72, 250–255.CrossRefGoogle Scholar
  23. Bernard, L., Rouel, J., Leroux, C., Ferlay, A., Faulconnier, Y., Legrand, P., & Chilliard, Y. (2005b). Mammary lipid metabolism and milk fatty acid secretion in alpine goats fed vegetable lipids. Journal of Dairy Science, 88, 1478–1489.Google Scholar
  24. Bernard, L., Leroux, C., & Chilliard, Y. (2006). Characterisation and nutritional regulation of the main lipogenic genes in the ruminant lactating mammary gland. In K. Sejrsen, T. Hvelplund, & M. O. Nielsen (Eds.), Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (pp. 295–326). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  25. Berra, B., Colombo, I., Sottocornola, E., & Giacosa, A. (2002). Dietary sphingolipids in colorectal cancer prevention. European Journal of Cancer, 1, 193–197.Google Scholar
  26. Bitman, J., & Wood, D. L. (1990). Changes in milk fat phospholipids during lactation. Journal of Dairy Science, 73, 1208–1216.Google Scholar
  27. Bonanome, A., & Grundy, S. M. (1988). Effect of dietary stearic acid on plasma cholesterol and lipoprotein. New England Journal of Medicine, 318, 1244–1248.CrossRefGoogle Scholar
  28. Brechany, E. Y., & Christie, W. W. (1992). Identification of the saturated oxo fatty acids in cheese. Journal of Dairy Research, 59, 57–64.Google Scholar
  29. Brechany, E. Y., & Christie, W. W. (1994). Identification of the unsaturated oxo fatty acids in cheese. Journal of Dairy Research, 62, 111–115.CrossRefGoogle Scholar
  30. Chajes, V., Lavillonniere, F., Ferrari, P., Jourdan, M. L., Pinault, M., Maillard, V., Sebedio, J.-L., & Bougnoux, P. (2002). Conjugated linoleic acid content in breast adipose tissue is not associated with the relative risk of breast cancer in a population of French patients. Cancer Epidemiology, Biomarkers and Prevention, 11, 672–673.Google Scholar
  31. Chen, Z.-X., & Breitman, T. R. (1994). Tributyrin: A prodrug of butyric acid for potential clinical application in differentiation therapy. Cancer Research, 54, 3494–3499.Google Scholar
  32. Chilliard, Y. (1993). Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: A review. Journal of Dairy Science, 76, 3897–3931.CrossRefGoogle Scholar
  33. Chilliard, Y., & Ferlay, A. (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reproduction Nutrition Development 44, 467–492.CrossRefGoogle Scholar
  34. Chilliard, Y., Doreau, M., Gagliostro, G., & Elmeddah, Y. (1993). Protected (encapsulated or calcium soaps) lipids in dairy cow diets. Effects on production and milk composition. Productions Animales, 6, 139–150.Google Scholar
  35. Chilliard, Y., Ferlay, A., Mansbridge, R. M., & Doreau, M. (2000). Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Annales de Zootechnie, 49, 181–205.CrossRefGoogle Scholar
  36. Chilliard, Y., Ferlay, A., & Doreau, M. (2001). Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock Production Science, 70, 31–48.CrossRefGoogle Scholar
  37. Chilliard, Y., Ferlay, A., Loor, J., Rouel, J., & Martin, B. (2002). Trans and conjugated fatty acids in milk from cows and goats consuming pasture or receiving vegetable oils or seeds. Italian Journal of Animal Science, 1, 243–254.Google Scholar
  38. Chilliard, Y., Ferlay, A., Rouel, J., & Lamberett, G. (2003). A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science, 86, 1751–1770.Google Scholar
  39. Chouinard, P. Y., Levesque, J., Girard, V., & Brisson, G. J. (1997). Dietary soybeans extruded at different temperatures: Milk composition and in situ fatty acid reactions. Journal of Dairy Science, 80, 2913–2924.Google Scholar
  40. Chouinard, P. Y., Corneau, L., Butler, W. R., Chilliard, Y., Drackley, J. K., & Bauman, D. E. (2001). Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. Journal of Dairy Science, 84, 680–690.Google Scholar
  41. Christie, W. W. (1981). The effect of diet and other factors on the lipid composition of ruminant tissues and milk. In W. W. Christie (Ed.), Lipid Metabolism in Ruminant Animals (pp. 193–226). Oxford: Pergamon Press.Google Scholar
  42. Christie, W. W., Noble R. C., & Davies, G. (1987). Phospholipids in milk and dairy-products. Journal of the Society for Dairy Technology, 40, 10–12.CrossRefGoogle Scholar
  43. Clandinin, M. T., Cook, S. L., Konrad, S. D., Goh, Y. K., & French, M. A. (1999). The effect of palmitic acid on lipoprotein cholesterol levels and endogenous cholesterol synthesis in hyperlipidemic subjects. Lipids, 34 (Suppl), S121–S124.CrossRefGoogle Scholar
  44. Clandinin, M. T., Cook, S. L., Konard, S. D., & French, M. A. (2000). The effect of palmitic acid on lipoprotein cholesterol levels. International Journal of Food Science and Nutrition, 51 (Suppl), S61–S71.CrossRefGoogle Scholar
  45. Coakley, M., Johnson, M. C., McGrath, E., Rahman, S., Ross, R. P., Fitzgerald, G. F., Devery, R., & Stanton, C. (2006). Intestinal bifidobacteria that produce trans-9, trans-11 conjugated linoleic acid: A fatty acid with antiproliferative activity against human colon SW480 and HT-29 cancer cells. Nutrition and Cancer, 56, 95–102.CrossRefGoogle Scholar
  46. Collomb, M., & Buhler, T. (2000). Analysis of the fatty acid composition of milk fat. I. Optimization and validation of a high resolution general method. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 91, 306–332.Google Scholar
  47. Collomb, M., Sieber, R., & Bütikofer, U. (2004a). CLA isomers in milk fat from cows fed diets with high levels of unsaturated fatty acids. Lipids, 39, 355–364.CrossRefGoogle Scholar
  48. Collomb, M., Sollberger, H., Bütikofer, U., Sieber, R., Stoll, W., & Schaeren, W. (2004b). Impact of a basal diet of hay and fodder beet supplemented with rapeseed, linseed and sunflowerseed on the fatty acid composition of milk fat. International Dairy Journal, 14, 549–559.CrossRefGoogle Scholar
  49. Collomb, M., Schmid, A., Sieber, R., Wechsler, D., & Ryhänen, E.-L. (2006). Conjugated linoleic acids in milk fat: Variation and physiological effects. International Dairy Journal, 16, 1347–1361.CrossRefGoogle Scholar
