Skip to main content

Metabolic Syndrome, Diabetes and Cardiometabolic Risks in Aging

  • Chapter
  • 737 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001;414: 782–787

    PubMed  CAS  Google Scholar 

  2. Vasudevan AR, Ballantyne CM. Cardiometabolic risk assessment: an approach to the prevention of cardiovascular disease and diabetes mellitus. Clin Cornerstone 2005;7:7–16

    PubMed  Google Scholar 

  3. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991;14:173–194

    Google Scholar 

  4. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607

    Google Scholar 

  5. Lemieux I, Pascot A, Couillard C, Lamarche B, Tchernof A, Almeras N, Bergeron J, Gaudet D, Tremblay G, Prud’homme D, Nadeau A, Despres JP. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 2000;102:179–184

    PubMed  CAS  Google Scholar 

  6. Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989;149:1514–1520

    Google Scholar 

  7. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15:539–553

    PubMed  CAS  Google Scholar 

  8. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 1999;16:442–443

    PubMed  CAS  Google Scholar 

  9. Einhorn D, Reaven GM, Cobin RH, Ford E, Ganda OP, Handelsman Y, Hellman R, Jellinger PS, Kendall D, Krauss RM, Neufeld ND, Petak SM, Rodbard HW, Seibel JA, Smith DA, Wilson PW. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract 2003;9:237–252

    PubMed  Google Scholar 

  10. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143–3421

    Google Scholar 

  11. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735–2752

    PubMed  Google Scholar 

  12. Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB, Kanaya AM, Pahor M, Jingzhong D, Harris TB. Association of visceral adipose tissue with incident myocardial infarction in older men and women: the Health, Aging and Body Composition Study. Am J Epidemiol 2004;160:741–749

    PubMed  Google Scholar 

  13. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006;444:881–887

    PubMed  CAS  Google Scholar 

  14. Pagotto U, Vicennati V, Pasquali R. The endocannabinoid system and the treatment of obesity. Ann Med 2005;37:270–275

    PubMed  CAS  Google Scholar 

  15. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002;54:161–202

    PubMed  CAS  Google Scholar 

  16. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50:83–90

    PubMed  CAS  Google Scholar 

  17. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 2002;99:10819–10824

    PubMed  CAS  Google Scholar 

  18. Kirkham TC. Endogenous cannabinoids: a new target in the treatment of obesity. Am J Physiol Regul Integr Comp Physiol 2003;284:R343–R344

    PubMed  CAS  Google Scholar 

  19. Freedland CS, Poston JS, Porrino LJ. Effects of SR141716A, a central cannabinoid receptor antagonist, on food-maintained responding. Pharmacol Biochem Behav 2000;67:265–270

    PubMed  CAS  Google Scholar 

  20. Di MV, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001;410:822–825

    Google Scholar 

  21. Kirkham TC. Endogenous cannabinoids: a new target in the treatment of obesity. Am J Physiol Regul Integr Comp Physiol 2003;284:R343–R344

    PubMed  CAS  Google Scholar 

  22. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003;112:423–431

    PubMed  CAS  Google Scholar 

  23. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S, Harvey-White J, Mackie K, Offertaler L, Wang L, Kunos G. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005;115:1298–1305

    PubMed  CAS  Google Scholar 

  24. Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 1994;350:240–244

    PubMed  CAS  Google Scholar 

  25. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 2006;295:761–775

    PubMed  CAS  Google Scholar 

  26. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005;365:1389–1397

    PubMed  Google Scholar 

  27. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005;353:2121–2134

    PubMed  CAS  Google Scholar 

  28. Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF. RIO-Diabetes Study Group. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 2006;368:1660–1672

    PubMed  CAS  Google Scholar 

  29. Lamberts SW, van den Beld AW, van der Lely AJ. The endocrinology of aging. Science 1997;278:419–424

    PubMed  CAS  Google Scholar 

  30. Kapoor D, Malkin CJ, Channer KS, Jones TH. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol (Oxf) 2005;63:239–250

    CAS  Google Scholar 

  31. Muller M, van den Beld AW, Bots ML, Grobbee DE, Lamberts SW, van der Schouw YT. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation 2004;109:2074–2079

    PubMed  CAS  Google Scholar 

  32. Muller M, Grobbee DE, den TI, Lamberts SW, van der Schouw YT. Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab 2005;90:2618–2623

    Google Scholar 

  33. Zamboni M, Zoico E, Fantin F, Panourgia MP, Di FV, Tosoni P, Solerte B, Vettor R, Bosello O. Relation between leptin and the metabolic syndrome in elderly women. J Gerontol A Biol Sci Med Sci 2004;59:396–400

    PubMed  Google Scholar 

  34. Maggio M, Lauretani F, Ceda GP, Bandinelli S, Basaria S, Ble A, Egan J, Paolisso G, Najjar S, Jeffrey Metter E, Valenti G, Guralnik JM, Ferrucci L. Association between hormones and metabolic syndrome in older Italian men. J Am Geriatr Soc 2006;54:1832–1838

    PubMed  Google Scholar 

  35. Goldstein JL, Brown MS. Molecular medicine. The cholesterol quartet. Science 2001;292:1310–1312

    PubMed  CAS  Google Scholar 

  36. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Collen D, Muls E, Van de Werf F. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2001;21:844–848

    PubMed  CAS  Google Scholar 

  37. Holvoet P, Kritchevsky SB, Tracy RP, Mertens A, Rubin SM, Butler J, Goodpaster B, Harris TB. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes 2004;53:1068–1073

    PubMed  CAS  Google Scholar 

  38. Lind L, Berne C, Lithell H. Prevalence of insulin resistance in essential hypertension. J Hypertens 1995;13:1457–1462

    PubMed  CAS  Google Scholar 

  39. Lind L, Andersson PE, Andren B, Hanni A, Lithell HO. Left ventricular hypertrophy in hypertension is associated with the insulin resistance metabolic syndrome. J Hypertens 1995;13:433–438

