Advertisement

Atherosclerosis, Hypertension and Aging

  • José Marín-García
  • Michael J. Goldenthal
  • Gordon W. Moe

Keywords

Essential Hypertension Atherosclerotic Lesion Cholesteryl Ester Transfer Protein Systolic Hypertension Arterioscler Thromb Vasc Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lundberg MS, Crow MT. Age-related changes in the signaling and function of vascular smooth muscle cells. Exp Gerontol 1999;34:549–557PubMedCrossRefGoogle Scholar
  2. 2.
    Bilato C, Crow MT. Atherosclerosis and the vascular biology of aging. Aging (Milano) 1996;8:221–234Google Scholar
  3. 3.
    Pauly RR, Bilato C, Sollott SJ, Monticone R, Kelly PT, Lakatta EG, Crow MT. Role of calcium/calmodulin-dependent protein kinase II in the regulation of vascular smooth muscle cell migration. Circulation 1995;91:1107–1115PubMedGoogle Scholar
  4. 4.
    Lusis AJ. Atherosclerosis. Nature 2000;407:233–241PubMedCrossRefGoogle Scholar
  5. 5.
    Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 2003;111:1795–1803PubMedCrossRefGoogle Scholar
  6. 6.
    Goldstein JL, Brown MS. Regulation of low-density lipoprotein receptors: implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation 1987;76:504–507PubMedGoogle Scholar
  7. 7.
    Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA 1989;86:587–591PubMedCrossRefGoogle Scholar
  8. 8.
    Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derre A, Villeger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003;34:154–156PubMedCrossRefGoogle Scholar
  9. 9.
    Soutar AK, Naoumova RP, Traub LM. Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 2003;23:1963–1970PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, Calandra S, Bertolini S, Cossu F, Grishin N, Barnes R, Cohen JC, Hobbs HH. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001;292:1394–1398PubMedCrossRefGoogle Scholar
  11. 11.
    Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, Verhagen A, Rivera CR, Mulvihill SJ, Malloy MJ, Kane JP. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 2002;110:109–117PubMedCrossRefGoogle Scholar
  12. 12.
    McGill HC Jr, McMahan CA, Kruski AW, Mott GE. Relationship of lipoprotein cholesterol concentrations to experimental atherosclerosis in baboons. Arteriosclerosis 1981;1:3–12Google Scholar
  13. 13.
    Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann Intern Med 1979;90:85–91PubMedGoogle Scholar
  14. 14.
    Hoff HF, Bradley WA, Heideman CL, Gaubatz JW, Karagas MD, Gotto AM Jr. Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim Biophys Acta 1979;573:361–374PubMedGoogle Scholar
  15. 15.
    Grundy SM. Role of low-density lipoproteins in atherogenesis and development of coronary heart disease. Clin Chem 1995;41:139–146PubMedGoogle Scholar
  16. 16.
    Joossens JV. Mechanisms of hypercholesterolemia and atherosclerosis. Acta Cardiol Suppl 1988;29:63–83PubMedGoogle Scholar
  17. 17.
    Kesaniemi YA, Grundy SM. Increased low density lipoprotein production associated with obesity. Arteriosclerosis 1983;3:170–177PubMedGoogle Scholar
  18. 18.
    Ericsson S, Eriksson M, Vitols S, Einarsson K, Berglund L, Angelin B. Influence of age on the metabolism of plasma low density lipoproteins in healthy males. J Clin Invest 1991;87:591–596PubMedGoogle Scholar
  19. 19.
    Kreisberg RA, Kasim S. Cholesterol metabolism and aging. Am J Med 1987;82:54–60PubMedCrossRefGoogle Scholar
  20. 20.
    Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J Jr, Hayden MR. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999;22:336–345Google Scholar
  21. 21.
    Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999;22: 347–351PubMedCrossRefGoogle Scholar
  22. 22.
    Brousseau ME, Schaefer EJ, Dupuis J, Eustace B, Van Eerdewegh P, Goldkamp AL, Thurston LM, FitzGerald MG, Yasek-McKenna D, O’Neill G, Eberhart GP, Weiffenbach B, Ordovas JM, Freeman MW, Brown RH Jr, Gu JZ. Novel mutations in the gene encoding ATP-binding cassette 1 in four tangier disease kindreds. J Lipid Res 2000;41:433–441PubMedGoogle Scholar
  23. 23.
    Remaley AT, Rust S, Rosier M, Knapper C, Naudin L, Broccardo C, Peterson KM, Koch C, Arnould I, Prades C, Duverger N, Funke H, Assman G, Dinger M, Dean M, Chimini G, Santamarina-Fojo S, Fredrickson DS, Denefle P, Brewer HB Jr. Human ATP-binding cassette transporter 1 (ABC1): genomic organization and identification of the genetic defect in the original Tangier disease kindred. Proc Natl Acad Sci USA 1999;96:12685–12690PubMedCrossRefGoogle Scholar
  24. 24.
    Klein HG, Santamarina-Fojo S, Duverger N, Clerc M, Dumon MF, Albers JJ, Marcovina S, Brewer HB Jr. Fish eye syndrome: a molecular defect in the lecithin-cholesterol acyltransferase (LCAT) gene associated with normal alpha-LCAT-specific activity. Implications for classification and prognosis. J Clin Invest 1993;92:479–485PubMedCrossRefGoogle Scholar
  25. 25.
    Kuivenhoven JA, Stalenhoef AF, Hill JS, Demacker PN, Errami A, Kastelein JJ, Pritchard PH. Two novel molecular defects in the LCAT gene are associated with fish eye disease. Arterioscler Thromb Vasc Biol 1996;16: 294–303Google Scholar
  26. 26.
    Assmann G, Gotto AM Jr. HDL cholesterol and protective factors in atherosclerosis. Circulation 2004;109: III8–III14PubMedCrossRefGoogle Scholar
  27. 27.
    Caslake MJ, Packard CJ. Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase) and cardiovascular disease. Curr Opin Lipidol 2003;14:347–352PubMedCrossRefGoogle Scholar
  28. 28.
    Wilson PW, Anderson KM, Harris T, Kannel WB, Castelli WP. Determinants of change in total cholesterol and HDL-C with age: the Framingham Study. J Gerontol 1994;49:M252–M257PubMedGoogle Scholar
  29. 29.
    Traissac T, Salzmann M, Rainfray M, Emeriau JP, Bourdel-Marchasson I. [Significance of cholesterol levels in patients 75 years or older]. Presse Med. 2005;34:1525–1532PubMedGoogle Scholar
  30. 30.
    Weverling-Rijnsburger AW, Jonkers IJ, van Exel E, Gussekloo J, Westendorp RG. High-density vs low-density lipoprotein cholesterol as the risk factor for coronary artery disease and stroke in old age. Arch Intern Med 2003;163:1549–1554PubMedCrossRefGoogle Scholar
  31. 31.
    Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, Cheng S, Shuldiner AR. Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 2003;290:2030–2040PubMedCrossRefGoogle Scholar
  32. 32.
    Barbagallo CM, Averna MR, Frada G, Noto D, Cavera G, Notarbartolo A. Lipoprotein profile and high-density lipoproteins: subfractions distribution in centenarians. Gerontology 1998;44:106–110PubMedCrossRefGoogle Scholar
  33. 33.