  50. Colón-Ramos, U., Baylin, A., & Campos, H. (2006). The relation between trans fatty acid levels and increased risk of myocardial infarction does not hold at lower levels of trans fatty acids in the Costa Rican food supply. Journal of Nutrition, 136, 2887–2892.Google Scholar
  51. Committee on Medical Aspects of Food Policy (1984). Diet and cardiovascular disease. Department of Health and Social Security report on health and social subjects. No. 28. HMSO, London.Google Scholar
  52. Committee on Medical Aspects of Food Policy (1994). Nutritional aspects of cardiovascular disease. Department of Health and Social Security Report on Health and Social Subjects. No. 46. HMSO, London.Google Scholar
  53. Corl, B. A., Baumgard, L. H., Dwyer, D. A., Griinari, J. M., Phillips, B. S., & Bauman, D. E. (2001). The role of Δ-9 desaturase in the production of cis-9, trans-11 CLA. Journal of Nutritional Biochemestry, 12, 622–630.CrossRefGoogle Scholar
  54. Corl, B. A., Baumgard, L. H., Griinari, J. M., Delmonte, P., Morehouse, K. M., Yurawecz, M. P., & Bauman, D. E. (2002). Trans-7, cis-9 CLA is synthesized endogenously by Δ9- desaturase in dairy cows. Lipids, 37, 681–688.CrossRefGoogle Scholar
  55. Corl, B. A., Barbano, D. M., Bauman, D. E., & Ip, C. (2003). Cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. Journal of Nutrition, 133, 2893–2900.Google Scholar
  56. Dannenberger, D., Nuernberg, G., Scollan, N., Schabbel, W., Steinhart, H., Ender, K., & Nuernberg, K. (2004). Effect of diet on the deposition of n-3 fatty acids, conjugated linoleic and C18:1 trans fatty acid isomers in muscle lipids of German Holstein bulls. Journal of Agriculture and Food Chemistry, 52, 6607–6615.CrossRefGoogle Scholar
  57. Dabadie, H., Peuchant, E., Bernard, M., LeRuyet, P., & Mendy, F. (2005). Moderate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventional study. Journal of Nutritional Biochemistry, 16, 375–382.CrossRefGoogle Scholar
  58. Dabadie, H., Motta, C., Peuchant, E., LeRuyet, P., & Mendy, F. (2006). Variations in daily intakes of myristic and alpha-linolenic acids in sn-2 position modify lipid profile and red blood cell membrane fluidity. British Journal of Nutrition, 96, 283–289.CrossRefGoogle Scholar
  59. De La Torre, A., Debiton, E., Durand, D., Chardigny, J. M., Berdeaux, O., Loreau, O., Barthomeuf, C., Bauchart, D., & Gruffat, D. (2005). Conjugated linoleic acid isomers and their conjugated derivatives inhibit growth of human cancer cell lines. Anticancer Research, 25, 3943–3949.Google Scholar
  60. Demeyer, D., & Doreau, M. (1999). Targets and procedures for altering ruminant meat and milk lipids. Proceedings of the Nutrition Society, 58, 593–607.Google Scholar
  61. Desroches, S., Chouinard, P. Y., Galibois, I., Corneau, L., Delisle, J., Lamarche, B., Couture, P., & Bergeron, N. (2005). Lack of effect of dietary conjugated linoleic acids naturally incorporated into butter on the lipid profile and body composition of overweight and obese men. American Journal of Clinical Nutrition, 82, 309–319.Google Scholar
  62. Dewhurst, R. J., Fisher, W. J., Tweed, J. K. S., & Wilkins, R. J. (2003). Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. Journal of Dairy Science, 86, 2598–2611.Google Scholar
  63. Dewhurst, R. J., Shingfield, K. J., Lee, M. R. F., & Scollan, N. D. (2006). Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology, 131, 168–206.CrossRefGoogle Scholar
  64. Dhiman, T. R., Zanten, K. V., & Satter, L. D. (1995). Effect of dietary fat source on fatty acid composition of cow's milk. Journal of the Science of Food and Agriculture, 69, 101–107.CrossRefGoogle Scholar
  65. Dhiman, T. R., Anand, G. R., Satter, L. D., & Pariza, W. (1999). Conjugated linoleic acid content of milk from cows fed different diets. Journal of Dairy Science , 82, 2146–2156.Google Scholar
  66. Dhiman, T. R., Satter, L. D., Pariza, M. W., Galli, M. P., Albright, K., & Tolosa, M. X. (2000). Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. Journal of Dairy Science, 83, 1016–1027.Google Scholar
  67. Doreau, M., & Ferlay, A. (1994). Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology, 45, 379–396.CrossRefGoogle Scholar
  68. Doreau, M., & Poncet, C. (2000). Ruminal biohydrogenation of fatty acids originating from fresh or preserved grass. Reproduction, Nutrition, Development, 40, 201.Google Scholar
  69. Doreau, M., Lee, M. R. F., Ueda, K., & Scollan, N. D. (2005). Métabolisme ruminal et digestibilité des acides gras des fourrages. In12iemes Rencontres Recherches Ruminants, Paris (France), 12, 101–104.Google Scholar
  70. Elgersma, A., Ellen, G., van der Horst, H., Boer, H., Dekker, P. R., & Tamminga, S. (2004). Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Animal Feed Science and Technology, 117, 13–27.CrossRefGoogle Scholar
  71. Elwood, P., Hughes, J., & Fehly, A. (2005). Milk, heart disease and obesity: An examination of the evidence. British Journal of Cardiology, 12, 283–290.Google Scholar
  72. Faulconnier, Y., Arnal, M. A., Patureau Mirand, P., Chardigny, J. M., & Chilliard, Y. (2004). Isomers of conjugated linoleic acid decrease plasma lipids and stimulate adipose tissue lipogenesis without changing adipose weight in post-prandial adult sedentary or trained Wistar rat. Journal of Nutritional Biochemistry, 15, 741–748.CrossRefGoogle Scholar
  73. Ferlay, A., Andrieu, J. P., Pomies, D., Martin-Rosset, W., & Chilliard, Y. (2002). Effet de l'ensilage enrubanné d'herbe de demi montagne sur la composition en acides gras d'intéret nutritionnel du lait de vache. In9iemes Rencontres Recherches Ruminants, Paris (France), 9, 365.Google Scholar
  74. Ferlay, A., Capitan, P., Ollier, A., & Chilliard, Y. (2003). Interactions between nature of forage and oil supplementation on cow milk composition. 3. Effects on kinetics and percentages of milk CLA and trans fatty acids. In Y. van der Honing (Ed.), Abstracts of the 54th Annual Meeting of European Association for Animal Production, Rome, 31 August–3 September 2003 (p. 120). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  75. Ferlay, A., Martin, B., Pradel, P., Coulon, J. B., & Chilliard, Y. (2006). Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds. Journal of Dairy Science, 89, 4026–4041.Google Scholar