    PubMed  CAS  Google Scholar 

  40. Sundstrom J, Lind L, Nystrom N, Zethelius B, Andren B, Hales CN, Lithell HO. Left ventricular concentric remodeling rather than left ventricular hypertrophy is related to the insulin resistance syndrome in elderly men. Circulation 2000;101:2595–2600

    PubMed  CAS  Google Scholar 

  41. Lindblad U, Langer RD, Wingard DL, Thomas RG, Barrett-Connor EL. Metabolic syndrome and ischemic heart disease in elderly men and women. Am J Epidemiol 2001;153:481–489

    PubMed  CAS  Google Scholar 

  42. Tangalos EG, Cota D, Fujioka K. Complex cardiometabolic risk factors: impact, assessment, and emerging therapies. J Am Med Dir Assoc 2006;7:1–10

    Google Scholar 

  43. Yaffe K. Metabolic syndrome and cognitive decline. Curr Alzheimer Res 2007;4:123–126

    PubMed  CAS  Google Scholar 

  44. Morley JE. An overview of diabetes mellitus in older persons. Clin Geriatr Med 1999;15:211–224

    PubMed  CAS  Google Scholar 

  45. Kanaya AM, Barrett-Connor E, Gildengorin G, Yaffe K. Change in cognitive function by glucose tolerance status in older adults: a 4-year prospective study of the Rancho Bernardo study cohort. Arch Intern Med 2004;164:1327–1333

    PubMed  Google Scholar 

  46. Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 2004;63:658–663

    PubMed  CAS  Google Scholar 

  47. Messier C, Awad N, Gagnon M. The relationships between atherosclerosis, heart disease, type 2 diabetes and dementia. Neurol Res 2004;26:567–572

    PubMed  Google Scholar 

  48. Ott A, Stolk RP, van HF, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 1999;53:1937–1942

    PubMed  CAS  Google Scholar 

  49. Biessels GJ, Koffeman A, Scheltens P. Diabetes and cognitive impairment. Clinical diagnosis and brain imaging in patients attending a memory clinic. J Neurol 2006;253:477–482

    PubMed  Google Scholar 

  50. Korf ES, White LR, Scheltens P, Launer LJ. Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 2006;29:2268–2274

    PubMed  Google Scholar 

  51. Xiong GL, Plassman BL, Helms MJ, Steffens DC. Vascular risk factors and cognitive decline among elderly male twins. Neurology 2006;67:1586–1591

    PubMed  Google Scholar 

  52. Kalmijn S, Foley D, White L, Burchfiel CM, Curb JD, Petrovitch H, Ross GW, Havlik RJ, Launer LJ. Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men. The Honolulu-Asia aging study. Arterioscler Thromb Vasc Biol 2000;20:2255–2260

    PubMed  CAS  Google Scholar 

  53. Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, Tylavsky FA, Newman AB. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 2004;292:2237–2242

    PubMed  CAS  Google Scholar 

  54. Yaffe K, Lindquist K, Penninx BW, Simonsick EM, Pahor M, Kritchevsky S, Launer L, Kuller L, Rubin S, Harris T. Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology 2003;61:76–80

    PubMed  CAS  Google Scholar 

  55. Yaffe K, Haan M, Blackwell T, Cherkasova E, Whitmer RA, West N. Metabolic syndrome and cognitive decline in elderly latinos: findings from the sacramento area latino study of aging study. J Am Geriatr Soc 2007;55: 758–762

    PubMed  Google Scholar 

  56. Navarro J, Redon J, Cea-Calvo L, Lozano JV, Fernandez-Perez C, Bonet A, Gonzalez-Esteban J, Study OB. AMetabolic syndrome, organ damage and cardiovascular disease in treated hypertensive patients. The ERIC-HTA study. Blood Press 2007;16:20–27

    Google Scholar 

  57. Steinle NI, Kazlauskaite R, Imumorin IG, Hsueh WC, Pollin TI, O’Connell JR, Mitchell BD, Shuldiner AR. Variation in the lamin A/C gene: associations with metabolic syndrome. Arterioscler Thromb Vasc Biol 2004;24:1708–1713

    PubMed  CAS  Google Scholar 

  58. Murase Y, Yagi K, Katsuda Y, Asano A, Koizumi J, Mabuchi H. An LMNA variant is associated with dyslipidemia and insulin resistance in the Japanese. Metabolism 2002;51:1017–1021

    PubMed  CAS  Google Scholar 

  59. Caux F, Dubosclard E, Lascols O, Buendia B, Chazouilleres O, Cohen A, Courvalin JC, Laroche L, Capeau J, Vigouroux C, Christin-Maitre S. A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J Clin Endocrinol Metab 2003;88:1006–1013

    PubMed  CAS  Google Scholar 

  60. Ukkola O, Rankinen T, Lakka T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Kesaniemi YA, Bouchard C. Protein tyrosine phosphatase 1B variant associated with fat distribution and insulin metabolism. Obes Res 2005;13:829–834

    PubMed  CAS  Google Scholar 

  61. Spencer-Jones NJ, Wang X, Snieder H, Spector TD, Carter ND, O’Dell SD. Protein tyrosine phosphatase-1B gene PTPN1: selection of tagging single nucleotide polymorphisms and association with body fat, insulin sensitivity, and the metabolic syndrome in a normal female population. Diabetes 2005;54:3296–3304

    PubMed  CAS  Google Scholar 

  62. Palmer ND, Bento JL, Mychaleckyj JC, Langefeld CD, Campbell JK, Norris JM, Haffner SM, Bergman RN, Bowden DW. Insulin Resistance Atherosclerosis Study (IRAS) family study. Association of protein tyrosine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes 2004;53:3013–3019

    PubMed  CAS  Google Scholar 

  63. Manraj M, Francke S, Hebe A, Ramjuttun US, Froguel P. Genetic and environmental nature of the insulin resistance syndrome in Indo-Mauritian subjects with premature coronary heart disease: contribution of beta3-adrenoreceptor gene polymorphism and beta blockers on triglyceride and HDL concentrations. Diabetologia 2001;44:115–122