    Arai Y, Hirose N, Nakazawa S, Yamamura K, Shimizu K, Takayama M, Ebihara Y, Osono Y, Homma S. Lipoprotein metabolism in Japanese centenarians: effects of apolipoprotein E polymorphism and nutritional status. J Am Geriatr Soc 2001;49:1434–1441PubMedCrossRefGoogle Scholar
  34. 34.
    Middelberg RP, Spector TD, Swaminathan R, Snieder H. Genetic and environmental influences on lipids, lipoproteins, and apolipoproteins: effects of menopause. Arterioscler Thromb Vasc Biol 2002;22:1142–1147PubMedCrossRefGoogle Scholar
  35. 35.
    Middelberg RP, Martin NG, Whitfield JB. Longitudinal genetic analysis of plasma lipids. Twin Res Hum Genet 2006;9:550–557PubMedCrossRefGoogle Scholar
  36. 36.
    Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K, Maruhama Y, Mabuchi H, Tall AR. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990;323:1234–1238PubMedCrossRefGoogle Scholar
  37. 37.
    Yamashita S, Hui DY, Wetterau JR, Sprecher DL, Harmony JA, Sakai N, Matsuzawa Y, Tarui S. Characterization of plasma lipoproteins in patients heterozygous for human plasma cholesteryl ester transfer protein (CETP) deficiency: plasma CETP regulates high-density lipoprotein concentration and composition. Metabolism 1991;40:756–763PubMedCrossRefGoogle Scholar
  38. 38.
    Hirano K, Yamashita S, Kuga Y, Sakai N, Nozaki S, Kihara S, Arai T, Yanagi K, Takami S, Menju M, Ishigami M, Yoshida Y, Kameda-Takemura K, Hayashi K, Matsuzawa Y. Atherosclerotic disease in marked hyperalphalipoproteinemia. Combined reduction of cholesteryl ester transfer protein and hepatic triglyceride lipase. Arterioscler Thromb Vasc Biol 1995;15:1849–1856PubMedGoogle Scholar
  39. 39.
    de Grooth GJ, Klerkx AH, Stroes ES, Stalenhoef AF, Kastelein JJ, Kuivenhoven JA. A review of CETP and its relation to atherosclerosis. J Lipid Res 2004;45:1967–1974PubMedCrossRefGoogle Scholar
  40. 40.
    Stein O, Stein Y. Lipid transfer proteins (LTP) and atherosclerosis. Atherosclerosis 2005;178:217–30PubMedCrossRefGoogle Scholar
  41. 41.
    Arai Y, Hirose N, Yamamura K, Nakazawa S, Shimizu K, Takayama M, Ebihara Y, Homma S, Gondo Y, Masui Y, Inagaki H. Deficiency of choresteryl ester transfer protein and gene polymorphisms of lipoprotein lipase and hepatic lipase are not associated with longevity. J Mol Med 2003;81:102–109PubMedGoogle Scholar
  42. 42.
    Bruce C, Sharp DS, Tall AR. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J Lipid Res 1998;39:1071–1078PubMedGoogle Scholar
  43. 43.
    Gronholdt ML, Sillesen H, Wiebe BM, Laursen H, Nordestgaard BG. Increased acute phase reactants are associated with levels of lipoproteins and increased carotid plaque volume. Eur J Vasc Endovasc Surg 2001;21: 227–234PubMedCrossRefGoogle Scholar
  44. 44.
    Strandberg TE, Vanhanen H, Tikkanen MJ. Associations between change in C-reactive protein and serum lipids during statin treatment. Ann Med 2000;32:579–583PubMedCrossRefGoogle Scholar
  45. 45.
    Arai Y, Hirose N. Aging and HDL metabolism in elderly people more than 100 years old. J Atheroscler Thromb 2004;11:246–252PubMedGoogle Scholar
  46. 46.
    Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 2000;121:255–260PubMedCrossRefGoogle Scholar
  47. 47.
    Ansell BJ, Watson KE, Weiss RE, Fonarow GC. hsCRP and HDL effects of statins trial (CHEST): rapid effect of statin therapy on C-reactive protein and high-density lipoprotein levels a clinical investigation. Heart Dis 2003;5:2–7PubMedCrossRefGoogle Scholar
  48. 48.
    Karaca I, Ilkay E, Akbulut M, Yavuzkir M, Pekdemir M, Akbulut H, Arslan N. Atorvastatin affects C-reactive protein levels in patients with coronary artery disease. Curr Med Res Opin 2003;19:187–191PubMedCrossRefGoogle Scholar
  49. 49.
    Ridker PM, Rifai N, Lowenthal SP. Rapid reduction in C-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation 2001;103:1191–1193PubMedGoogle Scholar
  50. 50.
    Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115–126PubMedCrossRefGoogle Scholar
  51. 51.
    Mosinger BJ. Human low-density lipoproteins: oxidative modification and its relation to age, gender, menopausal status and cholesterol concentrations. Eur J Clin Chem Clin Biochem 1997;35:207–214PubMedGoogle Scholar
  52. 52.
    Holvoet P, Harris TB, Tracy RP, Verhamme P, Newman AB, Rubin SM, Simonsick EM, Colbert LH, Kritchevsky SB. Association of high coronary heart disease risk status with circulating oxidized LDL in the well-functioning elderly: findings from the Health, Aging, and Body Composition study. Arterioscler Thromb Vasc Biol 2003;23:1444–1448PubMedCrossRefGoogle Scholar
  53. 53.
    Nakamura YK, Read MH, Elias JW, Omaye ST. Oxidation of serum low-density lipoprotein (LDL) and antioxidant status in young and elderly humans. Arch Gerontol Geriatr 2006;42:265–276PubMedCrossRefGoogle Scholar
  54. 54.
    Stulnig TM, Jurgens G, Chen Q, Moll D, Schonitzer D, Jarosch E, Wick G. Properties of low density lipoproteins relevant to oxidative modifications change paradoxically during aging. Atherosclerosis 1996;126:85–94PubMedCrossRefGoogle Scholar
  55. 55.
    Marathe GK, Prescott SM, Zimmerman GA, McIntyre TM. Oxidized LDL contains inflammatory PAF-like phospholipids. Trends Cardiovasc Med 2001;11:139–142PubMedCrossRefGoogle Scholar
  56. 56.
    Tokumura A, Sumida T, Toujima M, Kogure K, Fukuzawa K. Platelet-activating factor (PAF)-like oxidized phospholipids: relevance to atherosclerosis. Biofactors 2000;13:29–33PubMedGoogle Scholar
  57. 57.
    Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S, Castellani LW, Furlong CE, Costa LG, Fogelman AM, Lusis AJ. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 1998;394:284–287PubMedCrossRefGoogle Scholar
  58. 58.
    Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, Lusis AJ, Shih DM. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 2002;106:484–490PubMedCrossRefGoogle Scholar
  59. 59.
    Miyoshi M, Nakano Y, Sakaguchi T, Ogi H, Oda N, Suenari K, Kiyotani K, Ozono R, Oshima T, Yoshida T, Chayama K. Gene delivery of paraoxonase-1 inhibits neointimal hyperplasia after arterial balloon-injury in rabbits fed a high-fat diet. Hypertens Res 2007;30:85–91PubMedCrossRefGoogle Scholar
  60. 60.
    Ruiz J, Blanche H, James RW, Garin MC, Vaisse C, Charpentier G, Cohen N, Morabia A, Passa P, Froguel P. Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 1995;346: 869–872PubMedCrossRefGoogle Scholar
  61. 61.