  76. Feskens, E. J. M., & Kromhout, D. A. (1990). Habitual dietary intake and glucose tolerance euglycaemic men: The Zutphen Study. International Journal of Endocrinology, 19, 953–959.Google Scholar
  77. Feskens, E. J. M., Virtanen, S. M., Räsänen, L., Tuomilehto, J., Stengard, J., Pekkanen, J., Nissinen, A., & Kromhout, D. A. (1995). 20-Year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care, 18, 1104–1112.CrossRefGoogle Scholar
  78. Fievez, V., Vlaeminck, B., Dhanoa, M. S., & Dewhurst, R. J. (2003). Use of principal component analysis to investigate the origin of heptadecenoic and conjugated linoleic acids in milk. Journal of Dairy Science, 86, 4047–4053.Google Scholar
  79. French, M. A., Sundram, K., & Clandinin, M. T. (2002). Cholesterolaemic effect of palmitic acid in relation to other dietary fatty acids. Asian Pacific Journal of Clinical Nutrition, 11 (Suppl 7), S401–S407.CrossRefGoogle Scholar
  80. Garton, G. A. (1977). Fatty acid metabolism in ruminants. In T. W. Goodwin (Ed.), Biochemistry of Lipids, Vol. 14 (pp. 337–370). Baltimore: University Park Press.Google Scholar
  81. Givens, D. I., & Shingfield, K. J. (2006). Optimising dairy milk fatty acid composition. In C. Williams & J. Buttriss (Eds.), Improving the Fat Content of Foods (pp. 252–280). Cambridge: Woodhead Publishing Ltd.Google Scholar
  82. Gonthier, C., Mustafa, A. F., Ouellet, D. R., Chouinard, P. Y., Berthiaume, R., & Petit, H. R. (2005). Feeding micronized and extruded flaxseed to dairy cows: Effects on blood parameters and milk fatty acid composition. Journal of Dairy Science, 88, 748–756.Google Scholar
  83. Goudjil, H., Fontecha, J., Luna, P., de la Fuente, M. A., Alonso, L., & Juárez, M. (2004). Quantitative characterization of unsaturated and trans fatty acids in ewe’s milk fat. Lait, 84, 473–482.CrossRefGoogle Scholar
  84. Graves, E. L. F., Beaulieu, A. D., & Drackley, J. K. (2007). Factors affecting the concentration of sphingomyelin in bovine milk. Journal of Dairy Science, 90, 706–715.Google Scholar
  85. Griinari, J. M., Dwyer, D. A., McGuire, M. A., Bauman, D. E., Palmquist, D. L., & Nurmela, K. V. (1998). Trans-octadecenoic acids and milk fat depression in lactating dairy cows. Journal of Dairy Science, 81, 1251–1261.Google Scholar
  86. Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V. V., & Bauman, D. E. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. Journal of Nutrition, 130, 2285–2291.Google Scholar
  87. Griinari, J. M., & Bauman, D. E. (1999). Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In M. P. Yurawecz, M. M. Mossoba, J. K. G. Kramer, M. W. Pariza, & G. Nelson (Eds.), Advances in Conjugated Linoleic Acid Research (pp. 180–200). Champaign, IL: AOCS Press.Google Scholar
  88. Gunstone, F. D., Harwood, J. L., & Padley, F. P. (1994). Occurrence and characteristics of oils and fats. In F. D. Padley, F. D. Gunstone, & J. L. Harwood (Eds.), The Lipid Handbook (pp. 47–224). Cambridge: Cambridge University Press.Google Scholar
  89. Ha, J. K., & Lindsay, R. C. (1990). Method for the quantitative analysis of volatile and free branched-chain fatty acids in cheese and milk fat. Journal of Dairy Science, 73, 1988–1999.Google Scholar
  90. Harfoot, C. G., & Hazlewood, G. P. (1997). Lipid metabolism in the rumen. In P. N. Hobson & C. S. Stewart (Eds.), The Rumen Microbial Ecosystem, 2nd ed. (pp. 382–426). London: Blackie Academic & Professional.Google Scholar
  91. Heaney, R. P. (2000). Calcium, dairy products and osteoporosis. Journal of the American College of Nutrition, 19, 83S–99S.Google Scholar
  92. Hodgson, J. M., Wahlqvist, M. L., Boxall, J. A., & Balazs, N. D. (1996). Platelet trans fatty acids in relation to angiographically assessed coronary artery disease. Atherosclerosis, 120, 147–154.CrossRefGoogle Scholar
  93. Hulsof, K. F. A. M., van Erp-Baart, M. A., Anttolainen, M., Becker, W., Church, S. M., Couet, C., Hermann-Kunz, E., Kesteloot, H., Leth, T., Martins, I., Moreiras, O., Moschandreas, J., Pizzoferrato, L., Rimestad, A. H., Thorgeirsdottir, H., van Amelsvoort, J. M. M., Aro, A., Kafatos, A. G., Lanzmann-Petithory, D., & van Poppel, G. (1999). Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study. European Journal of Clinical Nutrition, 53, 143–157.Google Scholar
  94. Ip, C., Chin, S. F., Scimeca, J. A., & Pariza, M. W. (1991). Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Research, 51, 6118–6124.Google Scholar
  95. Ip, C., Singh, M., Thompson, H. J., & Scimeca, J. A. (1994). Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Research, 54, 1212–1215.Google Scholar
  96. Ip, C., Banni, S., Angioni, E., Carta, G., McGinley, J., Thompson, H. J., Barbano, D., & Bauman, D. (1999). Conjugated linoleic acid-enriched butterfat alters mammary gland morphogenesis and reduces cancer risk in rats. Journal of Nutrition, 129, 2135–2142.Google Scholar
  97. Ip, C., Dong, Y., Ip, M. M., Banni, S., Carta, G., Angioni, E., Murru, E., Spada, S., Melis, M. P., & Sæbo, A. (2002). Conjugated linoleic acid isomers and mammary cancer prevention. Nutrition and Cancer, 43, 52–58.CrossRefGoogle Scholar
  98. Jakobsen, M. U., Bysted, A., Andersen, N. L., Heitmann, B. L., Hartkopp, H. B., Leth, T., Overvad, K., & Dyerberg, L. (2006). Intake of ruminant trans fatty acids and risk of coronary heart disease. Atherosclerosis Supplements, 7, 9–11.CrossRefGoogle Scholar
  99. Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85, 295–350.Google Scholar
  100. Jones, E. L., Shingfield, K. J., Kohen, C., Jones, A. K., Lupoli, B., Grandison, A. S., Beever, D. E., Williams, C. M., Calder, P. C., & Yaqoob, P. (2005). Chemical, physical and sensory properties of dairy products enriched with conjugated linoleic acid. Journal of Dairy Science, 88, 2923–2937.Google Scholar