    PubMed  CAS  Google Scholar 

  64. Strazzullo P, Iacone R, Siani A, Cappuccio FP, Russo O, Barba G, Barbato A, D’Elia L, Trevisan M, Farinaro E. Relationship of the Trp64Arg polymorphism of the beta3-adrenoceptor gene to central adiposity and high blood pressure: interaction with age. Cross-sectional and longitudinal findings of the Olivetti Prospective Heart Study. J Hypertens 2001;19:399–406

    PubMed  CAS  Google Scholar 

  65. Bracale R, Pasanisi F, Labruna G, Finelli C, Nardelli C, Buono P, Salvatori G, Sacchetti L, Contaldo F, Oriani G. Metabolic syndrome and ADRB3 gene polymorphism in severely obese patients from South Italy. Eur J Clin Nutr 2007

    Google Scholar 

  66. Robitaille J, Brouillette C, Houde A, Lemieux S, Perusse L, Tchernof A, Gaudet D, Vohl MC. Association between the PPARalpha-L162V polymorphism and components of the metabolic syndrome. J Hum Genet 2004;49:482–489

    PubMed  CAS  Google Scholar 

  67. Tai ES, Collins D, Robins SJ, O’Connor JJ Jr, Bloomfield HE, Ordovas JM, Schaefer EJ, Brousseau ME. The L162V polymorphism at the peroxisome proliferator activated receptor alpha locus modulates the risk of cardiovascular events associated with insulin resistance and diabetes mellitus: the Veterans Affairs HDL Intervention Trial (VA-HIT). Atherosclerosis 2006;187:153–160

    PubMed  CAS  Google Scholar 

  68. Frederiksen L, Brodbaek K, Fenger M, Jorgensen T, Borch-Johnsen K, Madsbad S, Urhammer SA. Comment: studies of the Pro12Ala polymorphism of the PPAR-gamma gene in the Danish MONICA cohort: homozygosity of the Ala allele confers a decreased risk of the insulin resistance syndrome. J Clin Endocrinol Metab 2002;87:3989–3992

    PubMed  CAS  Google Scholar 

  69. Li S, Chen W, Srinivasan SR, Boerwinkle E, Berenson GS. The Bogalusa Heart Study the peroxisome proliferator-activated receptor-gamma2 gene polymorphism (Pro12Ala) beneficially influences insulin resistance and its tracking from childhood to adulthood: the Bogalusa Heart Study. Diabetes 2003;52:1265–1269

    PubMed  CAS  Google Scholar 

  70. Meirhaeghe A, Cottel D, Amouyel P, Dallongeville J. Association between peroxisome proliferator-activated receptor gamma haplotypes and the metabolic syndrome in French men and women. Diabetes 2005;54: 3043–3048

    PubMed  CAS  Google Scholar 

  71. Kahara T, Takamura T, Hayakawa T, Nagai Y, Yamaguchi H, Katsuki T, Katsuki K, Katsuki M, Kobayashi K. PPARgamma gene polymorphism is associated with exercise-mediated changes of insulin resistance in healthy men. Metabolism 2003;52:209–212

    PubMed  CAS  Google Scholar 

  72. Rhee EJ, Oh KW, Lee WY, Kim SY, Oh ES, Baek KH, Kang MI, Kim SW. Effects of two common polymorphisms of peroxisome proliferator-activated receptor-gamma gene on metabolic syndrome. Arch Med Res 2006;37:86–94

    PubMed  CAS  Google Scholar 

  73. Sookoian S, Garcia SI, Porto PI, Dieuzeide G, Gonzalez CD, Pirola CJ. Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents. J Mol Endocrinol 2005;35:373–380

    PubMed  CAS  Google Scholar 

  74. Grarup N, Albrechtsen A, Ek J, Borch-Johnsen K, Jorgensen T, Schmitz O, Hansen T, Pedersen O. Variation in the peroxisome proliferator-activated receptor delta gene in relation to common metabolic traits in 7,495 middle-aged white people. Diabetologia 2007;50:1201–1208

    PubMed  CAS  Google Scholar 

  75. Dallongeville J, Helbecque N, Cottel D, Amouyel P, Meirhaeghe A. The Gly16→Arg16 and Gln27→Glu27 polymorphisms of beta2-adrenergic receptor are associated with metabolic syndrome in men. J Clin Endocrinol Metab 2003;88:4862–4866

    PubMed  CAS  Google Scholar 

  76. Vohl MC, Houde A, Lebel S, Hould FS, Marceau P. Effects of the peroxisome proliferator-activated receptor-gamma co-activator-1 Gly482Ser variant on features of the metabolic syndrome. Mol Genet Metab 2005;86:300–306

    PubMed  CAS  Google Scholar 

  77. Ambye L, Rasmussen S, Fenger M, Jorgensen T, Borch-Johnsen K, Madsbad S, Urhammer SA. Studies of the Gly482Ser polymorphism of the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) gene in Danish subjects with the metabolic syndrome. Diabetes Res Clin Pract 2005;67:175–179

    PubMed  CAS  Google Scholar 

  78. Boullu-Sanchis S, Lepretre F, Hedelin G, Donnet JP, Schaffer P, Froguel P, Pinget M. Type 2 diabetes mellitus: association study of five candidate genes in an Indian population of Guadeloupe, genetic contribution of FABP2 polymorphism. Diabetes Metab 1999;25:150–156

    PubMed  CAS  Google Scholar 

  79. Guettier JM, Georgopoulos A, Tsai MY, Radha V, Shanthirani S, Deepa R, Gross M, Rao G, Mohan V. Polymorphisms in the fatty acid-binding protein 2 and apolipoprotein C-III genes are associated with the metabolic syndrome and dyslipidemia in a South Indian population. J Clin Endocrinol Metab 2005;90:1705–1711

    PubMed  CAS  Google Scholar 

  80. Pollex RL, Hanley AJ, Zinman B, Harris SB, Khan HM, Hegele RA. Metabolic syndrome in aboriginal Canadians: prevalence and genetic associations. Atherosclerosis 2006;184:121–129

    PubMed  CAS  Google Scholar 

  81. Vimaleswaran KS, Radha V, Mohan V. Thr54 allele carriers of the Ala54Thr variant of FABP2 gene have associations with metabolic syndrome and hyper-triglyceridemia in urban South Indians. Metabolism 2006;55: 1222–1226