    Odawara M, Tachi Y, Yamashita K. Paraoxonase polymorphism (Gln192-Arg) is associated with coronary heart disease in Japanese noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997;82:2257–2260PubMedCrossRefGoogle Scholar
  62. 62.
    Sanghera DK, Aston CE, Saha N, Kamboh MI. DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. Am J Hum Genet 1998;62:36–44PubMedCrossRefGoogle Scholar
  63. 63.
    Sanghera DK, Saha N, Aston CE, Kamboh MI. Genetic polymorphism of paraoxonase and the risk of coronary heart disease. Arterioscler Thromb Vasc Biol 1997;17:1067–1073PubMedGoogle Scholar
  64. 64.
    Zama T, Murata M, Matsubara Y, Kawano K, Aoki N, Yoshino H, Watanabe G, Ishikawa K, Ikeda Y. A 192Arg variant of the human paraoxonase (HUMPONA) gene polymorphism is associated with an increased risk for coronary artery disease in the Japanese. Arterioscler Thromb Vasc Biol 1997;17:3565–3569PubMedGoogle Scholar
  65. 65.
    Imai Y, Morita H, Kurihara H, Sugiyama T, Kato N, Ebihara A, Hamada C, Kurihara Y, Shindo T, Oh-hashi Y, Yazaki Y. Evidence for association between paraoxonase gene polymorphisms and atherosclerotic diseases. Atherosclerosis 2000;149:435–442PubMedCrossRefGoogle Scholar
  66. 66.
    Aynacioglu AS, Kepekci Y. The human paraoxonase Gln-Argl92 (Q/R) polymorphism in Turkish patients with coronary artery disease. Int J Cardiol 2000;74:33–37PubMedCrossRefGoogle Scholar
  67. 67.
    Gardemann A, Philipp M, Hes K, Katz N, Tillmanns H, Haberbosch W. The paraoxonase Leu-Met54 and Gln-Arg191 gene polymorphisms are not associated with the risk of coronary heart disease. Atherosclerosis 2000;152:421–431PubMedCrossRefGoogle Scholar
  68. 68.
    Ko YL, Ko YS, Wang SM, Hsu LA, Chang CJ, Chu PH, Cheng NJ, Chen WJ, Chiang CW, Lee YS. The Gln-Arg 191 polymorphism of the human paraoxonase gene is not associated with the risk of coronary artery disease among Chinese in Taiwan. Atherosclerosis 1998;141:259–264PubMedCrossRefGoogle Scholar
  69. 69.
    Ombres D, Pannitteri G, Montali A, Candeloro A, Seccareccia F, Campagna F, Cantini R, Campa PP, Ricci G, Arca M. The Gln-Arg192 polymorphism of human paraoxonase gene is not associated with coronary artery disease in Italian patients. Arterioscler Thromb Vasc Biol 1998;18:1611–1616PubMedGoogle Scholar
  70. 70.
    Chen Q, Reis SE, Kammerer CM, McNamara DM, Holubkov R, Sharaf BL, Sopko G, Pauly DF, Merz CN, Kamboh MI. WISE Study Group. Association between the severity of angiographic coronary artery disease and paraoxonase gene polymorphisms in the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Am J Hum Genet 2003;72:13–22Google Scholar
  71. 71.
    Tobin MD, Braund PS, Burton PR, Thompson JR, Steeds R, Channer K, Cheng S, Lindpaintner K, Samani NJ. Genotypes and haplotypes predisposing to myocardial infarction: a multilocus case-control study. Eur Heart J 2004;25:459–467PubMedCrossRefGoogle Scholar
  72. 72.
    Senti M, Tomas M, Vila J, Marrugat J, Elosua R, Sala J, Masia R. Relationship of age-related myocardial infarction risk and Gln/Arg 192 variants of the human paraoxonase1 gene: the REGICOR study. Atherosclerosis 2001;156:443–449PubMedCrossRefGoogle Scholar
  73. 73.
    Baum L, Ng HK, Woo KS, Tomlinson B, Rainer TH, Chen X, Cheung WS, Chan DK, Thomas GN, Tong CS, Wong KS. Paraoxonase 1 gene Q192R polymorphism affects stroke and myocardial infarction risk. Clin Biochem 2006;39:191–195PubMedCrossRefGoogle Scholar
  74. 74.
    Saeed M, Perwaiz Iqbal M, Yousuf FA, Perveen S, Shafiq M, Sajid J, Frossard PM. Interactions and associations of paraoxonase gene cluster polymorphisms with myocardial infarction in a Pakistani population. Clin Genet 2007;71:238–244PubMedCrossRefGoogle Scholar
  75. 75.
    Martinelli N, Girelli D, Olivieri O, Stranieri C, Trabetti E, Pizzolo F, Friso S, Tenuti I, Cheng S, Grow MA, Pignatti PF, Corrocher R. Interaction between smoking and PON2 Ser311Cys polymorphism as a determinant of the risk of myocardial infarction. Eur J Clin Invest 2004;34:14–20PubMedCrossRefGoogle Scholar
  76. 76.
    Hulthe J. Antibodies to oxidized LDL in atherosclerosis development – clinical and animal studies. Clin Chim Acta 2004;348:1–8PubMedCrossRefGoogle Scholar
  77. 77.
    Ramachandran A, Levonen AL, Brookes PS, Ceaser E, Shiva S, Barone MC, Darley-Usmar rley-Usmar V. Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic Biol Med 2002;33:1465–1474PubMedCrossRefGoogle Scholar
  78. 78.
    Zmijewski JW, Moellering DR, Le GC, Landar A, Ramachandran A, Darley-Usmar VM. Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells. Am J Physiol Heart Circ Physiol 2005;289:H852–H861Google Scholar
  79. 79.
    Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis 2006;185:219–226PubMedCrossRefGoogle Scholar
  80. 80.
    Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002;95:89–100PubMedCrossRefGoogle Scholar
  81. 81.
    Adachi H, Tsujimoto M. Endothelial scavenger receptors. Prog Lipid Res 2006;45:379–404PubMedCrossRefGoogle Scholar
  82. 82.
    Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6:131–138PubMedGoogle Scholar
  83. 83.
    Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990;344:254–257PubMedCrossRefGoogle Scholar
  84. 84.
    Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990;87:5134–5138PubMedCrossRefGoogle Scholar
  85. 85.
    Palkama T. Induction of interleukin-1 production by ligands binding to the scavenger receptor in human monocytes and the THP-1 cell line. Immunology 1991;74:432–438PubMedGoogle Scholar
  86. 86.
    Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM Jr, Boerwinkle E. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997;96:4219–4225PubMedGoogle Scholar
  87. 87.
    Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 2005;85:9–23PubMedCrossRefGoogle Scholar
  88. 88.
    Auer J, Weber T, Berent R, Lassnig E, Lamm G, Eber B. Genetic polymorphisms in cytokine and adhesion molecule genes in coronary artery disease. Am J Pharmacogenomics 2003;3:317–328PubMedCrossRefGoogle Scholar
  89. 89.
    Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL. CD36 and macrophages in atherosclerosis. Cardiovasc Res 2007 Mar 14Google Scholar
  90. 90.
    Johnson GB, Brunn GJ, Platt JL. Activation of mammalian Toll-like receptors by endogenous agonists. Crit Rev Immunol 2003;23:15–44PubMedCrossRefGoogle Scholar
  91. 91.
    Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, Luthringer D, Xu XP, Rajavashisth TB, Yano J, Kaul S, Arditi M. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001;104:3103–3108PubMedCrossRefGoogle Scholar
  92. 92.
    Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002;105:1158–1161PubMedGoogle Scholar
  93. 93.
    Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O, Akira S. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-alpha induction. J Exp Med 2005;201:15–923CrossRefGoogle Scholar
  94. 94.
    Ruckdeschel K, Pfaffinger G, Haase R, Sing A, Weighardt H, Hacker G, Holzmann B, Heesemann J. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 2004;173:3320–3328PubMedGoogle Scholar
  95. 95.
    Blessing E, Campbell LA, Rosenfeld ME, Chough N, Kuo CC. Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6J mice. Atherosclerosis 2001;158:13–17PubMedCrossRefGoogle Scholar
  96. 96.
    Caligiuri G, Rottenberg M, Nicoletti A, Wigzell H, Hansson GK. Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation 2001;103:2834–2838PubMedGoogle Scholar
  97. 97.
    Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002;105:1158–1161PubMedGoogle Scholar
  98. 98.
    Schwartz DA, Cook DN. Polymorphisms of the Toll-like receptors and human disease. Clin Infect Dis 2005;41:S403–S407PubMedCrossRefGoogle Scholar
  99. 99.
    Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet 2000;25:187–191PubMedCrossRefGoogle Scholar
  100. 100.
    Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002;347:185–192PubMedCrossRefGoogle Scholar
  101. 101.
    Labrum R, Bevan S, Sitzer M, Lorenz M, Markus HS. Toll receptor polymorphisms and carotid artery intima-media thickness. Stroke 2007;38:1179–1184PubMedCrossRefGoogle Scholar
  102. 102.
    Hamann L, Glaeser C, Hamprecht A, Gross M, Gomma A, Schumann RR. Toll-like receptor (TLR)-9 promotor polymorphisms and atherosclerosis. Clin Chim Acta 2006;364:303–307PubMedCrossRefGoogle Scholar
  103. 103.
    Norata GD, Garlaschelli K, Ongari M, Raselli S, Grigore L, Benvenuto F, Maggi FM, Catapano AL. Effect of the Toll-like receptor 4 (TLR-4) variants on intima-media thickness and monocyte-derived macrophage response to LPS. J Intern Med 2005;258:21–27PubMedCrossRefGoogle Scholar
  104. 104.
    Hernesniemi J, Lehtimaki T, Rontu R, Islam MS, Eklund C, Mikkelsson J, Ilveskoski E, Kajander O, Goebeler S, Viiri LE, Hurme M, Karhunen PJ. Toll-like receptor 4 polymorphism is associated with coronary stenosis but not with the occurrence of acute or old myocardial infarctions. Scand J Clin Lab Invest. 2006;66:667–675Google Scholar
  105. 105.
    Ameziane N, Beillat T, Verpillat P, Chollet-Martin S, Aumont MC, Seknadji P, Lamotte M, Lebret D, Ollivier V, de Prost D. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 2003;23:e61–e64PubMedCrossRefGoogle Scholar
  106. 106.
    Boekholdt SM, Agema WR, Peters RJ, Zwinderman AH, van der Wall EE, Reitsma PH, Kastelein JJ, Jukema JW. Regression growth evaluation statin study group. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003;107:2416–2421Google Scholar
  107. 107.
    Hamann L, Gomma A, Schroder NW, Stamme C, Glaeser C, Schulz S, Gross M, Anker SD, Fox K, Schumann RR. A frequent toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis. J Mol Med 2005;83:478–485PubMedCrossRefGoogle Scholar
  108. 108.
    Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 2004;20:455–480PubMedCrossRefGoogle Scholar
  109. 109.
    Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, Tontonoz P. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 2001;98:507–512PubMedCrossRefGoogle Scholar
  110. 110.
    Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001;7:161–171PubMedCrossRefGoogle Scholar
  111. 111.
    Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001;7: 53–58PubMedCrossRefGoogle Scholar
  112. 112.
    Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241–252PubMedCrossRefGoogle Scholar
  113. 113.
    Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998;93:229–240PubMedCrossRefGoogle Scholar
  114. 114.
    Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000;106:523–531PubMedGoogle Scholar
  115. 115.
    Li AC, Binder CJ, Gutierrez A, Brown KK, Plotkin CR, Pattison JW, Valledor AF, Davis RA, Willson TM, Witztum JL, Palinski W, Glass CK. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 2004;114:1564–1567PubMedCrossRefGoogle Scholar
  116. 116.
    Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9:213–219PubMedCrossRefGoogle Scholar
  117. 117.
    Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;391:79–82PubMedCrossRefGoogle Scholar
  118. 118.
    Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 2005;437:759–763PubMedCrossRefGoogle Scholar
  119. 119.
    Gutstein DE, Fuster V. Pathophysiology and clinical significance of atherosclerotic plaque rupture. Cardiovasc Res 1999;41:323–333PubMedCrossRefGoogle Scholar
  120. 120.
    Molloy KJ, Thompson MM, Jones JL, Schwalbe EC, Bell PR, Naylor AR, Loftus IM. Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activity. Circulation 2004;110:337–343PubMedCrossRefGoogle Scholar
  121. 121.
    Corti R, Hutter R, Badimon JJ, Fuster V. Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 2004;17:35–44PubMedCrossRefGoogle Scholar
  122. 122.
    Fuster V, Fayad ZA, Moreno PR, Poon M, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque: Part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 2005;46:1209–1218PubMedCrossRefGoogle Scholar
  123. 123.
    Jarvisalo MJ, Juonala M, Raitakari OT. Assessment of inflammatory markers and endothelial function. Curr Opin Clin Nutr Metab Care 2006;9:547–552PubMedGoogle Scholar
  124. 124.
    Fraley AE, Tsimikas S. Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Curr Opin Lipidol 2006;17:502–509PubMedCrossRefGoogle Scholar
  125. 125.
    Zalewski A, Nelson JJ, Hegg L, Macphee C. Lp-PLA2: a new kid on the block. Clin Chem 2006;52:1645–1650PubMedCrossRefGoogle Scholar
  126. 126.
    Baird AE. Blood biologic markers of stroke: improved management, reduced cost? Curr Atheroscler Rep 2006;8:267–275PubMedCrossRefGoogle Scholar
  127. 127.
    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004;109:III27–III32PubMedGoogle Scholar
  128. 128.
    Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J 2003;17:1183–1185PubMedGoogle Scholar
  129. 129.
    Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genom 2004;17:21–30CrossRefGoogle Scholar
  130. 130.
    Tuomisto TT, Yla-Herttuala S. What have we learnt about microarray analyses of atherogenesis? Curr Opin Lipidol 2005;16:201–205PubMedCrossRefGoogle Scholar
  131. 131.
    Tuomisto TT, Korkeela A, Rutanen J, Viita H, Brasen JH, Riekkinen MS, Rissanen TT, Karkola K, Kiraly Z, Kolble K, Yla-Herttuala S. Gene expression in macrophage-rich inflammatory cell infiltrates in human atherosclerotic lesions as studied by laser microdissection and DNA array: overexpression of HMG-CoA reductase, colony stimulating factor receptors, CD11A/CD18 integrins, and interleukin receptors. Arterioscler Thromb Vasc Biol 2003;23:2235–2240PubMedCrossRefGoogle Scholar
  132. 132.