  101. Jurjanz, S., Monteils, V., Juaneda, P., & Laurent, F. (2004). Variations of trans octadecenoic acid in milk fat induced by feeding different starch-based diets to cows. Lipids, 39, 19–24.CrossRefGoogle Scholar
  102. Judd, J. T., Clevidence, B. A., Muesing, R. A., Wittes, J., Sunkin, M. E., & Podczasy, J. J. (1994). Dietary trans fatty acids: Effects on plasma lipids and lipoproteins of healthy men and women. American Journal of Clinical Nutrition, 59, 861–868.Google Scholar
  103. Kalkwarf, H. F., Khoury, J. C., & Lanphear, B. P. (2003). Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in U.S. women. American Journal of Clinical Nutrition, 77, 257–265.Google Scholar
  104. Kalscheur, K. F., Teter, B. B., Piperova, L. S., & Erdman, R. A. (1997). Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. Journal of Dairy Science, 80, 2104–2114.Google Scholar
  105. Kaneda, T. (1991). Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbial Reviews, 55, 288–302.Google Scholar
  106. Katan, M. B., Zock, P. L., & Mensink, R. P. (1995). Dietary oils, serum lipoproteins, and coronary heart disease. American Journal of Clinical Nutrition, 61, 1368S–1373S.Google Scholar
  107. Kay, J. K., Mackle, T. R., Auldist, M. J., Thomson, N. A., & Bauman, D. E. (2004). Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. Journal of Dairy Science, 87, 369–378.Google Scholar
  108. Kelly, M. L., Kolver, E. S., Bauman, D. E., van Amburgh, M. E., & Muller, L. D. (1998). Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows. Journal of Dairy Science, 81, 1630–1636.Google Scholar
  109. Korhonen, H. J. T., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16, 945–960.CrossRefGoogle Scholar
  110. Kraft, J., Collomb, M., Mockel, P., Sieber, R., & Jahreis, G. (2003). Differences in CLA isomer distribution of cow's milk lipids. Lipids, 38, 657–664.CrossRefGoogle Scholar
  111. Kris-Etherton, P. M., Daniels, S. R., Eckel, R. H., Engler, M., Howard, B. V., Krauss, R. M., Lichtenstein, A. H., Sacks, F., St. Jeor, S., & Stampfer, M. (2001) Summary of the scientific conference on dietary fatty acids and cardiovascular health: Conference summary from the nutrition committee of the American Heart Association. Circulation, 103, 1034–1039.Google Scholar
  112. Kritchevsky, D. (2003). Conjugated linoleic acids in experimental atherosclerosis. In J.-L. Sebedio, W. W. Christie, & R. O. Adlof (Eds), Advances in Conjugated Linoleic Acid Research, Vol. 2. (pp. 293–301). Champaign, IL: AOCS Press.Google Scholar
  113. Kromhout, D., Menotti, A., Bloemberg, B., Aravanis, C., Blackburn, H., Buzina, R., Dontas, A. S., Fidanza, F., Giampaoli, S., Jansen, A., Karvonen, M., Katan, M., Nissinen, A., Nedeljkovi, S., Pekkanen, J., Pekkarinen, M., Punsar, S., Räsänen, L., Simic, B., & Toshima, H. (1995). Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: The Seven Countries Study. Preventive Medicine, 24, 308–315.CrossRefGoogle Scholar
  114. Kuzdzal-Savoie, S., & Kuzdzal, W. (1961). Influence de la mise à l'herbe des vaches laitières sur les indices de la matière grasse du beurre et sur les teneurs en différents acides gras polyinsaturés. Annals of Biology, Animal Biochemistry and Biophysiology, 1, 47–69.Google Scholar
  115. Larsson, S. C., Bergkvist, L., & Wolk, A. (2005). High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. American Journal of Clinical Nutrition, 82, 894–900.Google Scholar
  116. Lawson, R. E., Moss, A. R., & Givens, D. I. (2001). The role of dairy products in supplying conjugated linoleic acid to man's diet: A review. Nutrition Research Reviews, 14, 153–172.CrossRefGoogle Scholar
  117. Ledoux, M., Rouzeau A., Bas, P., & Sauvant, D. (2002). Occurrence of trans-C18:1 fatty acid isomers in goat milk: Effect of two dietary regimens. Journal of Dairy Science, 85, 190–197.Google Scholar
  118. Ledoux, M., Chardigny, J. M., Darbois, M., Soustre, Y., Sebedio, J. L., & Laloux, L. (2005). Fatty acid composition of French butters, with special emphasis on conjugated linoleic acid (CLA) isomers. Journal of Food Composition and Analysis, 18, 409–425.CrossRefGoogle Scholar
  119. Lemaitre, R. N., King, I. B., Patterson, R. E., Psaty, B. M., Kestin, M., & Heckbert, S. R. (1998). Assessment of trans-fatty acid intake with a food frequency questionnaire and validation with adipose tissue levels of trans-fatty acids. American Journal of Epidemiology, 148, 1085–1093.Google Scholar
  120. Lemaitre, R. N., King, I. B., Raghunathan, T. E., Pearce, R. M., Weinmann, S., Knopp, R. H., Copass, M. K., Cobb, L. A., & Siscovick, D. S. (2002). Cell membrane trans-fatty acids and the risk of primary cardiac arrest. Circulation, 105, 697–701.CrossRefGoogle Scholar
  121. Lemaitre, R. N., King, I. B., Mozaffarian, D., Sotoodehnia, N., Rea, T. D., Kuller, L. H., Tracy, R. P., & Siscovick, D. S. (2006). Plasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults. Circulation, 114, 209–215.CrossRefGoogle Scholar
  122. Lock, A. L., & Bauman, D. E. (2004). Modifying milk fat composition of diary cows to enhance fatty acids beneficial to human health. Lipids, 39, 1197–1206.CrossRefGoogle Scholar
  123. Lock, A. L., & Garnsworthy, P. C. (2002). Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows’ milk. Animal Science, 74, 163–176.Google Scholar
  124. Lock, A. L., & Garnsworthy, P. C. (2003). Seasonal variation in milk conjugated linoleic acid and Δ-9 desaturase activity in dairy cows. Livestock Production Science, 79, 47–59.CrossRefGoogle Scholar
  125. Lock, A. L., & Shingfield, K. J. (2004). Optimising milk composition. In E. Kebreab, J. Mills, & D. E. Beever (Eds.), UK Dairying: Using Science to Meet Consumers’ Needs (pp. 107–188). Nottingham, UK: Nottingham University Press.Google Scholar
  126. Lock, A. L., Corl, B. A., Barbano, D. M., Bauman, D. E., & Ip, C. (2004). The anticarcinogenic effect of trans-11 18:1 is dependent on its conversion to cis-9, trans-11 CLA by delta 9 desaturase in rats. Journal of Nutrition, 134, 2698–2704.Google Scholar
  127. Lock, A. L., Horne, C. A. M., Bauman, D. E., & Salter, A. M. (2005a). Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. Journal of Nutrition, 135, 1934–1939.Google Scholar