    PubMed  CAS  Google Scholar 

  82. Erkkila AT, Lindi V, Lehto S, Pyorala K, Laakso M, Uusitupa MI. Variation in the fatty acid binding protein 2 gene is not associated with markers of metabolic syndrome in patients with coronary heart disease. Nutr Metab Cardiovasc Dis 2002;12:53–59

    PubMed  CAS  Google Scholar 

  83. Ohashi K, Ouchi N, Kihara S, Funahashi T, Nakamura T, Sumitsuji S, Kawamoto T, Matsumoto S, Nagaretani H, Kumada M, Okamoto Y, Nishizawa H, Kishida K, Maeda N, Hiraoka H, Iwashima Y, Ishikawa K, Ohishi M, Katsuya T, Rakugi H, Ogihara T, Matsuzawa Y. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol 2004;43:1195–1200

    PubMed  CAS  Google Scholar 

  84. Marzi C, Huth C, Kolz M, Grallert H, Meisinger C, Wichmann HE, Rathmann W, Herder C, Illig T. Variants of the transcription factor 7-like 2 gene (TCF7L2) are strongly associated with type 2 diabetes but not with the metabolic syndrome in the MONICA/KORA surveys. Horm Metab Res 2007;39:46–52

    PubMed  CAS  Google Scholar 

  85. Melzer D, Murray A, Hurst AJ, Weedon MN, Bandinelli S, Corsi AM, Ferrucci L, Paolisso G, Guralnik JM, Frayling TM. Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med 2006;4:34

    PubMed  Google Scholar 

  86. Bing C, Ambye L, Fenger M, Jorgensen T, Borch-Johnsen K, Madsbad S, Urhammer SA. Large-scale studies of the Leu72Met polymorphism of the ghrelin gene in relation to the metabolic syndrome and associated quantitative traits. Diabet Med 2005;22:1157–1160

    PubMed  CAS  Google Scholar 

  87. Carlsson E, Groop L, Ridderstrale M. Role of the FOXC2 -512C>T polymorphism in type 2 diabetes: possible association with the dysmetabolic syndrome. Int J Obes (Lond) 2005;29:268–274

    CAS  Google Scholar 

  88. Weissglas-Volkov D, Huertas-Vazquez A, Suviolahti E, Lee J, Plaisier C, Canizales-Quinteros S, Tusie-Luna T, Aguilar-Salinas C, Taskinen MR, Pajukanta P. Common hepatic nuclear factor-4alpha variants are associated with high serum lipid levels and the metabolic syndrome. Diabetes 2006;55:1970–1977

    PubMed  CAS  Google Scholar 

  89. Miller M, Rhyne J, Chen H, Beach V, Ericson R, Luthra K, Dwivedi M, Misra A. APOC3 promoter polymorphisms C-482T and T-455C are associated with the metabolic syndrome. Arch Med Res 2007;38:444–451

    PubMed  CAS  Google Scholar 

  90. Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol 2005;46:1978–1985

    PubMed  CAS  Google Scholar 

  91. Hegele RA. Familial partial lipodystrophy: a monogenic form of the insulin resistance syndrome. Mol Genet Metab 2000;71:539–544

    PubMed  CAS  Google Scholar 

  92. Caux F, Dubosclard E, Lascols O, Buendia B, Chazouilleres O, Cohen A, Courvalin JC, Laroche L, Capeau J, Vigouroux C, Christin-Maitre S. A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J Clin Endocrinol Metab 2003;88:1006–1013

    PubMed  CAS  Google Scholar 

  93. Haque WA, Oral EA, Dietz K, Bowcock AM, Agarwal AK, Garg A. Risk factors for diabetes in familial partial lipodystrophy, Dunnigan variety. Diabetes Care 2003;26:1350–1355

    PubMed  CAS  Google Scholar 

  94. Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2000;9:109–112

    PubMed  CAS  Google Scholar 

  95. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 2002;51:3586–3590

    PubMed  CAS  Google Scholar 

  96. Hegele RA, Pollex RL. Genetic and physiological insights into the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 2005;289:R663–R669

    PubMed  CAS  Google Scholar 

  97. Hegele RA, Joy TR, Al-Attar S, Rutt BK. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res. 2007 Mar 20 [Epub ahead of print]

    Google Scholar 

  98. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VK, O’Rahilly S. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 2003;52:910–917

    PubMed  CAS  Google Scholar 

  99. Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A, Rajanayagam O, Semple R, Luan J, Bath L, Zalin A, Labib M, Kumar S, Simpson H, Blom D, Marais D, Schwabe J, Barroso I, Trembath R, Wareham N, Nagy L, Gurnell M, O’Rahilly S, Chatterjee K. Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance. Cell Metab 2006;4:303–311

    PubMed  CAS  Google Scholar 

  100. Kotzka J, Muller-Wieland D. Sterol regulatory element-binding protein (SREBP)-1: gene regulatory target for insulin resistance? Expert Opin Ther Targets 2004;8:141–149

    PubMed  CAS  Google Scholar 

  101. Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 2004;10: 530–534

    PubMed  CAS  Google Scholar 

  102. Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 2005;353:604–615

    PubMed  CAS  Google Scholar 

  103. Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 2005;26:244–251

    PubMed  CAS  Google Scholar 

  104. Han SH, Quon MJ, Koh KK. Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-alpha activators. Hypertension 2005;46:1086–1092

    PubMed  CAS  Google Scholar 

  105. Chinetti-Gbaguidi G, Fruchart JC, Staels B. Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Curr Opin Pharmacol 2005;5:177–183

    PubMed  CAS  Google Scholar 

  106. Khan MA, Collins AJ, Keane WF. Diabetes in the elderly population. Adv Ren Replace Ther 2000;7:32–51

    PubMed  CAS  Google Scholar 

  107. Kamel HK, Rodriguez-Saldana J, Flaherty JH, Miller DK. Diabetes mellitus among ethnic seniors: contrasts with diabetes in whites. Clin Geriatr Med 1999;15:265–278