    Satterthwaite G, Francis SE, Suvarna K, Blakemore S, Ward C, Wallace D, Braddock M, Crossman D. Differential gene expression in coronary arteries from patients presenting with ischemic heart disease: further evidence for the inflammatory basis of atherosclerosis. Am Heart J 2005;150:488–499PubMedCrossRefGoogle Scholar
  133. 133.
    Gagarin D, Yang Z, Butler J, Wimmer M, Du B, Cahan P, McCaffrey TA. Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL. J Mol Cell Cardiol 2005;39:453–465PubMedCrossRefGoogle Scholar
  134. 134.
    Randi AM, Biguzzi E, Falciani F, Merlini P, Blakemore S, Bramucci E, Lucreziotti S, Lennon M, Faioni EM, Ardissino D, Mannucci PM. Identification of differentially expressed genes in coronary atherosclerotic plaques from patients with stable or unstable angina by cDNA array analysis. J Thromb Haemost 2003;1:829–835PubMedCrossRefGoogle Scholar
  135. 135.
    Csoka AB, English SB, Simkevich CP, Ginzinger DG, Butte AJ, Schatten GP, Rothman FG, Sedivy JM. Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 2004;3:235–243PubMedCrossRefGoogle Scholar
  136. 136.
    Bijnens AP, Lutgens E, Ayoubi T, Kuiper J, Horrevoets AJ, Daemen MJ. Genome-wide expression studies of atherosclerosis: critical issues in methodology, analysis, interpretation of transcriptomics data. Arterioscler Thromb Vasc Biol 2006;26:1226–1235PubMedCrossRefGoogle Scholar
  137. 137.
    Papaspyridonos M, Smith A, Burnand KG, Taylor P, Padayachee S, Suckling KE, James CH, Greaves DR, Patel L. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2006;26:1837–1844PubMedCrossRefGoogle Scholar
  138. 138.
    Seo D, Wang T, Dressman H, Herderick EE, Iversen ES, Dong C, Vata K, Milano CA, Rigat F, Pittman J, Nevins JR, West M, Goldschmidt-Clermont PJ. Gene expression phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol 2004;24:1922–1927PubMedCrossRefGoogle Scholar
  139. 139.
    King JY, Ferrara R, Tabibiazar R, Spin JM, Chen MM, Kuchinsky A, Vailaya A, Kincaid R, Tsalenko A, Deng DX, Connolly A, Zhang P, Yang E, Watt C, Yakhini Z, Ben-Dor A, Adler A, Bruhn L, Tsao P, Quertermous T, Ashley EA. Pathway analysis of coronary atherosclerosis. Physiol Genomics 2005;23:103–118PubMedCrossRefGoogle Scholar
  140. 140.
    Deng DX, Tsalenko A, Vailaya A, Ben-Dor A, Kundu R, Estay I, Tabibiazar R, Kincaid R, Yakhini Z, Bruhn L, Quertermous T. Differences in vascular bed disease susceptibility reflect differences in gene expression response to atherogenic stimuli. Circ Res 2006;98:200–208PubMedCrossRefGoogle Scholar
  141. 141.
    Beauchamp NJ, van Achterberg TA, Engelse MA, Pannekoek H, de Vries CJ. Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis. Genomics 2003;82:288–299Google Scholar
  142. 142.
    Zhang QJ, Goddard M, Shanahan C, Shapiro L, Bennett M. Differential gene expression in vascular smooth muscle cells in primary atherosclerosis and in stent stenosis in humans. Arterioscler Thromb Vasc Biol 2002;22:2030–2036PubMedCrossRefGoogle Scholar
  143. 143.
    Jang WG, Kim HS, Park KG, Park YB, Yoon KH, Han SW, Hur SH, Park KS, Lee IK. Analysis of proteome and transcriptome of tumor necrosis factor alpha stimulated vascular smooth muscle cells with or without alpha lipoic acid. Proteomics 2004;4:3383–3393PubMedCrossRefGoogle Scholar
  144. 144.
    Martinet W, Schrijvers DM, De Meyer GR, Thielemans J, Knaapen MW, Herman AG, Kockx MM. Gene expression profiling of apoptosis-related genes in human atherosclerosis: upregulation of death-associated protein kinase. Arterioscler Thromb Vasc Biol 2002;22:2023–2029PubMedCrossRefGoogle Scholar
  145. 145.
    Blaschke F, Bruemmer D, Yin F, Takata Y, Wang W, Fishbein MC, Okura T, Higaki J, Graf K, Fleck E, Hsueh WA, Law RE. C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation 2004;110:579–587PubMedCrossRefGoogle Scholar
  146. 146.
    McCaffrey TA, Du B, Fu C, Bray PJ, Sanborn TA, Deutsch E, Tarazona N, Shaknovitch A, Newman G, Patterson C, Bush HL Jr. The expression of TGF-beta receptors in human atherosclerosis: evidence for acquired resistance to apoptosis due to receptor imbalance. J Mol Cell Cardiol 1999;31:1627–1642PubMedCrossRefGoogle Scholar
  147. 147.
    Bray PJ, Du B, Mejia VM, Hao SC, Deutsch E, Fu C, Wilson RC, Hanauske-Abel H, McCaffrey TA. Glucocorticoid resistance caused by reduced expression of the glucocorticoid receptor in cells from human vascular lesions. Arterioscler Thromb Vasc Biol 1999;19:1180–1189PubMedGoogle Scholar
  148. 148.
    Gagarin D, Yang Z, Butler J, Wimmer M, Du B, Cahan P, McCaffrey TA. Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL. J Mol Cell Cardiol 2005;39:453–465PubMedCrossRefGoogle Scholar
  149. 149.
    Vazquez-Padron RI, Lasko D, Li S, Louis L, Pestana IA, Pang M, Liotta C, Fornoni A, Aitouche A, Pham SM. Aging exacerbates neointimal formation, and increases proliferation and reduces susceptibility to apoptosis of vascular smooth muscle cells in mice. J Vasc Surg 2004;40:1199–1207PubMedCrossRefGoogle Scholar
  150. 150.
    Kang JG, Patino WD, Matoba S, Hwang PM. Genomic analysis of circulating cells: a window into atherosclerosis. Trends Cardiovasc Med 2006;16:163–168PubMedCrossRefGoogle Scholar
  151. 151.
    Baba MI, Kaul D, Grover A. Importance of blood cellular genomic profile in coronary heart disease. J Biomed Sci 2006;13:17–26PubMedCrossRefGoogle Scholar
  152. 152.
    Miller DT, Ridker PM, Libby P, Kwiatkowski DJ. Atherosclerosis: the path from genomics to therapeutics. J Am Coll Cardiol 2007;49:1589–1599PubMedCrossRefGoogle Scholar
  153. 153.
    Llaverias G, Noe V, Penuelas S, Vazquez-Carrera M, Sanchez RM, Laguna JC, Ciudad CJ, Alegret M. Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL-treated human macrophages. Biochem Biophys Res Commun 2004;318:265–274PubMedCrossRefGoogle Scholar
  154. 154.
    Morikawa S, Takabe W, Mataki C, Wada Y, Izumi A, Saito Y, Hamakubo T, Kodama T. Global analysis of RNA expression profile in human vascular cells treated with statins. J Atheroscler Thromb 2004;11:62–72PubMedGoogle Scholar
  155. 155.
    Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, Vahabzadeh K, Hama S, Hough G, Kamranpour N, Berliner JA, Lusis AJ, Fogelman AM. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 2004;45:993–1007PubMedCrossRefGoogle Scholar
  156. 156.