  128. Lock, A. L., Parodi, P. W., & Bauman, D. E. (2005b). The biology of trans fatty acids: Implications for human health and the dairy industry. Australian Journal of Dairy Technology, 60, 134–142.Google Scholar
  129. Loor, J. J., Herbein, J. H., & Polan, C. E. (2002). Trans 18:1 and 18:2 isomers in blood plasma and milk fat of grazing cows fed a grain supplement containing solvent-extracted or mechanically extracted soybean meal. Journal of Dairy Science, 85, 1197–1207.Google Scholar
  130. Loor, J. J., Ueda, K., Ferlay, A., Chilliard, Y., & Doreau, M. (2004). Biohydrogenation duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage: Concentrate ratio and linseed oil in dairy cows. Journal of Dairy Science, 87, 2472–2485.Google Scholar
  131. Loor, J. J., Ferlay, A., Ollier, A., Doreau, M., & Chilliard, Y. (2005a). Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. Journal of Dairy Science, 88, 726–740.Google Scholar
  132. Loor, J. J., Ferlay, A., Ollier, A., Ueda, K., Doreau, M., & Chilliard, Y. (2005b). High-concentrate diets and polyunsaturated oils alter trans and conjugated isomers in bovine rumen, blood, and milk. Journal of Dairy Science, 88, 3986–3999.Google Scholar
  133. Loor, J. J., Ueda, K., Ferlay, A., Chilliard, Y., & Doreau, M. (2005c). Intestinal flow and digestibility of trans fatty acids and conjugated linoleic acids (CLA) in dairy cows fed a high-concentrate diet supplemented with fish oil, linseed oil, sunflower oil. Animal Feed Science and Technology, 119, 203–225.CrossRefGoogle Scholar
  134. Lourenço, M., Vlaeminck, B., Bruinenberg, M., Demeyer, D., & Fievez, V. (2005). Milk fatty acid composition and associated rumen lipolysis and fatty acid hydrogenation when feeding forages from intensively managed or semi-natural grasslands. Animal Research, 54, 471–484.CrossRefGoogle Scholar
  135. Luna, P., Fontecha, J., Juarez, M., & de la Fuente, M. A. (2005). Changes in the milk and cheese fat composition of ewes fed commercial supplements containing linseed with special reference to the CLA content and isomer composition. Lipids, 40, 445–454.CrossRefGoogle Scholar
  136. Mahfouz, M. M., Valicenti, A. J., & Holman, R. T. (1980). Desaturation of isomeric trans-octadecenoic acids by rat liver microsomes. Biochim Biophys Acta, 618, 1–12.Google Scholar
  137. Mauger, F. M., Lichtenstein, A. H., Ausman, L. M., Mensink, R. P., & Katan, M. B. (1990). Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. New England Journal of Medicine, 323, 439–445.CrossRefGoogle Scholar
  138. Mauger, J. F., Lichtenstein, A. H., Ausman, L. M., Jalbert, S. M., Jauhiainen, M., Ehnholm, C., & Lamarche, B. (2003). Effect of different forms of dietary hydrogenated fats on LDL particle size. American Journal of Clinical Nutrition, 78, 370–375.Google Scholar
  139. Mensink, R. P., & Katan, M. B. (1990). Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. New England Journal of Medicine, 323, 439–445.CrossRefGoogle Scholar
  140. Mensink, R. P., Zock, P. L., Kester, A. D., & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. American Journal of Clinical Nutrition, 77, 1146–1155.Google Scholar
  141. Mosley, E. E., Shafii, B., Moate, P. J., & McGuire, M. A. (2006). Cis-9, trans-11 conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. Journal of Nutrition, 136, 570–575.Google Scholar
  142. Mosley, S. A., Mosley, E., Hatch, B., Szasz, J. I., Corato, A., Zacharias, N., Howes, D., & McGuire, M. A. (2007). Effect of varying levels of fatty acids from palm oil on feed intake and milk production in Holstein cows. Journal of Dairy Science, 90, 987–993.Google Scholar
  143. Mozaffarian, D., Katan, M. B., Ascherio, A., Stampfer, M. J., & Willett, W. C. (2006). Trans fatty acids and cardiovascular disease. New England Journal of Medicine, 354, 1601–1613.CrossRefGoogle Scholar
  144. Ness, A. R., Smith, G. D., & Hart, C. (2001). Milk, coronary heart disease and mortality. Journal of Epidemiology and Community Health, 55, 379–382.CrossRefGoogle Scholar
  145. Ng, T. K., Hayes, K. C., DeWitt, G. F., Jegahesan, M., Satgunasingam, N., Ong, A. S., & Tan, D. (1992). Dietary palmitic acids and oleic acids exert similar effects on serum cholesterol and lipoprotein profiles in normocholesterolemic men and women. Journal of the American College of Nutrition, 11, 383–390.Google Scholar
  146. Noakes, M., Nestel, P. J., & Clifton, P. M. (1996). Modifying the fatty acid profile of dairy products through feedlot technology lowers plasma cholesterol of humans consuming the products. American Journal of Clinical Nutrition, 63, 42–46.Google Scholar
  147. Noble, R. C. (1981). Digestion, absorption and transport of lipids in ruminant animals. In W. W. Christie (Ed.), Lipid Metabolism in Ruminant Animals (pp. 57–93). Oxford: Pergamon Press.Google Scholar
  148. Noh, S. K., & Koo, S. L. (2004). Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. Journal of Nutrition, 134, 2611–2616.Google Scholar
  149. Ntambi, J. M. (1999). Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. Journal of Lipid Research, 40, 1549–1558.Google Scholar
  150. Nugent, A. P. (2004). The metabolic syndrome. Nutrition Bulletin, 29, 36–43.CrossRefGoogle Scholar
  151. Nuernberg, K., Nuernberg, G., Endera, K., Dannenberger, D., Schabbel, W., Grumbach, S., Zupp, W., & Steinhart, H. (2005). Effect of grass vs. concentrate feeding on the fatty acid profile of different fat depots in lambs. European Journal of Lipid Science and Technology, 107, 737–745.CrossRefGoogle Scholar
  152. Offer, N. W., Marsden, M., Dixon, J., Speake, B. K., & Thacker, F. E. (1999). Effect of dietary fat supplements on levels of n-3 polyunsaturated fatty acids, trans acids and conjugated linoleic acid in bovine milk. Animal Science, 69, 613–625.Google Scholar
  153. Offer, N. W., Marsden, M., & Phipps, R. H. (2001). Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. Animal Science, 73, 533–540.Google Scholar