    PubMed  CAS  Google Scholar 

  108. Koster JC, Permutt MA, Nichols CG. Diabetes and insulin secretion: the ATP-Sensitive K+ Channel (KATP) Connection. Diabetes 2005;54:3065–3072

    PubMed  CAS  Google Scholar 

  109. Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 2005;54:2503–2513

    PubMed  CAS  Google Scholar 

  110. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, Hattersley AT. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;350:1838–1849

    PubMed  CAS  Google Scholar 

  111. Sperling MA. Neonatal diabetes mellitus: from understudy to center stage. Curr Opin Pediatr 2005;17:512–518

    PubMed  Google Scholar 

  112. Riedel MJ, Steckley DC, Light PE. Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet 2005;116:133–145

    PubMed  CAS  Google Scholar 

  113. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003;52:568–572

    PubMed  CAS  Google Scholar 

  114. Riedel MJ, Boora P, Steckley D, de Vries G, Light PE. Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 2003;52:2630–2635

    PubMed  CAS  Google Scholar 

  115. Slingerland AS, Hattersley AT. Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment. Ann Med 2005;37:186–195

    PubMed  CAS  Google Scholar 

  116. Malecki MT. Genetics of type 2 diabetes mellitus. Diabetes Res Clin Pract 2005;68:S10–S21

    PubMed  CAS  Google Scholar 

  117. Gupta RK, Kaestner KH. HNF-4alpha: from MODY to late-onset type 2 diabetes. Trends Mol Med 2004;10:521–524

    PubMed  CAS  Google Scholar 

  118. Gloyn AL. Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum Mutat 2003;22:353–362

    PubMed  CAS  Google Scholar 

  119. Mitchell SM, Frayling TM. The role of transcription factors in maturity-onset diabetes of the young. Mol Genet Metab 2002;77:35–43

    PubMed  CAS  Google Scholar 

  120. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, Soos MA, Murgatroyd PR, Williams RM, Acerini CL, Dunger DB, Barford D, Umpleby AM, Wareham NJ, Davies HA, Schafer AJ, Stoffel M, O’Rahilly S, Barroso I. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 2004;304:1325–1328

    PubMed  CAS  Google Scholar 

  121. Hone J, Accili D, al-Gazali LI, Lestringant G, Orban T, Taylor SI. Homozygosity for a new mutation (Ile119–>Met) in the insulin receptor gene in five sibs with familial insulin resistance. J Med Genet 1994;31:715–716

    PubMed  CAS  Google Scholar 

  122. Kusari J, Takata Y, Hatada E, Freidenberg G, Kolterman O, Olefsky JM. Insulin resistance and diabetes due to different mutations in the tyrosine kinase domain of both insulin receptor gene alleles. J Biol Chem 1991;266:5260–5267

    PubMed  CAS  Google Scholar 

  123. Musso C, Cochran E, Moran SA, Skarulis MC, Oral EA, Taylor S, Gorden P. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): a 30-year prospective. Medicine 2004;83:209–222

    PubMed  CAS  Google Scholar 

  124. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, Epstein PN. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 2004;287:E896–E905

    PubMed  CAS  Google Scholar 

  125. Ferreira FM, Seica R, Oliveira PJ, Coxito PM, Moreno AJ, Palmeira CM, Santos MS. Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents. Biochim Biophys Acta 2003;1639:113–118

    PubMed  CAS  Google Scholar 

  126. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005;54:8–14

    PubMed  CAS  Google Scholar 

  127. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004;350:664–671

    PubMed  CAS  Google Scholar 

  128. Silva JP, Kohler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, Larsson NG. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 2000;26:336–340

    PubMed  CAS  Google Scholar 

  129. Brownlee M. A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 2003;112:1788–1790

    PubMed  CAS  Google Scholar 

  130. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005;307:384–387

    PubMed  CAS  Google Scholar 

  131. Malecki MT. Genetics of type 2 diabetes mellitus. Diabetes Res Clin Pract 2005;68:S10–S21

    PubMed  CAS  Google Scholar 

  132. Kelly MA, Mijovic CH, Barnett AH. Genetics of type 1 diabetes. Best Pract Res Clin Endocrinol Metab 2001;15:279–291

    PubMed  CAS  Google Scholar 

  133. Achenbach P, Bonifacio E, Ziegler AG. Predicting type 1 diabetes. Curr Diab Rep 2005;5:98–103

    PubMed  CAS  Google Scholar 

  134. Kavvoura FK, Ioannidis JP. CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE Review and meta-analysis. Am J Epidemiol 2005;162:3–16

    PubMed  Google Scholar 

  135. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36:337–338

    PubMed  CAS  Google Scholar 

  136. Mathieu C, Badenhoop K. Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol Metab 2005;16:261–266

    PubMed  CAS  Google Scholar 

  137. Luong K, Nguyen LT, Nguyen DN. The role of vitamin D in protecting type 1 diabetes mellitus. Diabetes Metab Res Rev 2005;21:338–346

    PubMed  CAS  Google Scholar 

  138. Illig T, Bongardt F, Schopfer A, Muller-Scholze S, Rathmann W, Koenig W, Thorand B, Vollmert C, Holle R, Kolb H, Herder C. Kooperative Gesundheitsforschung im Raum Augsburg/Cooperative Research in the Region of Augsburg. Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. J Clin Endocrinol Metab 2004;89:5053–5058

    PubMed  CAS  Google Scholar 

  139. Huth C, Heid IM, Vollmert C, Gieger C, Grallert H, Wolford JK, Langer B, Thorand B, Klopp N, Hamid YH, Pedersen O, Hansen T, Lyssenko V, Groop L, Meisinger C, Doring A, Lowel H, Lieb W, Hengstenberg C, Rathmann W, Martin S, Stephens JW, Ireland H, Mather H, Miller GJ, Stringham HM, Boehnke M, Tuomilehto J, Boeing H, Mohlig M, Spranger J, Pfeiffer A, Wernstedt I, Niklason A, Lopez-Bermejo A, Fernandez-Real JM, Hanson RL, Gallart L, Vendrell J, Tsiavou A, Hatziagelaki E, Humphries SE, Wichmann HE, Herder C, Illig T. IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants’ data from 21 studies. Diabetes 2006;55:2915–2921