    Navab M, Anantharamaiah GM, Hama S, Garber DW, Chaddha M, Hough G, Lallone R, Fogelman AM. Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 2002;105:290–292PubMedCrossRefGoogle Scholar
  157. 157.
    Nilsson J, Nordin Fredrikson G, Schiopu A, Shah PK, Jansson B, Carlsson R. Oxidized LDL antibodies in treatment and risk assessment of atherosclerosis and associated cardiovascular disease. Curr Pharm Des 2007;13:1021–1030PubMedCrossRefGoogle Scholar
  158. 158.
    Robinson I, de Serna DG, Gutierrez A, Schade DS. Vitamin E in humans: an explanation of clinical trial failure. Endocr Pract 2006;12:576–582PubMedGoogle Scholar
  159. 159.
    Williams KJ, Fisher EA. Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 2005;8:139–146PubMedCrossRefGoogle Scholar
  160. 160.
    Cherubini A, Vigna GB, Zuliani G, Ruggiero C, Senin U, Fellin R. Role of antioxidants in atherosclerosis: epidemiological and clinical update. Curr Pharm Des 2005;11:2017–2032PubMedCrossRefGoogle Scholar
  161. 161.
    Li D, Mehta JL. 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors protect against oxidized low-density lipoprotein-induced endothelial dysfunction. Endothelium 2003;10:17–21PubMedCrossRefGoogle Scholar
  162. 162.
    Rosenson RS. Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis 2004;173:1–12PubMedCrossRefGoogle Scholar
  163. 163.
    Patel TN, Shishehbor MH, Bhatt DL. A review of high-dose statin therapy: targeting cholesterol and inflammation in atherosclerosis. Eur Heart J 2007;28:664–672PubMedCrossRefGoogle Scholar
  164. 164.
    Nachimuthu S, Raggi P. Novel agents to manage dyslipidemias and impact atherosclerosis. Cardiovasc Hematol Disord Drug Targets 2006;6:209–217PubMedGoogle Scholar
  165. 165.
    Klerkx AH, El Harchaoui K, van der Steeg WA, Boekholdt SM, Stroes ES, Kastelein JJ, Kuivenhoven JA. Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol levels: pathways by which modulation of CETP activity may alter atherogenesis. Arterioscler Thromb Vasc Biol 2006;26:706–715PubMedCrossRefGoogle Scholar
  166. 166.
    Kraaijeveld AO, de Jager SC, van Berkel TJ, Biessen EA, Jukema JW. Chemokines and atherosclerotic plaque progression: towards therapeutic targeting? Curr Pharm Des 2007;13:1039–1052PubMedCrossRefGoogle Scholar
  167. 167.
    Reutershan J. CXCR2–the receptor to hit? Drug News Perspect 2006;19:615–623PubMedCrossRefGoogle Scholar
  168. 168.
    Campbell IW. The clinical significance of PPAR gamma agonism. Curr Mol Med 2005;5:349–363PubMedCrossRefGoogle Scholar
  169. 169.
    Grabar P. Hypothesis. Auto-antibodies and immunological theories: an analytical review. Clin Immunol Immunopathol 1975;4:453–466Google Scholar
  170. 170.
    Witztum JL. Splenic immunity and atherosclerosis: a glimpse into a novel paradigm? J Clin Invest 2002;109:721–724PubMedCrossRefGoogle Scholar
  171. 171.
    Robinette CD, Fraumeni JF Jr. Splenectomy and subsequent mortality in veterans of the 1939–45 war. Lancet 1977;2:127–129PubMedGoogle Scholar
  172. 172.
    Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002;109:745–753PubMedCrossRefGoogle Scholar
  173. 173.
    Weksler ME, Goodhardt M. Do age-associated changes in ’physiologic’ autoantibodies contribute to infection, atherosclerosis, and Alzheimer’s disease? Exp Gerontol 2002;37:971–979PubMedCrossRefGoogle Scholar
  174. 174.
    Riley SC, Froscher BG, Linton PJ, Zharhary D, Marcu K, Klinman NR. Altered VH gene segment utilization in the response to phosphorylcholine by aged mice. J Immunol 1989;143:3798–3805PubMedGoogle Scholar
  175. 175.
    Nicoletti C. Antibody protection in aging: influence of idiotypic repertoire and antibody binding activity to a bacterial antigen. Exp Mol Pathol 1995;62:99–108PubMedCrossRefGoogle Scholar
  176. 176.
    Lee PY, Alexander KP, Hammill BG, Pasquali SK, Peterson ED. Representation of elderly persons and women in published randomized trials of acute coronary syndromes. JAMA 2001;286:708–713PubMedCrossRefGoogle Scholar
  177. 177.
    Aronow WS. The older man’s heart and heart disease. Med Clin North Am 1999;83:1291–1303PubMedCrossRefGoogle Scholar
  178. 178.
    Aronow WS, Ahn C, Gutstein H. Prevalence and incidence of cardiovascular disease in 1160 older men and 2464 older women in a long-term health care facility. J Gerontol A Biol Sci Med Sci 2002;57:M45–M46PubMedGoogle Scholar
  179. 179.
    Woodworth S, Nayak D, Aronow WS, Pucillo AL, Koneru S. Comparison of acute coronary syndromes in men versus women > or = 70 years of age. Am J Cardiol 2002;90:1145–1147PubMedCrossRefGoogle Scholar
  180. 180.
    Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, Mautner B, Corbalan R, Radley D, Braunwald E. The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA 2000;284:835–842PubMedCrossRefGoogle Scholar
  181. 181.
    Smith SC Jr, Feldman TE, Hirshfeld JW Jr, Jacobs AK, Kern MJ, King SB III, Morrison DA, O’neill WW, Schaff HV, Whitlow PL, Williams DO, Antman EM, Smith SC Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol 2006;47:e1–121Google Scholar
  182. 182.
    Braunwald E, Antman EM, Beasley JW, Califf RM, Cheitlin MD, Hochman JS, Jones RH, Kereiakes D, Kupersmith J, Levin TN, Pepine CJ, Schaeffer JW, Smith EE III, Steward DE, Theroux P, Alpert JS, Eagle KA, Faxon DP, Fuster V, Gardner TJ, Gregoratos G, Russell RO, Smith SC Jr. ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). J Am Coll Cardiol 2000;36:970–1062Google Scholar
  183. 183.
    Woodworth S, Nayak D, Aronow WS, Pucillo AL, Koneru S. Cardiovascular medications taken by patients aged >or=70 years hospitalized for acute coronary syndromes before hospitalization and at hospital discharge. Prev Cardiol 2002;5:173–176PubMedCrossRefGoogle Scholar
  184. 184.
    Antman EM, Morrow DA, McCabe CH, Murphy SA, Ruda M, Sadowski Z, Budaj A, Lopez-Sendon JL, Guneri S, Jiang F, White HD, Fox KA, Braunwald E. Enoxaparin versus unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction. N Engl J Med 2006;354:1477–1488PubMedCrossRefGoogle Scholar
  185. 185.
    Wallentin L, Goldstein P, Armstrong PW, Granger CB, Adgey AA, Arntz HR, Bogaerts K, Danays T, Lindahl B, Makijarvi M, Verheugt F, Van de Werf F. Efficacy and safety of tenecteplase in combination with the low-molecular-weight heparin enoxaparin or unfractionated heparin in the prehospital setting: the Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3 PLUS randomized trial in acute myocardial infarction. Circulation 2003;108:135–142PubMedCrossRefGoogle Scholar
  186. 186.