  154. Oomen, C. M., Ocke, M. C., Feskens, E. J., van Erp-Baart, M. A., Kok, F. J., & Kromhout, D. (2001). Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: A prospective population-based study. Lancet, 357, 746–751.CrossRefGoogle Scholar
  155. Palmquist, D. L., Lock, A. L., Shingfield, K. J., & Bauman, D. E. (2005). Biosynthesis of conjugated linoleic acid in ruminants and humans. In S. L. Taylor (Ed.), Advances in Food and Nutrition Research, Vol. 50 (pp. 179–217). San Diego: Elsevier/Academic Press.Google Scholar
  156. Pariza, M. W. (1999). The biological activities of conjugated linoleic acid. In M. P. Yurawecz, M. M. Mossoba, J. K. G. Kramer, M. W. Pariza, & G. J. Nelson (Eds.), Advances in Conjugated Linoleic Acid Research, Vol. 1 (pp. 12–20). Champaign, IL: AOCS Press.Google Scholar
  157. Parker, D. R., Weiss, S. T., Troisi, R., Cassano, P. A., Vokonas, P. S., & Landsberg, L. (1993). Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: The Normative Aging Study. American Journal of Clinical Nutrition, 58, 129–136.Google Scholar
  158. Parodi, P. W. (1999). Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. Journal of Dairy Science, 82, 1339–1349.Google Scholar
  159. Parodi, P. W. (2001). Cows’ milk components with anti-cancer potential. Australian Journal of Dairy Technology, 56, 65–73.Google Scholar
  160. Pereira, M. A., Jacobs, D. R., Jr., Van Horn, L., Slattery, M. L., Kartashov, A. I., & Ludwig, D. S. (2002). Dairy consumption, obesity, and the insulin resistance syndrome in young adults: The CARDIA Study. Journal of the American Medical Association, 287, 2081–2089.CrossRefGoogle Scholar
  161. Petit, H. V. (2002). Digestion, milk production, milk composition, and blood composition of dairy cows fed whole flaxseed. Journal of Dairy Science, 85, 1482–1490.CrossRefGoogle Scholar
  162. Pietinen, P., Ascherio, A., Korhonen, P., Hartman, A. M., Willett, W. C., Albanes, D., & Virtamo, J. (1997). Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men: The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. American Journal of Epidemiology, 145, 876–887.Google Scholar
  163. Piperova, L. S., Teter, B. B., Bruckental, I. Sampugna, J., Mills, S. E., Yurawecz, M. P., Fritsche, J., Ku, K., & Erdman, R. A. (2000). Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. Journal of Nutrition, 130, 2568–2574.Google Scholar
  164. Piperova, L. S., Sampugna, J., Teter, B. B., Kalscheur, K. F., Yurawecz, M. P., Ku, Y., Morehouse, K. M., & Erdman, R. A. (2002). Duodenal and milk trans octadecenoic acid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. Journal of Nutrition, 132, 1235–1241.Google Scholar
  165. Pollard, M. R., Gunstone, F. D., James, A. T., & Morris, L. J. (1980). Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations from rat liver. Lipids, 15, 306–314.CrossRefGoogle Scholar
  166. Ponter, A. A., Parsy, A. E., Saade, M., Mialot, J. P., Ficheux, C., Duvaux-Ponter, C., & Grimard, B. (2006). Effect of a supplement rich in linolenic acid added to the diet of post partum dairy cows on ovarian follicle growth, and milk and plasma fatty acid compositions. Reproduction, Nutrition, Development, 46, 19–29.CrossRefGoogle Scholar
  167. Poppitt, S. D., Keogh, G. F., Mulvey, T. B., McArdle, B. H., MacGibbon, A. K. H., & Cooper, G. J. S. (2002). Lipid-lowering effects of a modified butter fat: A controlled intervention trial in healthy men. European Journal of Clinical Nutrition, 56, 64–71.CrossRefGoogle Scholar
  168. Pottier, J., Focant, M., Debier, C., De Buysser, G., Goffe, C., Mignolet, E., Froidmont, E., & Larondelle, Y. (2006). Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. Journal of Dairy Science, 89, 685–692.Google Scholar
  169. Precht, D., & Molkentin, J. (1997). Trans-geometrical and positional isomers of linoleic acid including conjugated linoleic acid (CLA) in German milk and vegetable fats. Fett/Lipid, 99, 319–326.CrossRefGoogle Scholar
  170. Precht, D., & Molkentin, J. (1999). C18:1, C18:2 and C18:3 trans and cis fatty acid isomers including conjugated cis Δ9, trans Δ11 linoleic acid (CLA) as well as total fat composition of German human milk lipids. Nahrung, 43, 233–244.CrossRefGoogle Scholar
  171. Precht, D., & Molkentin, J. (2000). Recent trends in the fatty acid composition of German sunflower margarines, shortenings and cooking fats with emphasis on individual C16:1, C18:1, C18:2, C18:3 and C20:1 trans isomers. Nahrung, 44, S. 222–228.CrossRefGoogle Scholar
  172. Ratnayake, W. M. N., & Pelletier, G. (1992). Positional and geometric isomers of linoleic acid in partially hydrogenated oils. Journal of the American Oil Chemists Society, 69, 95–105.CrossRefGoogle Scholar
  173. Rego, O. A., Rosa, H. J. D., Portugal, P. V., Franco, T., Vouzela, C. M., Borba, A. E. S., & Bessa, R. J. B. (2005). The effects of supplementation with sunflower and soybean oils on the fatty acid profile of milk fat from grazing dairy cows. Animal Research, 54, 17–24.CrossRefGoogle Scholar
  174. Riel, R. R. (1963). Physico-chemical characteristics of Canadian milk fat. Unsaturated fatty acids. Journal of Dairy Science, 46, 102–106.CrossRefGoogle Scholar
  175. Ritzenthaler, K. L., McGuire, M. K., Falen, R., Shultz, T. D., Dasgupta, N., & McGuire, M. A. (2001). Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. Journal of Nutrition, 131, 1548–1554.Google Scholar
  176. Roche, H. M., Noone, E., Nugent, A., & Gibney, M. J. (2001). Conjugated linoleic acid: A novel therapeutic nutrient? Nutrition Research Reviews, 14, 173–187.CrossRefGoogle Scholar
  177. Rombaut, R., Camp, J. V., & Dewettinck, K. (2005). Analysis of phospho- and sphingolipids in dairy products by a new HPLC method. Journal of Dairy Science, 88, 482–488.Google Scholar
  178. Roy, A., Chardigny, J.-M., Bauchart, D., Ferlay, A., Lorenz, S., Durand, D., Gruffat, D., Faulconnier, Y., Sébédio, J.-L., & Chilliard, Y. (2007). Butters rich either in trans-10-C18:1 or in trans-11-C18:1 plus cis-9, trans-11 CLA differentially affect plasma lipids and aortic fatty streak in experimental atherosclerosis in rabbits. Animal, 1, 467–476.CrossRefGoogle Scholar