    PubMed  CAS  Google Scholar 

  140. Mtiraoui N, Ezzidi I, Chaieb M, Marmouche H, Aouni Z, Chaieb A, Mahjoub T, Vaxillaire M, Almawi WY. MTHFR C677T and A1298C gene polymorphisms and hyperhomocysteinemia as risk factors of diabetic nephropathy in type 2 diabetes patients. Diabetes Res Clin Pract 2007;75:99–106

    PubMed  CAS  Google Scholar 

  141. Pollex RL, Mamakeesick M, Zinman B, Harris SB, Hanley AJ, Hegele RA. Methylenetetrahydrofolate reductase polymorphism 677C>T is associated with peripheral arterial disease in type 2 diabetes. Cardiovasc Diabetol 2005;4:17

    PubMed  Google Scholar 

  142. Holmkvist J, Cervin C, Lyssenko V, Winckler W, Anevski D, Cilio C, Almgren P, Berglund G, Nilsson P, Tuomi T, Lindgren CM, Altshuler D, Groop L. Common variants in HNF-1 alpha and risk of type 2 diabetes. Diabetologia 2006;49:2882–2291

    PubMed  CAS  Google Scholar 

  143. Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, Koya D, Maegawa H, Kashiwagi A, Babazono T, Matsuda M, Tanaka Y, Fujioka T, Hirose H, Eguchi T, Ohno Y, Groves CJ, Hattersley AT, Hitman GA, Walker M, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Kamatani N, McCarthy MI, Nakamura Y. Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet 2005;50:283–292

    PubMed  CAS  Google Scholar 

  144. Vimaleswaran KS, Radha V, Ghosh S, Majumder PP, Deepa R, Babu HN, Rao MR, Mohan V. Peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet Med 2005;22:1516–1521

    PubMed  CAS  Google Scholar 

  145. Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, Kimura S, Kadowaki T. A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia 2002;45: 740–743

    PubMed  CAS  Google Scholar 

  146. Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 2001;44:2220–2226

    PubMed  CAS  Google Scholar 

  147. Andrulionyte L, Zacharova J, Chiasson JL, Laakso M. STOP-NIDDM Study Group. Common polymorphisms of the PPAR-gamma2 (Pro12Ala) and PGC-1alpha (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial. Diabetologia 2004;47:2176–2284

    Google Scholar 

  148. Lacquemant C, Chikri M, Boutin P, Samson C, Froguel P. No association between the G482S polymorphism of the proliferator-activated receptor-gamma coactivator-1 (PGC-1) gene and Type II diabetes in French Caucasians. Diabetologia 2002;45:602–603

    PubMed  CAS  Google Scholar 

  149. Nelson TL, Fingerlin TE, Moss L, Barmada MM, Ferrell RE, Norris JM. The Peroxisome Proliferator-activated Receptor Gamma Coactivator-1 Alpha Gene (PGC-1alpha) is Not Associated with Type 2 Diabetes Mellitus or Body Mass Index Among Hispanic and Non Hispanic Whites from Colorado. Exp Clin Endocrinol Diabetes 2007;115:268–275

    PubMed  CAS  Google Scholar 

  150. Chen S, Yan W, Huang J, Yang W, Gu D. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha polymorphism is not associated with essential hypertension and type 2 diabetes mellitus in Chinese population. Hypertens Res 2004;27:813–820

    PubMed  CAS  Google Scholar 

  151. Nicaud V, Raoux S, Poirier O, Cambien F, O’Reilly DS, Tiret L. The TNF alpha/G-308A polymorphism influences insulin sensitivity in offspring of patients with coronary heart disease: the European Atherosclerosis Research Study II. Atherosclerosis 2002;161:317–325

    PubMed  CAS  Google Scholar 

  152. Vendrell J, Fernandez-Real JM, Gutierrez C, Zamora A, Simon I, Bardaji A, Ricart W, Richart C. A polymorphism in the promoter of the tumor necrosis factor-alpha gene (–308) is associated with coronary heart disease in type 2 diabetic patients. Atherosclerosis 2003;167:257–264

    PubMed  CAS  Google Scholar 

  153. Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T, Holmkvist J, Gaudet D, Hudson TJ, Schaffner SF, Daly MJ, Hirschhorn JN, Groop L, Altshuler D. Haplo-type structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004;53:13

    Google Scholar 

  154. Tsuchiya T, Schwarz PE, Bosque-Plata LD, Geoffrey Hayes M, Dina C, Froguel P, Wayne Towers G, Fischer S, Temelkova-Kurktschiev T, Rietzsch H, Graessler J, Vcelak J, Palyzova D, Selisko T, Bendlova B, Schulze J, Julius U, Hanefeld M, Weedon MN, Evans JC, Frayling TM, Hattersley AT, Orho-Melander M, Groop L, Malecki MT, Hansen T, Pedersen O, Fingerlin TE, Boehnke M, Hanis CL, Cox NJ, Bell GI. Association of the calpain-10 gene with type 2 diabetes in Europeans: results of pooled and meta-analyses. Mol Genet Metab. 2006;89:174–184

    PubMed  CAS  Google Scholar 

  155. Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, O’Rahilly S, Rao PV, Bennett AJ, Jones EC, Menzel S, Prestwich P, Simecek N, Wishart M, Dhillon R, Fletcher C, Millward A, Demaine A, Wilkin T, Horikawa Y, Cox NJ, Bell GI, Ellard S, McCarthy MI, Hattersley AT. Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet 2001;69:544–552

    PubMed  CAS  Google Scholar 

  156. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26:163–175

    Google Scholar 

  157. Weedon MN, Schwarz PE, Horikawa Y, Iwasaki N, Illig T, Holle R, Rathmann W, Selisko T, Schulze J, Owen KR, Evans J, Del Bosque-Plata L, Hitman G, Walker M, Levy JC, Sampson M, Bell GI, McCarthy MI, Hattersley AT, Frayling TM. Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am J Hum Genet 2003;73:1208–1212