    Antman EM, Morrow DA, McCabe CH, Jiang F, White HD, Fox KA, Sharma D, Chew P, Braunwald E. Enoxaparin versus unfractionated heparin as antithrombin therapy in patients receiving fibrinolysis for ST-elevation myocardial infarction. Design and rationale for the Enoxaparin and Thrombolysis Reperfusion for Acute Myocardial Infarction Treatment-Thrombolysis In Myocardial Infarction study 25 (ExTRACT-TIMI 25). Am Heart J 2005;149:217–226PubMedCrossRefGoogle Scholar
  187. 187.
    Skolnick AH, Alexander KP, Chen AY, Roe MT, Pollack CV Jr, Ohman EM, Rumsfeld JS, Gibler WB, Peterson ED, Cohen DJ. Characteristics, management, and outcomes of 5,557 patients age > or =90 years with acute coronary syndromes: results from the CRUSADE Initiative. J Am Coll Cardiol 2007;49:1790–1797PubMedCrossRefGoogle Scholar
  188. 188.
    Chen H, Liu J, Yang M. Corticosteroids for viral myocarditis. Cochrane Database Syst Rev 2006;4:CD004471PubMedGoogle Scholar
  189. 189.
    Heart Failure Society Of America. Myocarditis: Current treatment. J Card Fail 2006;12:e120–e122Google Scholar
  190. 190.
    Aretz HT, Billingham ME, Edwards WD, Factor SM, Fallon JT, Fenoglio JJ Jr, Olsen EG, Schoen FJ. Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol 1987;1:3–14PubMedGoogle Scholar
  191. 191.
    Dec GW Jr, Waldman H, Southern J, Fallon JT, Hutter AM Jr, Palacios I. Viral myocarditis mimicking acute myocardial infarction. J Am Coll Cardiol 1992;20:85–89Google Scholar
  192. 192.
    Dec GW Jr, Palacios IF, Fallon JT, Aretz HT, Mills J, Lee DC, Johnson RA. Active myocarditis in the spectrum of acute dilated cardiomyopathies. Clinical features, histologic correlates, and clinical outcome. N Engl J Med 1985;312:885–890PubMedCrossRefGoogle Scholar
  193. 193.
    Kyto V, Saraste A, Voipio-Pulkki LM, Saukko P. Incidence of fatal myocarditis: a population-based study in Finland. Am J Epidemiol 2007;165:570–574PubMedCrossRefGoogle Scholar
  194. 194.
    Elliott WJ. Systemic hypertension. Curr Probl Cardiol 2007;32:201–259PubMedCrossRefGoogle Scholar
  195. 195.
    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005;365:217–223PubMedGoogle Scholar
  196. 196.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903–1913PubMedCrossRefGoogle Scholar
  197. 197.
    Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D’Agostino RB, Levy D. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA 2002;287: 1003–1010PubMedCrossRefGoogle Scholar
  198. 198.
    Lloyd-Jones DM, Evans JC, Larson MG, O’Donnell CJ, Levy D. Differential impact of systolic and diastolic blood pressure level on JNC-VI staging. Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 1999;34:381–385PubMedGoogle Scholar
  199. 199.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903–1913PubMedCrossRefGoogle Scholar
  200. 200.
    Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, de Zeeuw D, Shahinfar S, Toto R, Levey AS. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 2003;139:244–252PubMedGoogle Scholar
  201. 201.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903–1913PubMedCrossRefGoogle Scholar
  202. 202.
    Hyman DJ, Pavlik VN. Characteristics of patients with uncontrolled hypertension in the United States. N Engl J Med 2001;345:479–486PubMedCrossRefGoogle Scholar
  203. 203.
    Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA 2003;290:199–206PubMedCrossRefGoogle Scholar
  204. 204.
    Elliott WJ. Management of hypertension in the very elderly patient. Hypertension 2004;44:800–804PubMedCrossRefGoogle Scholar
  205. 205.
    Gueyffier F, Bulpitt C, Boissel JP, Schron E, Ekbom T, Fagard R, Casiglia E, Kerlikowske K, Coope J. Antihypertensive drugs in very old people: a subgroup meta-analysis of randomised controlled trials. INDANA Group. Lancet 1999;353:793–796PubMedCrossRefGoogle Scholar
  206. 206.
    Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA 1991;265:3255–3264CrossRefGoogle Scholar
  207. 207.
    Perry HM Jr, Davis BR, Price TR, Applegate WB, Fields WS, Guralnik JM, Kuller L, Pressel S, Stamler J, Probstfield JL. Effect of treating isolated systolic hypertension on the risk of developing various types and subtypes of stroke: the Systolic Hypertension in the Elderly Program (SHEP). JAMA 2000;284:465–471PubMedCrossRefGoogle Scholar
  208. 208.
    Kostis JB, Davis BR, Cutler J, Grimm RH Jr, Berge KG, Cohen JD, Lacy CR, Perry HM Jr, Blaufox MD, Wassertheil-Smoller S, Black HR, Schron E, Berkson DM, Curb JD, Smith WM, McDonald R, Applegate WB. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA 1997;278:212–216PubMedCrossRefGoogle Scholar
  209. 209.
    Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhager WH, Bulpitt CJ, de Leeuw PW, Dollery CT, Fletcher AE, Forette F, Leonetti G, Nachev C, O’Brien ET, Rosenfeld J, Rodicio JL, Tuomilehto J, Zanchetti A. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet 1997;350:757–764PubMedCrossRefGoogle Scholar
  210. 210.
    Liu L, Wang JG, Gong L, Liu G, Staessen JA. Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst-China) Collaborative Group. J Hypertens 1998;16:1823–1829PubMedCrossRefGoogle Scholar
  211. 211.
    Staessen JA, Gasowski J, Wang JG, Thijs L, Den HE, Boissel JP, Coope J, Ekbom T, Gueyffier F, Liu L, Kerlikowske K, Pocock S, Fagard RH. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet 2000;355:865–872PubMedCrossRefGoogle Scholar
  212. 212.
    Kjeldsen SE, Dahlof B, Devereux RB, Julius S, Aurup P, Edelman J, Beevers G, de FU, Fyhrquist F, Ibsen H, Kristianson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Snapinn S, Wedel H. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA 2002;288:1491–1498Google Scholar
  213. 213.
    Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA 2002;288:2998–3007CrossRefGoogle Scholar
  214. 214.
    Gueyffier F, Bulpitt C, Boissel JP, Schron E, Ekbom T, Fagard R, Casiglia E, Kerlikowske K, Coope J. Antihypertensive drugs in very old people: a subgroup meta-analysis of randomised controlled trials. INDANA Group. Lancet 1999;353:793–796PubMedCrossRefGoogle Scholar
  215. 215.
    Mulrow CD, Cornell JA, Herrera CR, Kadri A, Farnett L, Aguilar C. Hypertension in the elderly. Implications and generalizability of randomized trials. JAMA 1994;272:1932–1938PubMedCrossRefGoogle Scholar
  216. 216.
    Bulpitt C, Fletcher A, Beckett N, Coope J, Gil-Extremera B, Forette F, Nachev C, Potter J, Sever P, Staessen J, Swift C, Tuomilehto J. Hypertension in the Very Elderly Trial (HYVET): protocol for the main trial. Drugs Aging 2001;18:151–164PubMedCrossRefGoogle Scholar
  217. 217.