  179. Roy, A., Ferlay, A., Shingfield, K. J., & Chilliard, Y. (2006). Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C18:1 fatty acids and isomers of conjugated linoleic acid. Animal Science, 82, 479–492.CrossRefGoogle Scholar
  180. Ryhänen, E. L., Tallavaara, K., Griinari, J. M., Jaakkola, S., Mantere-Alhonen, S., & Shingfield, K. J. (2005). Production of conjugated linoleic acid enriched milk and dairy products from cows receiving grass silage supplemented with a cereal-based concentrate containing rapeseed oil. International Dairy Journal, 15, 207–217.CrossRefGoogle Scholar
  181. Sanz Sampelayo, M. R., Chilliard, Y., Schmidely, P., & Boza, J. (2007). Influence of type of diet on the fat constituents of goat and sheep milk. Small Ruminant Research, 68, 42–63.CrossRefGoogle Scholar
  182. Schmelz, E. M. (2003). Dietary sphingolipids in the prevention and treatment of colon cancer. In B. F. Szuhaj & W. van Nieuwenhuyzen (Eds.), Nutrition and Biochemistry of Phospholipids (pp. 80–87). Champaign, IL: AOCS Press.Google Scholar
  183. Seidel, C., Deufel, T., & Jahreis, G. (2005). Effects of fat-modified dairy products on blood lipids in humans in comparison with other fats. Annals of Nutrition and Metabolism, 49, 42–48.CrossRefGoogle Scholar
  184. Shingfield, K. J., Ahvenjärvi, S., Toivonen, V., Ärölä, A., Nurmela, K. V. V., Huhtanen, P., & Griinari, J. M. (2003). Effect of fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science, 77, 165–179.Google Scholar
  185. Shingfield, K. J., Reynolds, C. K., Lupoli, B., Toivonen, V., Yurawecz, M. P., Delmonte, P., Griinari, J. M., Grandison, A. S., & Beever, D. E. (2005a). Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows fed sunflower oil and fish oil. Animal Science, 80, 225–238.CrossRefGoogle Scholar
  186. Shingfield, K. J., Salo-Väänänen, P., Pahkala, E., Toivonen, V., Jaakkola, S., Piironen, V., & Huhtanen, P. (2005b). Effect of forage conservation method, concentrate level and propylene glycol on the fatty acid composition and vitamin content of cows' milk. Journal of Dairy Research, 72, 349–361.CrossRefGoogle Scholar
  187. Shingfield, K. J., Reynolds, C. K., Hervás, G., Griinari, J. M., Grandison, A. S., & Beever, D. E. (2006a). Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. Journal of Dairy Science, 89, 714–732.Google Scholar
  188. Shingfield, K. J., Toivonen, V., Vanhatalo, A., Huhtanen, P., & Griinari, J. M. (2006b). Indigestible markers reduce the mammary Δ9-desaturase activity index and alter the milk fatty acid composition in cows. Journal of Dairy Science, 89, 3006–3010.Google Scholar
  189. Shingfield, K. J., Ahvenjärvi, S., Toivonen, V., Vanhatalo, A., & Huhtanen, P. (2007). Transfer of absorbed cis-9, trans-11 conjugated linoleic acid into milk is biologically more efficient than endogenous synthesis from absorbed vaccenic acid in the lactating cow. Journal of Nutrition, 137, 1154–1160.Google Scholar
  190. Spitsberg, V. L. (2005). Bovine milk fat globule membrane as a potential nutraceutical. Journal of Dairy Science, 88, 2289–2294.Google Scholar
  191. Steele, W., & Noble, R. C. (1984). Changes in lipid composition of grass during ensiling with or without added fat or oil. Proceedings of the Nutrition Society, 43, 51A.Google Scholar
  192. Steffen, L. M., & Jacobs, D. R. (2003). Relation between dairy food intake and plasma lipid levels: The CARDIA Study. Australian Journal of Dairy Technology, 58, 92–97.Google Scholar
  193. Sundram, K., Hayes, K. C., & Siru, O. H. (1995). Both dietary 18:2 and 16:0 may be required to improve serum LDL/HDL cholesterol ratio in normocholesterolemic men. Journal of Nutritional Biochemistry, 6, 179–187.CrossRefGoogle Scholar
  194. Tanaka, Y., Bush, K. K., Klauck, T. M., & Higgins, P. J. (1989). Enhancement of butyrate-induced differentiation of HT-29 human colon carcinoma cells by 1,25-dihydroxyvitamin D3. Biochemical Pharmacology, 38, 3859–3865.CrossRefGoogle Scholar
  195. Temme, E. H. M., Mensink, R. P., & Hornstra, G. (1996). Comparison of the effects of diets enriched in lauric, palmitic, or oleic acids on serum lipids and lipoproteins in healthy women and men. American Journal of Clinical Nutrition, 63, 897–903.Google Scholar
  196. Terpstra, A. H. M. (2004). Effect of conjugated linoleic acid on body composition and plasma lipids in humans: An overview of the literature. American Journal of Clinical Nutrition, 79, 352–361.Google Scholar
  197. Tholstrup, T. (2006). Dairy products and cardiovascular disease. Current Opinion in Lipidology, 17, 1–10.CrossRefGoogle Scholar
  198. Tholstrup, T., Sandstrom, B., Hermansen, J. E., & Hølmer, G. (1998). Effect of modified dairy fat on postprandial and fasting plasma lipids and lipoproteins in healthy young men. Lipids 33, 11–21.CrossRefGoogle Scholar
  199. Tholstrup, T., Raff, M., Basu, S., Nonboe, P., Sejrsen, K., & Straarup, E. M. (2006). Effects of butter high in ruminant trans and monounsaturated fatty acids on lipoproteins, incorporation of fatty acids into lipid classes, plasma C-reactive protein, oxidative stress, hemostatic variables, and insulin in healthy young men. American Journal of Clinical Nutrition, 83, 237–243.Google Scholar
  200. Thomas, L. H. (1992). Ischaemic heart disease and consumption of hydrogenated marine oils in England and Wales. Journal of Epidemiology and Community Health, 46, 78–82.Google Scholar
  201. Thomas, L. H., Winter, J. A., & Scott, R. G. (1983). Concentration of 18:1 and 16:1 trans unsaturated fatty acids in the adipose body tissue of decedents dying of ischaemic heart disease compared with controls: Analysis by gas liquid chromatography. Journal of Epidemiology and Community Health, 37, 16–21.Google Scholar
  202. Tricon, S., Burdge, G. C., Jones, E. L., Russell, J. J., El-Khazen, S., Moretti, E., Hall, W. L., Gerry, A. B., Leake, D. S., Grimble, R. F., Williams, C. M., Calder, P. C., & Yaqoob, P. (2006). Effects of dairy products naturally enriched with cis-9, trans-11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. American Journal of Clinical Nutrition, 83, 744–753.Google Scholar