    Google Scholar 

  158. Iwasaki N, Horikawa Y, Tsuchiya T, Kitamura Y, Nakamura T, Tanizawa Y, Oka Y, Hara K, Kadowaki T, Awata T, Honda M, Yamashita K, Oda N, Yu L, Yamada N, Ogata M, Kamatani N, Iwamoto Y, Del Bosque-Plata L, Hayes MG, Cox NJ, Bell GI. Genetic variants in the calpain-10 gene and the development of type 2 diabetes in the Japanese population. J Hum Genet 2005;50:92–98

    PubMed  CAS  Google Scholar 

  159. Liang H, Murase Y, Katuta Y, Asano A, Kobayashi J, Mabuchi H. Association of LMNA 1908C/T polymorphism with cerebral vascular disease and diabetic nephropathy in Japanese men with type 2 diabetes. Clin Endocrinol 2005;63:317–322

    CAS  Google Scholar 

  160. Wegner L, Andersen G, Sparso T, Grarup N, Glumer C, Borch-Johnsen K, Jorgensen T, Hansen T, Pedersen O. Common variation in LMNA increases susceptibility to type 2 diabetes and associates with elevated fasting glycemia and estimates of body fat and height in the general population: studies of 7,495 Danish whites. Diabetes 2007;56:694–698

    PubMed  CAS  Google Scholar 

  161. Mesa JL, Loos RJ, Franks PW, Ong KK, Luan J, O’Rahilly S, Wareham NJ, Barroso I. Lamin A/C polymorphisms, type 2 diabetes, and the metabolic syndrome: case-control and quantitative trait studies. Diabetes 2007;56:884–889

    PubMed  CAS  Google Scholar 

  162. Owen KR, Groves CJ, Hanson RL, Knowler WC, Shuldiner AR, Elbein SC, Mitchell BD, Froguel P, Ng MC, Chan JC, Jia W, Deloukas P, Hitman GA, Walker M, Frayling TM, Hattersley AT, Zeggini E, McCarthy MI. Common variation in the LMNA gene (encoding lamin A/C) and type 2 diabetes: association analyses in 9,518 subjects. Diabetes 2007;56:879–883

    PubMed  CAS  Google Scholar 

  163. Almind K, Bjorbaek C, Vestergaard H, Hansen T, Echwald S, Pedersen O. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin dependent diabetes mellitus. Lancet 1993;342:828–832

    PubMed  CAS  Google Scholar 

  164. Jellema A, Zeegers MP, Feskens EJ, Dagnelie PC, Mensink RP. Gly972Arg variant in the insulin receptor substrate-1 gene and association with type 2 diabetes: a metaanalysis of 27 studies. Diabetologia 2003;46: 990–995

    PubMed  CAS  Google Scholar 

  165. Florez JC, Sjögren M, Burtt N, Orho-Melander M, Schayer S, Sun M, Almgren P, Lindblad U, Tuomi T, Gaudet D, Hudson TJ, Daly MJ, Ardlie KG, Hirschhorn JN, Altshuler D, Groop L. Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with type 2 diabetes. Diabetes 2004;53:3313–3318

    PubMed  CAS  Google Scholar 

  166. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T, Otabe S, Okada T, Eto K, Kadowaki H, Hagura R, Akanuma Y, Yazaki Y, Nagai R, Taniyama M, Matsubara K, Yoda M, Nakano Y, Tomita M, Kimura S, Ito C, Froguel P, Kadowaki T. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002;51:536–540

    PubMed  CAS  Google Scholar 

  167. Zacharova J, Chiasson JL, Laakso M. STOP-NIDDM Study Group. The common polymorphisms (single nucleotide polymorphism [SNP] +45 and SNP +276) of the adiponectin gene predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes 2005;54:893–899

    Google Scholar 

  168. Lacquemant C, Froguel P, Lobbens S, Izzo P, Dina C, Ruiz J. The adiponectin gene SNP+45 is associated with coronary artery disease in Type 2 (non-insulin-dependent) diabetes mellitus. Diabet Med 2004;21:776–781

    PubMed  CAS  Google Scholar 

  169. Bacci S, Menzaghi C, Ercolino T, Ma X, Rauseo A, Salvemini L, Vigna C, Fanelli R, Di Mario U, Doria A, Trischitta V. The +276 G/T single nucleotide polymorphism of the adiponectin gene is associated with coronary artery disease in type 2 diabetic patients. Diabetes Care 2004;27:2015–2020

    PubMed  CAS  Google Scholar 

  170. Soccio T, Zhang YY, Bacci S, Mlynarski W, Placha G, Raggio G, Di Paola R, Marucci A, Johnstone MT, Gervino EV, Abumrad NA, Klein S, Trischitta V, Doria A. Common haplotypes at the adiponectin receptor 1 (ADIPOR1) locus are associated with increased risk of coronary artery disease in type 2 diabetes. Diabetes 2006;55:2763–2770

    PubMed  CAS  Google Scholar 

  171. Damcott CM, Ott SH, Pollin TI, Reinhart LJ, Wang J, O’connell JR, Mitchell BD, Shuldiner AR. Genetic variation in adiponectin receptor 1 and adiponectin receptor 2 is associated with type 2 diabetes in the Old Order Amish. Diabetes 2005;54:2245–2250

    PubMed  CAS  Google Scholar 

  172. Albala C, Villarroel A, Santos JL, Angel B, Lera L, Liberman C, Sanchez H, Perez-Bravo F. FABP2 Ala54Thr polymorphism and diabetes in Chilean elders. Diabetes Res Clin Pract 2007;77:245–250

    PubMed  CAS  Google Scholar 

  173. Canani LH, Capp C, Ng DP, Choo SG, Maia AL, Nabinger GB, Santos K, Crispim D, Roisemberg I, Krolewski AS, Gross JL. The fatty acid-binding protein-2 A54T polymorphism is associated with renal disease in patients with type 2 diabetes. Diabetes 2005;54:3326–3330

    PubMed  CAS  Google Scholar 

  174. Li Y, Fisher E, Klapper M, Boeing H, Pfeiffer A, Hampe J, Schreiber S, Burwinkel B, Schrezenmeir J, Doring F. Association between functional FABP2 promoter haplotype and type 2 diabetes. Horm Metab Res 2006;38: 300–337