    Staessen JA, Wang JG, Thijs L. Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens 2003;21:1055–1076PubMedCrossRefGoogle Scholar
  218. 218.
    Snieder H, Harshfield GA, Treiber FA. Heritability of blood pressure and hemodynamics in African- and European-American youth. Hypertension 2003;41:1196–1201PubMedCrossRefGoogle Scholar
  219. 219.
    Snieder H, Treiber FA. The Georgia Cardiovascular Twin Study. Twin Res 2002;5:497–498PubMedCrossRefGoogle Scholar
  220. 220.
    Imumorin IG, Dong Y, Zhu H, Poole JC, Harshfield GA, Treiber FA, Snieder H. A gene-environment interaction model of stress-induced hypertension. Cardiovasc Toxicol 2005;5:109–132PubMedCrossRefGoogle Scholar
  221. 221.
    Truswell AS, Kennelly BM, Hansen JD, Lee RB. Blood pressures of Kung bushmen in Northern Botswana. Am Heart J 1972;84:5–12PubMedCrossRefGoogle Scholar
  222. 222.
    Poulter NR, Khaw KT, Mugambi M, Peart WS, Rose G, Sever P. Blood pressure patterns in relation to age, weight and urinary electrolytes in three Kenyan communities. Trans R Soc Trop Med Hyg 1985;79:389–392PubMedCrossRefGoogle Scholar
  223. 223.
    Taddei S, Virdis A, Mattei P, Ghiadoni L, Fasolo CB, Sudano I, Salvetti A. Hypertension causes premature aging of endothelial function in humans. Hypertension 1997;29:736–743PubMedGoogle Scholar
  224. 224.
    Hamet P, Thorin-Trescases N, Moreau P, Dumas P, Tea BS, deBlois D, Kren V, Pravenec M, Kunes J, Sun Y, Tremblay J. Workshop: excess growth and apoptosis: is hypertension a case of accelerated aging of cardiovascular cells? Hypertension 2001;37:760–766Google Scholar
  225. 225.
    Liu JJ, Peng L, Bradley CJ, Zulli A, Shen J, Buxton BF. Increased apoptosis in the heart of genetic hypertension, associated with increased fibroblasts. Cardiovasc Res 2000;45:729–735PubMedCrossRefGoogle Scholar
  226. 226.
    Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens 2005;23:1831–1837PubMedCrossRefGoogle Scholar
  227. 227.
    Rodriguez-Iturbe B, Sepassi L, Quiroz Y, Ni Z, Wallace DC, Vaziri ND. Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. J Appl Physiol 2007;102:255–260PubMedCrossRefGoogle Scholar
  228. 228.
    Rao DC, Province MA, Leppert MF, Oberman A, Heiss G, Ellison RC, Arnett DK, Eckfeldt JH, Schwander K, Mockrin SC, Hunt SC. HyperGEN Network. A genome-wide affected sibpair linkage analysis of hypertension: the HyperGEN network. Am J Hypertens 2003;16:148–150Google Scholar
  229. 229.
    Jeunemaitre X, Inoue I, Williams C, Charru A, Tichet J, Powers M, Sharma AM, Gimenez-Roqueplo AP, Hata A, Corvol P, Lalouel JM. Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 1997;60:1448–1460PubMedCrossRefGoogle Scholar
  230. 230.
    Kato N, Sugiyama T, Morita H, Kurihara H, Yamori Y, Yazaki Y. Angiotensinogen gene and essential hypertension in the Japanese: extensive association study and meta-analysis on six reported studies. J Hypertens 1999;17:757–763PubMedCrossRefGoogle Scholar
  231. 231.
    Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, Cheng T, Ludwig EH, Sharma AM, Hata A, Jeunemaitre X, Lalouel JM. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997;99:1786–1797PubMedGoogle Scholar
  232. 232.
    Sethi AA, Nordestgaard BG, Gronholdt ML, Steffensen R, Jensen G, Tybjaerg-Hansen A. Angiotensinogen single nucleotide polymorphisms, elevated blood pressure, and risk of cardiovascular disease. Hypertension 2003;41:1202–1211PubMedCrossRefGoogle Scholar
  233. 233.
    Zhu X, Chang YP, Yan D, Weder A, Cooper R, Luke A, Kan D, Chakravarti A. Associations between hypertension and genes in the renin-angiotensin system. Hypertension 2003;41:1027–1034PubMedCrossRefGoogle Scholar
  234. 234.
    Higaki J, Baba S, Katsuya T, Sato N, Ishikawa K, Mannami T, Ogata J, Ogihara T. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation 2000;101:2060–2065PubMedGoogle Scholar
  235. 235.
    Turner ST, Boerwinkle E, Sing CF. Context-dependent associations of the ACE I/D polymorphism with blood pressure. Hypertension 1999;34:773–778PubMedGoogle Scholar
  236. 236.
    Bray MS, Krushkal J, Li L, Ferrell R, Kardia S, Sing CF, Turner ST, Boerwinkle E. Positional genomic analysis identifies the beta(2)-adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation 2000;101:2877–2882PubMedGoogle Scholar
  237. 237.
    Herrmann SM, Nicaud V, Tiret L, Evans A, Kee F, Ruidavets JB, Arveiler D, Luc G, Morrison C, Hoehe MR, Paul M, Cambien F. Polymorphisms of the beta2 -adrenoceptor (ADRB2) gene and essential hypertension: the ECTIM and PEGASE studies. J Hypertens 2002;20:229–235PubMedCrossRefGoogle Scholar
  238. 238.
    Krushkal J, Xiong M, Ferrell R, Sing CF, Turner ST, Boerwinkle E. Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. Hum Mol Genet 1998;7:1379–1383PubMedCrossRefGoogle Scholar
  239. 239.
    Thiel BA, Chakravarti A, Cooper RS, Luke A, Lewis S, Lynn A, Tiwari H, Schork NJ, Weder AB. A genome-wide linkage analysis investigating the determinants of blood pressure in whites and African Americans. Am J Hypertens 2003;16:151–153PubMedCrossRefGoogle Scholar
  240. 240.
    Province MA, Kardia SL, Ranade K, Rao DC, Thiel BA, Cooper RS, Risch N, Turner ST, Cox DR, Hunt SC, Weder AB, Boerwinkle E. National Heart, Lung and Blood Institute Family Blood Pressure Program. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens 2003;16:144–147PubMedCrossRefGoogle Scholar
  241. 241.
    Koivukoski L, Fisher SA, Kanninen T, Lewis CM, von Wowern F, Hunt S, Kardia SL, Levy D, Perola M, Rankinen T, Rao DC, Rice T, Thiel BA, Melander O. Meta-analysis of genome-wide scans for hypertension and blood pressure in Caucasians shows evidence of susceptibility regions on chromosomes 2 and 3. Hum Mol Genet 2004;13:2325–2332PubMedCrossRefGoogle Scholar
  242. 242.
    Mein CA, Caulfield MJ, Dobson RJ, Munroe PB. Genetics of essential hypertension. Hum Mol Genet 2004;13:R169–R175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Marín-García
    • 1
  • Michael J. Goldenthal
    • 2
  • Gordon W. Moe
    • 3
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  2. 2.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  3. 3.University of TorontoTorontoCanada

Personalised recommendations