  203. Turpeinen, A. M., Mutanen, M., Aro, A., Salminen, I., Basu, S., Palmquist, D. L., & Griinari, J. M. (2002). Bioconversion of vaccenic acid to conjugated linoleic acid in humans. American Journal of Clinical Nutrition, 76, 504–510.Google Scholar
  204. Ulberth, F., & Henninger, M. (1994). Quantitation of trans fatty acids in milk fat using spectroscopic and chromatographic methods. Journal of Dairy Research, 61, 517–527.Google Scholar
  205. U.S. Food and Drug Administration (2003). Questions and answers about trans fat nutrition labeling; www.cfsan.fda.gov/~dms/qatrans2.html.2003.Google Scholar
  206. Valeille, K., Ferezou, J., Parquet, M., Amsler, G., Gripois, D., Quignard-Boulange, A., & Martin, J. C. (2006). The natural concentration of the conjugated linoleic acid, cis-9, trans-11, in milk fat has antiatherogenic effects in hyperlipidemic hamsters. Journal of Nutrition, 136, 1305–1310.Google Scholar
  207. Vanhatalo, A., Kuoppala, K., Toivonen, V., & Shingfield, K. J. (2007). Effects of forage species and stage of maturity on milk fatty acid composition. European Journal of Lipid Science and Technology, 109, 856–867.CrossRefGoogle Scholar
  208. Velazquez, O. C., Jabbar, A., De Matteo, R. P., & Rombeau, J. L. (1996). Butyrate inhibits seeding and growth of colorectal metastases to the liver in mice. Surgery, 120, 440–448.CrossRefGoogle Scholar
  209. Vessby, B., Uusitupa, M., Hermansen, K., Riccardi, G., Rivellese, A. A., Tapsell, L. C., Nälsén, C., Berglund, L., Louheranta, A., Rasmussen, B. M., Calvert, G. D., Maffetone, A., Pedersen, E., Gustafsson, L.-B., & Storlien, L. H. (2001). Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women. Diabetologia, 44, 312–319.CrossRefGoogle Scholar
  210. Vlaeminck, B., Fievez, V., Cabrita, A. R. J., Fonseca, A. J. M., & Dewhurst, R. J. (2006). Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology, 131, 389–417.CrossRefGoogle Scholar
  211. Voorrips, L. E., Brants, H. A. M., Kardinaal, A. F. M., Hiddink, G. J., van den Brandt, P. A., & Goldbohm, R. A. (2002). Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: The Netherlands Cohort Study on Diet and Cancer. American Journal of Clinical Nutrition, 76, 873–882.Google Scholar
  212. Wahle, K. W., Heys, S. D., & Rotondo, D. (2004). Conjugated linoleic acids: Are they beneficial or detrimental to health? Progress in Lipid Research, 43, 553–587.CrossRefGoogle Scholar
  213. Warensjö, E., Jansson, J. H., Berglund, L., Boman, K., Ahrén, B., Weinehall, L., Lindahl, B., Hallmans, G., & Vessby, B. (2004). Estimated intake of milk fat is negatively associated with cardiovascular risk factors and does not increase the risk of a first acute myocardial infarction. A prospective case-control study. British Journal of Nutrition, 91, 635–642.CrossRefGoogle Scholar
  214. Wasowska, I., Maia, M., Niedźwiedzka, K. M., Czauderna, M., Ramalho Ribeiro, J. M. C., Devillard, E., Shingfield, K. J., & Wallace, R. J. (2006). Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. British Journal of Nutrition, 95, 1199–1211.CrossRefGoogle Scholar
  215. Weggemans, R. M., Rudrum, M., & Trautwein, E. A. (2004). Intake of ruminant versus industrial trans fatty acids and risk of coronary heart disease—What is the evidence? European Journal of Lipid Science and Technology, 106, 390–397.CrossRefGoogle Scholar
  216. Weill, P., Schmitt, B., Chesneau, G., Daniel, N., Safraou, F., & Legrand, P. (2002). Effects of introducing linseed in livestock diet on blood fatty acid composition of consumers of animal products. Annals of Nutrition and Metabolism, 46, 182–191.CrossRefGoogle Scholar
  217. Whigham, L. D., Cook, M. E., & Atkinson, R. L. (2000). Conjugated linoleic acid: Implications for human health. Pharmacological Research, 42, 503–510.CrossRefGoogle Scholar
  218. White, S. L., Bertrand, J. A., Wade, M. R., Washburn, S. P., Green, J. T., & Jenkins, T. C. (2001). Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. Journal of Dairy Science, 84, 2295–2301.Google Scholar
  219. Wilke, M. S., & Clandinin, M. T. (2005). Influence of dietary saturated fatty acids on the regulation of plasma cholesterol concentration. Lipids, 40, 1207–1213.CrossRefGoogle Scholar
  220. Willett, W. C., Stampfer, M. J., Manson, J. E., Colditz, G. A., Speizer, F. E., Rosner, B. A., Sampson, L. A., & Hennekens, C. H. (1993). Intake of trans fatty acids and risk of coronary heart disease among women. Lancet, 341, 581–585.CrossRefGoogle Scholar
  221. Wolff, R. L. (1995). Content and distribution of trans-18:1 acids in ruminant milk and meat fats. Their importance in European diets and their effect on human milk. Journal of the American Oil Chemists Society 72, 259–272.CrossRefGoogle Scholar
  222. Wongtangtintharn, S., Oku, H., Iwasaki, H., & Toda, T. (2004). Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. Journal of Nutritional Science and Vitaminology, 50, 137–143.Google Scholar
  223. World Health Organization (2003). Diet, nutrition and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series, No. 916; www.who.int/dietphysicalactivity/publications/trs916.Google Scholar
  224. Yanagi, S., Yamashita, M., & Imai, S. (1993). Sodium butyrate inhibits the enhancing effect of high fat diet on mammary tumorigenesis. Oncology, 50, 201–204.CrossRefGoogle Scholar
  225. Yang, Y., Shangpei, L., Chen, X., Chen, H., Huang, M., & Zheng, J. (2000). Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Research, 60, 505–509.Google Scholar
  226. Yaqoob, P., Tricon, S., Burdge, G. C., & Calder, P. C. (2006). Conjugated linoleic acids (CLAs) and health. In C. Williams & J. Buttriss (Eds.), Improving the Fat Content of Foods (pp. 182–209). Cambridge: Woodhead Publishing Ltd.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. J. Shingfield
    • 1
  • Y. Chilliard
  • V. Toivonen
  • P. Kairenius
  • D. I. Givens
  1. 1.MTT Agrifood Research FinlandJokioinenFinland

Personalised recommendations