    PubMed  CAS  Google Scholar 

  175. Georgopoulos A, Bloomfield H, Collins D, Brousseau ME, Ordovas JM, O’connor JJ, Robins SJ, Schaefer EJ. Codon 54 polymorphism of the fatty acid binding protein (FABP) 2 gene is associated with increased cardiovascular risk in the dyslipidemic diabetic participants of the veterans affairs HDL intervention trial (VA-HIT). Atherosclerosis 2006 Aug 28; [Epub ahead of print]

    Google Scholar 

  176. Tai ES, Collins D, Robins SJ, O’Connor JJ Jr, Bloomfield HE, Ordovas JM, Schaefer EJ, Brousseau ME. The L162V polymorphism at the peroxisome proliferator activated receptor alpha locus modulates the risk of cardiovascular events associated with insulin resistance and diabetes mellitus: the Veterans Affairs HDL Intervention Trial (VA-HIT). Atherosclerosis 2006;187:153–160

    PubMed  CAS  Google Scholar 

  177. Flavell DM, Ireland H, Stephens JW, Hawe E, Acharya J, Mather H, Hurel SJ, Humphries SE. Peroxisome proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes. Diabetes 2005;54:582–586

    PubMed  CAS  Google Scholar 

  178. Sparso T, Hussain MS, Andersen G, Hainerova I, Borch-Johnsen K, Jorgensen T, Hansen T, Pedersen O. Relationships between the functional PPARalpha Leu162Val polymorphism and obesity, type 2 diabetes, dyslipidaemia, and related quantitative traits in studies of 5799 middle-aged white people. Mol Genet Metab 2007;90:205–209

    PubMed  CAS  Google Scholar 

  179. Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J, Inoue I, Seino Y, Yasuda K, Hanafusa T, Yamagata K, Awata T, Kadowaki T, Hara K, Yamada N, Gotoda T, Iwasaki N, Iwamoto Y, Sanke T, Nanjo K, Oka Y, Matsutani A, Maeda E, Kasuga M. The Pro12→Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 2001;50:891–894

    PubMed  CAS  Google Scholar 

  180. Doney AS, Fischer B, Leese G, Morris AD, Palmer CN. Cardiovascular risk in type 2 diabetes is associated with variation at the PPARG locus: a Go-DARTS study. Arterioscler Thromb Vasc Biol 2004;24:2403–2407

    PubMed  CAS  Google Scholar 

  181. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000;26:76–80

    PubMed  CAS  Google Scholar 

  182. Andrulionyte L, Peltola P, Chiasson JL, Laakso M. STOP-NIDDM Study Group. Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes 2006;55:2148–2152

    PubMed  CAS  Google Scholar 

  183. Rubin D, Helwig U, Pfeuffer M, Schreiber S, Boeing H, Fisher E, Pfeiffer A, Freitag-Wolf S, Foelsch UR, Doering F, Schrezenmeir J. A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J Hum Genet 2006;51:567–574

    PubMed  CAS  Google Scholar 

  184. Damcott CM, Pollin TI, Reinhart LJ, Ott SH, Shen H, Silver KD, Mitchell BD, Shuldiner AR. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes 2006;55:2654–2659

    PubMed  CAS  Google Scholar 

  185. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38:320–323

    PubMed  CAS  Google Scholar 

  186. Lehman DM, Hunt KJ, Leach RJ, Hamlington J, Arya R, Abboud HE, Duggirala R, Blangero J, Goring HH, Stern MP. Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans. Diabetes 2007;56:389–393

    PubMed  CAS  Google Scholar 

  187. van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, Strengman E, van Haeften TW, Hofker MH, Wijmenga C. Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort. Diabetologia 2007;50:59–62

    PubMed  CAS  Google Scholar 

  188. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, O’Connell P, Stern MP. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 1999;64:1127–1140

    PubMed  CAS  Google Scholar 

  189. Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol 2006;47:1093–1100

    PubMed  CAS  Google Scholar 

  190. Kalra SP, Kalra PS. Gene-transfer technology: a preventive neurotherapy to curb obesity, ameliorate metabolic syndrome and extend life expectancy. Trends Pharmacol Sci 2005;26:488–495

    PubMed  CAS  Google Scholar 

  191. Shah R, Jindal RM. Reversal of diabetes in the rat by injection of hematopoietic stem cells infected with recombinant adeno-associated virus containing the preproinsulin II gene. Pancreatology 2003;3:422–428

    PubMed  CAS  Google Scholar 

  192. Sasaki T, Fujimoto K, Sakai K, Nemoto M, Nakai N, Tajima N. Gene and cell-based therapy for diabetes mellitus: endocrine gene therapeutics. Endocr Pathol 2003;14:141–144

    PubMed  CAS  Google Scholar 

  193. Stanley WC. Rationale for a metabolic approach in diabetic coronary patients. Coron Artery Dis 2005;16: S11–S15

    PubMed  Google Scholar 

  194. Chinetti-Gbaguidi G, Fruchart JC, Staels B. Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Curr Opin Pharmacol 2005;5:177–183

    PubMed  CAS  Google Scholar 

  195. Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 2005;26:244–251

    PubMed  CAS  Google Scholar 

  196. Han SH, Quon MJ, Koh KK. Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-alpha activators. Hypertension 2005;46:1086–1092

    PubMed  CAS  Google Scholar 

  197. Bell DS. Optimizing treatment of diabetes and cardiovascular disease with combined alpha,beta-blockade. Curr Med Res Opin 2005;21:1191–1200

    PubMed  CAS  Google Scholar 

  198. Fragasso G, Piatti Md PM, Monti L, Palloshi A, Setola E, Puccetti P, Calori G, Lopaschuk GD, Margonato A. Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 2003;146:E18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J., Goldenthal, M.J., Moe, G.W. (2008). Metabolic Syndrome, Diabetes and Cardiometabolic Risks in Aging. In: Aging and the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74072-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74072-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74071-3

  • Online ISBN: 978-0-387-74072-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics