Skip to main content

Cardiomyopathy and Heart Failure in Aging

  • Chapter
  • 729 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E. Congestive heart failure: a half century perspective. Eur Heart J 2001;22:825–836

    Article  PubMed  CAS  Google Scholar 

  2. The American Heart Association. Heart Disease and Stroke Statistics – 2005 Update. 2005. American Heart Association, Dallas, Texas.

    Google Scholar 

  3. Johansen H, Strauss B, Arnold JM, Moe G, Liu P. On the rise: the current and projected future burden of congestive heart failure hospitalization in Canada. Can J Cardiol 2003;19:430–435

    PubMed  Google Scholar 

  4. O’Connell JB. The economic burden of heart failure. Clin Cardiol 2000;23:III6–III10

    PubMed  CAS  Google Scholar 

  5. Kannel WB, Belanger AJ. Epidemiology of heart failure. Am Heart J 1991;121:951–957

    Article  PubMed  CAS  Google Scholar 

  6. Rich MW. Heart failure in the 21st century: a cardiogeriatric syndrome. J Gerontol A Biol Sci Med Sci 2001;56:M88–M96

    PubMed  CAS  Google Scholar 

  7. Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick EH, Leri A, Kajstura J, Bolli R. Myocardial aging—a stem cell problem. Basic Res Cardiol 2005;100:482–493

    Article  PubMed  CAS  Google Scholar 

  8. Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, Gardin JM, Rutledge JE, Boineau RC. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol 2000;35:1628–1637

    Article  PubMed  CAS  Google Scholar 

  9. Ghali JK, Kadakia S, Cooper R, Ferlinz J. Precipitating factors leading to decompensation of heart failure. Traits among urban blacks. Arch Intern Med 1988;148:2013–2016

    Google Scholar 

  10. Tresch DD. Clinical manifestations, diagnostic assessment, and etiology of heart failure in elderly patients. Clin Geriatr Med 2000;16:445–456

    Article  PubMed  CAS  Google Scholar 

  11. Heiat A, Gross CP, Krumholz HM. Representation of the elderly, women, and minorities in heart failure clinical trials. Arch Intern Med 2002;162:1682–1688

    Article  PubMed  Google Scholar 

  12. Incalzi AR, Capparella O, Gemma A, Porcedda P, Raccis G, Sommella L, Carbonin PU. A simple method of recognizing geriatric patients at risk for death and disability. J Am Geriatr Soc 1992;40:34–38

    PubMed  CAS  Google Scholar 

  13. Arnold JM, Liu P, Demers C, Dorian P, Giannetti N, Haddad H, Heckman GA, Howlett JG, Ignaszewski A, Johnstone DE, Jong P, McKelvie RS, Moe GW, Parker JD, Rao V, Ross HJ, Sequeira EJ, Svendsen AM, Teo K, Tsuyuki RT, White M. Canadian Cardiovascular Society consensus conference recommendations on heart failure 2006: diagnosis and management. Can J Cardiol 2006;22:23–45

    PubMed  Google Scholar 

  14. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol 1999;33:1948–1955

    Article  PubMed  CAS  Google Scholar 

  15. Kitzman DW. Heart failure with normal systolic function. Clin Geriatr Med 2000;16:489–512

    Article  PubMed  CAS  Google Scholar 

  16. Zuccala G, Pedone C, Cesari M, Onder G, Pahor M, Marzetti E, Lo Monaco MR, Cocchi A, Carbonin P, Bernabei R. The effects of cognitive impairment on mortality among hospitalized patients with heart failure. Am J Med 2003;115:97–103

    Article  PubMed  Google Scholar 

  17. Kelly KG, Zisselman M, Cutillo-Schmitter T, Reichard R, Payne D, Denman SJ. Severity and course of delirium in medically hospitalized nursing facility residents. Am J Geriatr Psychiatry 2001;9:72–77

    Article  PubMed  CAS  Google Scholar 

  18. Gottlieb SS, Khatta M, Friedmann E, Einbinder L, Katzen S, Baker B, Marshall J, Minshall S, Robinson S, Fisher ML, Potenza M, Sigler B, Baldwin C, Thomas SA. The influence of age, gender, and race on the prevalence of depression in heart failure patients. J Am Coll Cardiol 2004;43:1542–1549

    Article  PubMed  Google Scholar 

  19. Joynt KE, Whellan DJ, O’Connor CM. Why is depression bad for the failing heart? A review of the mechanistic relationship between depression and heart failure. J Card Fail 2004;10:258–271

    Article  PubMed  Google Scholar 

  20. Cournot M, Leprince P, Destrac S, Ferrieres J. Usefulness of in-hospital change in B-type natriuretic peptide levels in predicting long-term outcome in elderly patients admitted for decompensated heart failure. Am J Geriatr Cardiol 2007;16:8–14

    Article  PubMed  Google Scholar 

  21. Ahmed A, Kiefe CI, Allman RM, Sims RV, DeLong JF. Survival benefits of angiotensin-converting enzyme inhibitors in older heart failure patients with perceived contraindications. J Am Geriatr Soc 2002;50:1659–1666

    Google Scholar 

  22. Flather MD, Shibata MC, Coats AJ, Van Veldhuisen DJ, Parkhomenko A, Borbola J, Cohen-Solal A, Dumitrascu D, Ferrari R, Lechat P, Soler-Soler J, Tavazzi L, Spinarova L, Toman J, Bohm M, Anker SD, Thompson SG, Poole-Wilson PA. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J 2005;26:215–225

    Article  PubMed  CAS  Google Scholar 

  23. Hori M, Kitabatake A, Tsutsui H, Okamoto H, Shirato K, Nagai R, Izumi T, Yokoyama H, Yasumura Y, Ishida Y, Matsuzaki M, Oki T, Sekiya M. Rationale and design of a randomized trial to assess the effects of beta-blocker in diastolic heart failure; Japanese Diastolic Heart Failure Study (J-DHF). J Card Fail 2005;11:542–547

    Article  PubMed  CAS  Google Scholar 

  24. Gurwitz JH, Field TS, Harrold LR, Rothschild J, Debellis K, Seger AC, Cadoret C, Fish LS, Garber L, Kelleher M, Bates DW. Incidence and preventability of adverse drug events among older persons in the ambulatory setting. JAMA 2003;289:1107–1116

    Google Scholar 

  25. Miura T, Kojima R, Sugiura Y, Mizutani M, Takatsu F, Suzuki Y. Effect of aging on the incidence of digoxin toxicity. Ann Pharmacother 2000;34:427–432

    Article  PubMed  CAS  Google Scholar 

  26. Cleland JG, Cohen-Solal A, Aguilar JC, Dietz R, Eastaugh J, Follath F, Freemantle N, Gavazzi A, van Gilst WH, Hobbs FD, Korewicki J, Madeira HC, Preda I, Swedberg K, Widimsky J. Management of heart failure in primary care (the IMPROVEMENT of Heart Failure Programme): an international survey. Lancet 2002;360:1631–1639

    Google Scholar 

  27. Gonseth J, Guallar-Castillon P, Banegas JR, Rodriguez-Artalejo F. The effectiveness of disease management programmes in reducing hospital re-admission in older patients with heart failure: a systematic review and meta-analysis of published reports. Eur Heart J 2004;25:1570–1595

    Article  PubMed  Google Scholar 

  28. Bleeker GB, Schalij MJ, Molhoek SG, Boersma E, Steendijk P, van der Wall EE, Bax JJ. Comparison of effectiveness of cardiac resynchronization therapy in patients <70 versus > or =70 years of age. Am J Cardiol 2005;96:420–422

    Google Scholar 

  29. Morgan JA, John R, Weinberg AD, Remoli R, Kherani AR, Vigilance DW, Schanzer BM, Bisleri G, Mancini DM, Oz MC, Edwards NM. Long-term results of cardiac transplantation in patients 65 years of age and older: a comparative analysis. Ann Thorac Surg 2003;76:1982–1987

    Article  PubMed  Google Scholar 

  30. Zuckermann A, Dunkler D, Deviatko E, Bodhjalian A, Czerny M, Ankersmit J, Wolner E, Grimm M. Long-term survival (>10 years) of patients >60 years with induction therapy after cardiac transplantation. Eur J Cardiothorac Surg 2003;24:283–291

    Article  PubMed  Google Scholar 

  31. Potapov EV, Loebe M, Hubler M, Musci M, Hummel M, Weng Y, Hetzer R. Medium-term results of heart transplantation using donors over 63 years of age. Transplantation 1999;68:1834–1838

    Article  PubMed  CAS  Google Scholar 

  32. Blanche C, Kamlot A, Blanche DA, Kearney B, Magliato KE, Czer LS, Trento A. Heart transplantation with donors fifty years of age and older. J Thorac Cardiovasc Surg 2002;123:810–815

    Article  PubMed  Google Scholar 

  33. Wei JY. Age and the cardiovascular system. N Engl J Med 1992;327:1735–1739

    Article  PubMed  CAS  Google Scholar 

  34. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 1991;68:1560–1568

    PubMed  CAS  Google Scholar 

  35. Lakatta EG. Cardiovascular aging in health. Clin Geriatr Med 2000;16:419–444

    Article  PubMed  CAS  Google Scholar 

  36. Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, Lakatta EG. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation 2001;104:1464–1470

    Google Scholar 

  37. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 2003;92:139–150

    Article  PubMed  CAS  Google Scholar 

  38. Ellison GM, Torella D, Karakikes I, Nadal-Ginard B. Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nat Clin Pract Cardiovasc Med 2007;4:S52–S59

    Article  PubMed  CAS  Google Scholar 

  39. Kajstura J, Pertoldi B, Leri A, Beltrami CA, Deptala A, Darzynkiewicz Z, Anversa P. Telomere shortening is an in vivo marker of myocyte replication and aging. Am J Pathol 2000;156:813–819

    PubMed  CAS  Google Scholar 

  40. Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 2003;93:604–613

    Article  PubMed  CAS  Google Scholar 

  41. Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004;94:514–524

    Article  PubMed  CAS  Google Scholar 

  42. Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 2003;3:1–30

    Article  PubMed  CAS  Google Scholar 

  43. Allessie M, Schotten U, Verheule S, Harks E. Gene therapy for repair of cardiac fibrosis: a long way to Tipperary. Circulation 2005;111:391–393

    Article  PubMed  Google Scholar 

  44. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 1993;73:413–467

    PubMed  CAS  Google Scholar 

  45. de Souza RR. Aging of myocardial collagen. Biogerontology 2002;3:325–335

    Article  PubMed  Google Scholar 

  46. Shivakumar K, Dostal DE, Boheler K, Baker KM, Lakatta EG. Differential response of cardiac fibroblasts from young adult and senescent rats to ANG II. Am J Physiol Heart Circ Physiol 2003;284:H1454–R1459

    PubMed  CAS  Google Scholar 

  47. Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, Sweterlitsch SE, Spinale FG. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res 2005;66:410–419

    Article  PubMed  CAS  Google Scholar 

  48. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 2000;46:214–224

    Article  PubMed  CAS  Google Scholar 

  49. Chen X, Li Z, Feng Z, Wang J, Ouyang C, Liu W, Fu B, Cai G, Wu C, Wei R, Wu D, Hong Q. Integrin-linked kinase induces both senescence-associated alterations and extracellular fibronectin assembly in aging cardiac fibroblasts. J Gerontol A Biol Sci Med Sci 2006;61:1232–1245

    PubMed  Google Scholar 

  50. Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 2005;45:657–687

    Article  PubMed  CAS  Google Scholar 

  51. Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 2002;82:945–980

    PubMed  CAS  Google Scholar 

  52. Taylor MR, Carniel E, Mestroni L. Familial hypertrophic cardiomyopathy: clinical features, molecular genetics and molecular genetic testing. Expert Rev Mol Diagn 2004;4:99–113

    Article  PubMed  CAS  Google Scholar 

  53. Roberts R, Sidhu J. Genetic basis for hypertrophic cardiomyopathy: implications for diagnosis and treatment. Am Heart Hosp J 2003;1:128–134

    Article  PubMed  Google Scholar 

  54. Richard P, Villard E, Charron P, Isnard R. The genetic bases of cardiomyopathies. J Am Coll Cardiol 2006;48:A79–A89

    Article  CAS  Google Scholar 

  55. Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 2002;105:446–451

    Article  PubMed  CAS  Google Scholar 

  56. Charron P, Dubourg O, Desnos M, Bennaceur M, Carrier L, Camproux AC, Isnard R, Hagege A, Langlard JM, Bonne G, Richard P, Hainque B, Bouhour JB, Schwartz K, Komajda M. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation 1998;97:2230–2236

    PubMed  CAS  Google Scholar 

  57. Anan R, Greve G, Thierfelder L, Watkins H, McKenna WJ, Solomon S, Vecchio C, Shono H, Nakao S, Tanaka H, Mares A, Towbin JA, Spirito P, Roberts R, Seidman JG, Seidman CE. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 1994;93:280–285

    PubMed  CAS  Google Scholar 

  58. Maron BJ, Casey SA, Hauser RG, Aeppli DM. Clinical course of hypertrophic cardiomyopathy with survival to advanced age. J Am Coll Cardiol 2003;42:882–888

    Article  PubMed  Google Scholar 

  59. Chimenti C, Pieroni M, Morgante E, Antuzzi D, Russo A, Russo MA, Maseri A, Frustaci A. Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation 2004;110:1047–1053

    Article  PubMed  CAS  Google Scholar 

  60. Sachdev B, Takenaka T, Teraguchi H, Tei C, Lee P, McKenna WJ, Elliott PM. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 2002;105:1407–1411

    Article  PubMed  CAS  Google Scholar 

  61. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med 1994;331:1564–1575

    Article  PubMed  CAS  Google Scholar 

  62. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 2005;45:969–981

    Article  PubMed  CAS  Google Scholar 

  63. Mestroni L, Rocco C, Gregori D, Sinagra G, Di Lenarda A, Miocic S, Vatta M, Pinamonti B, Muntoni F, Caforio ALP, McKenna WJ, Falaschi A, Giacca M, Camerini F. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. J Am Coll Cardiol 1999;34:181–190

    Article  PubMed  CAS  Google Scholar 

  64. DeWitt MM, MacLeod HM, Soliven B, McNally EM. Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. J Am Coll Cardiol 2006;48:1396–1398

    Article  PubMed  CAS  Google Scholar 

  65. Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D, Hahn HS, Adamopoulos S, Liggett SB, Dorn GW 2nd, MacLennan DH, Kremastinos DT, Kranias EG. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003;111:869–876

    Article  PubMed  CAS  Google Scholar 

  66. Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, Kranias EG, MacLennan DH, Seidman JG, Seidman CE. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 2003;299:1410–1413

    Article  PubMed  CAS  Google Scholar 

  67. Minoretti P, Arra M, Emanuele E, Olivieri V, Aldeghi A, Politi P, Martinelli V, Pesenti S, Falcone C. A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med 2007;19:369–372

    PubMed  CAS  Google Scholar 

  68. Villard E, Duboscq-Bidot L, Charron P, Benaiche A, Conraads V, Sylvius N, Komajda M. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur Heart J 2005;26:794–803

    Article  PubMed  CAS  Google Scholar 

  69. Konno T, Shimizu M, Ino H, Matsuyama T, Yamaguchi M, Terai H, Hayashi K, Mabuchi T, Kiyama M, Sakata K, Hayashi T, Inoue M, Kaneda T, Mabuchi H. A novel missense mutation in the myosin binding protein-C gene is responsible for hypertrophic cardiomyopathy with left ventricular dysfunction and dilation in elderly patients. J Am Coll Cardiol 2003;41:781–786

    Article  PubMed  CAS  Google Scholar 

  70. Karkkainen S, Miettinen R, Tuomainen P, Karkkainen P, Helio T, Reissell E, Kaartinen M, Toivonen L, Nieminen MS, Kuusisto J, Laakso M, Peuhkurinen K. A novel mutation, Arg71Thr, in the delta-sarcoglycan gene is associated with dilated cardiomyopathy. J Mol Med 2003;81:795–800

    Article  PubMed  CAS  Google Scholar 

  71. Bonne G, Mercuri E, Muchir A, Urtizberea A, Becane HM, Recan D, Merlini L, Wehnert M, Boor R, Reuner U, Vorgerd M, Wicklein EM, Eymard B, Duboc D, Penisson-Besnier I, Cuisset JM, Ferrer X, Desguerre I, Lacombe D, Bushby K, Pollitt C, Toniolo D, Fardeau M, Schwartz K, Muntoni F. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 2000;48:170–180

    Article  PubMed  CAS  Google Scholar 

  72. Wehnert MS, Bonne G. The nuclear muscular dystrophies. Semin Pediatr Neurol 2002;9:100–107

    Article  PubMed  Google Scholar 

  73. Vandenhende MA, Bonnet F, Sailler L, Bouillot S, Morlat P, Beylot J. [Dilated cardiomyopathy and lipid-lowering drug muscle toxicity revealing late-onset Becker’s disease] Rev Med Interne 2005;26:977–979

    Article  PubMed  CAS  Google Scholar 

  74. Yazaki M, Yoshida K, Nakamura A, Koyama J, Nanba T, Ohori N, Ikeda S. Clinical characteristics of aged Becker muscular dystrophy patients with onset after 30 years. Eur Neurol 1999;42:145–149

    Article  PubMed  CAS  Google Scholar 

  75. Arimura T, Hayashi T, Terada H, Lee SY, Zhou Q, Takahashi M, Ueda K, Nouchi T, Hohda S, Shibutani M, Hirose M, Chen J, Park JE, Yasunami M, Hayashi H, Kimura A. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J Biol Chem 2004;279:6746–6752

    Article  PubMed  CAS  Google Scholar 

  76. Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA, Fan GC, Tsiapras D, Parekh RR, Dorn GW 2nd, MacLennan DH, Kremastinos DT, Kranias EG. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 2006;103:1388–1393

    Article  PubMed  CAS  Google Scholar 

  77. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003;300:2055

    Article  PubMed  Google Scholar 

  78. Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y, Botha EG, Garg A, Hanson NB, Martin GM, Mian IS, Kennedy BK, Oshima J. LMNA mutations in atypical Werner’s syndrome. Lancet 2003;362:440–445

    Article  PubMed  CAS  Google Scholar 

  79. Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 2006;7:940–952

    Article  PubMed  CAS  Google Scholar 

  80. Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 2000;101:473–476

    PubMed  CAS  Google Scholar 

  81. Jakobs PM, Hanson EL, Crispell KA, Toy W, Keegan H, Schilling K, Icenogle TB, Litt M, Hershberger RE. Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. J Card Fail 2001;7:249–256

    Article  PubMed  CAS  Google Scholar 

  82. Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Muehle G, Johnson W, McDonough B. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999;341:1715–1724

    Article  PubMed  CAS  Google Scholar 

  83. Tresch DD, McGough MF. Heart failure with normal systolic function: a common disorder older people. J Amer Geriatr Soc 1995;43:1035–1042

    CAS  Google Scholar 

  84. Hassan W, Al-Sergani H, Mourad W, Tabbaa R. Amyloid heart disease. New frontiers and insights in pathophysiology, diagnosis, and management. Tex Heart Inst J 2005;32:178–184

    PubMed  Google Scholar 

  85. Koike H, Misu K, Sugiura M, Iijima M, Mori K, Yamamoto M, Hattori N, Mukai E, Ando Y, Ikeda S, Sobue G. Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology 2004;63:129–138

    PubMed  CAS  Google Scholar 

  86. Blanco-Jerez CR, Jimenez-Escrig A, Gobernado JM, Lopez-Calvo S, de Blas G, Redondo C, Garcia Villanueva M, Orensanz L. Transthyretin Tyr77 familial amyloid polyneuropathy: a clinicopathological study of a large kindred. Muscle Nerve 1998;21:1478–85

    Article  PubMed  CAS  Google Scholar 

  87. Hamidi Asl K, Nakamura M, Yamashita T, Benson MD. Cardiac amyloidosis associated with the transthyretin Ile122 mutation in a Caucasian family. Amyloid 2001;8:263–269

    PubMed  CAS  Google Scholar 

  88. Yamashita T, Asl KH, Yazaki M, Benson MD. A prospective evaluation of the transthyretin Ile122 allele frequency in an African-American population. Amyloid 2005;12:127–130

    Article  PubMed  CAS  Google Scholar 

  89. Jiang X, Buxbaum JN, Kelly JW. The V122I cardiomyopathy variant of transthyretin increases the velocity of rate-limiting tetramer dissociation, resulting in accelerated amyloidosis. Proc Natl Acad Sci USA 2001;98:14943–14948

    Article  PubMed  CAS  Google Scholar 

  90. Burke W, Press N, McDonnell SM. Hemochromatosis: genetics helps to define a multifactorial disease. Clin Genet 1998;54:1–9

    Article  PubMed  CAS  Google Scholar 

  91. Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol 2001;154:193–206

    Article  PubMed  CAS  Google Scholar 

  92. Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M, Nemeth E, Thompson J, Risler JK, Zaborowska C, Babakaiff R, Radomski CC, Pape TD, Davidas O, Christakis J, Brissot P, Lockitch G, Ganz T, Hayden MR, Goldberg YP. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 2004;36:77–82

    Article  PubMed  CAS  Google Scholar 

  93. Turoczi T, Jun L, Cordis G, Morris JE, Maulik N, Stevens RG, Das DK. HFE mutation and dietary iron content interact to increase ischemia/reperfusion injury of the heart in mice. Circ Res 2003;92:1240–1246

    Article  PubMed  CAS  Google Scholar 

  94. Lio D, Balistreri CR, Colonna-Romano G, Motta M, Franceschi C, Malaguarnera M, Candore G, Caruso C. Association between the MHC class I gene HFE polymorphisms and longevity: a study in Sicilian population. Genes Immun 2002;3:20–24

    Article  PubMed  CAS  Google Scholar 

  95. Coppin H, Bensaid M, Fruchon S, Borot N, Blanche H, Roth MP. Longevity and carrying the C282Y mutation for haemochromatosis on the HFE gene: case control study of 492 French centenarians. BMJ 2003;327:132–133

    Article  PubMed  CAS  Google Scholar 

  96. Lio D, Pes GM, Carru C, Listi F, Ferlazzo V, Candore G, Colonna-Romano G, Ferrucci L, Deiana L, Baggio G, Franceschi C, Caruso C. Association between the HLA-DR alleles and longevity: a study in Sardinian population. Exp Gerontol 2003;38:313–317

    Article  PubMed  CAS  Google Scholar 

  97. McConnell BK, Fatkin D, Semsarian C, Jones KA, Georgakopoulos D, Maguire CT, Healey MJ, Mudd JO, Moskowitz IP, Conner DA, Giewat M, Wakimoto H, Berul CI, Schoen FJ, Kass DA, Seidman CE, Seidman JG. Comparison of two murine models of familial hypertrophic cardiomyopathy. Circ Res 2001;88:383–389

    PubMed  CAS  Google Scholar 

  98. Vikstrom KL, Factor SM, Leinwand LA. Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol Med 1996;2:556–567

    PubMed  CAS  Google Scholar 

  99. Mounkes LC, Kozlov SV, Rottman JN, Stewart CL. Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum Mol Genet 2005;14:2167–2180

    Article  PubMed  CAS  Google Scholar 

  100. Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, Kesteven SH, Michalicek J, Otway R, Verheyen F, Rainer S, Stewart CL, Martin D, Feneley MP, Fatkin D. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest 2004;113:357–369

    Article  PubMed  CAS  Google Scholar 

  101. Arimura T, Helbling-Leclerc A, Massart C, Varnous S, Niel F, Lacene E, Fromes Y, Toussaint M, Mura AM, Keller DI, Amthor H, Isnard R, Malissen M, Schwartz K, Bonne G. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet 2005;14:155–169

    Article  PubMed  CAS  Google Scholar 

  102. Sugden PH, Clerk A. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 1998;83:345–352

    PubMed  CAS  Google Scholar 

  103. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature 2002;415:206–212

    Article  PubMed  CAS  Google Scholar 

  104. Geng YJ, Ishikawa Y, Vatner DE, Wagner TE, Bishop SP, Vatner SF, Homcy CJ. Apoptosis of cardiac myocytes in Gsalpha transgenic mice. Circ Res 1999;84:34–42

    PubMed  CAS  Google Scholar 

  105. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW 2nd. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998;95:10140–10145

    Article  PubMed  CAS  Google Scholar 

  106. Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ. Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 1998;95:13893–13898

    Article  PubMed  CAS  Google Scholar 

  107. Mende U, Semsarian C, Martins DC, Kagen A, Duffy C, Schoen FJ, Neer EJ. Dilated cardiomyopathy in two transgenic mouse lines expressing activated G protein alpha(q): lack of correlation between phospholipase C activation and the phenotype. J Mol Cell Cardiol 2001;33:1477–1491

    Article  PubMed  CAS  Google Scholar 

  108. Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, Ji L, Iwamoto Y, Li E, Schneider M, Russell KS, Fu XY. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA 2003;100:12929–12934

    Article  PubMed  CAS  Google Scholar 

  109. Russell LK, Finck BN, Kelly DP. Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 2005;38:81–91

    Article  PubMed  CAS  Google Scholar 

  110. Carvajal K, Moreno-Sanchez R. Heart metabolic disturbances in cardiovascular diseases. Arch Med Res 2003;34:89–99

    Article  PubMed  CAS  Google Scholar 

  111. Smeitink J, van den HL, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001;2:342–352

    Google Scholar 

  112. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999;283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  113. Larsson NG, Oldfors A. Mitochondrial myopathies. Acta Physiol Scand 2001;171:385–393

    Article  PubMed  CAS  Google Scholar 

  114. Kelly DP, Strauss AW. Inherited cardiomyopathies. N Engl J Med 1994;330:913–919

    Article  PubMed  CAS  Google Scholar 

  115. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 1997;16:226–234

    Article  PubMed  CAS  Google Scholar 

  116. Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Bruning JC, Kahn CR, Clayton DA, Barsh GS, Thoren P, Larsson NG. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 1999;21:133–137

    Article  PubMed  CAS  Google Scholar 

  117. Nahrendorf M, Spindler M, Hu K, Bauer L, Ritter O, Nordbeck P, Quaschning T, Hiller KH, Wallis J, Ertl G, Bauer WR, Neubauer S. Creatine kinase knockout mice show left ventricular hypertrophy and dilatation, but unaltered remodeling post-myocardial infarction. Cardiovasc Res 2005;65:419–427

    Article  PubMed  CAS  Google Scholar 

  118. Kurtz DM, Rinaldo P, Rhead WJ, Tian L, Millington DS, Vockley J, Hamm DA, Brix AE, Lindsey JR, Pinkert CA, O’Brien WE, Wood PA. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci USA 1998;95:15592–15597

    Article  PubMed  CAS  Google Scholar 

  119. Exil VJ, Gardner CD, Rottman JN, Sims H, Bartelds B, Khuchua Z, Sindhal R, Ni G, Strauss AW. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase. Am J Physiol Heart Circ Physiol 2006;290:H1289–H1297

    Article  PubMed  CAS  Google Scholar 

  120. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 2004;10:1245–1250

    Article  PubMed  CAS  Google Scholar 

  121. Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K, Cline M, Matern D, Bennett MJ, Rinaldo P, Strauss AW. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest 2001;107:1403–1409

    PubMed  CAS  Google Scholar 

  122. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 2001;27:181–186

    Article  PubMed  CAS  Google Scholar 

  123. Yokoyama M, Yagyu H, Hu Y, Seo T, Hirata K, Homma S, Goldberg IJ. Apolipoprotein B production reduces lipotoxic cardiomyopathy: studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem 2004;279:4204–4211

    Article  PubMed  CAS  Google Scholar 

  124. Arad M, Moskowitz IP, Patel VV, Ahmad F, Perez-Atayde AR, Sawyer DB, Walter M, Li GH, Burgon PG, Maguire CT, Stapleton D, Schmitt JP, Guo XX, Pizard A, Kupershmidt S, Roden DM, Berul CI, Seidman CE, Seidman JG. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 2003;107:2850–2856

    Article  PubMed  CAS  Google Scholar 

  125. Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, Denniger G, Zassenhaus HP. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 2003;57:147–157

    Article  PubMed  CAS  Google Scholar 

  126. Joza N, Oudit GY, Brown D, Benit P, Kassiri Z, Vahsen N, Benoit L, Patel MM, Nowikovsky K, Vassault A, Backx PH, Wada T, Kroemer G, Rustin P, Penninger JM. Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 2005;25:10261–10272

    Article  PubMed  CAS  Google Scholar 

  127. Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 2004;24:9414–9423

    Article  PubMed  CAS  Google Scholar 

  128. Huang TT, Carlson EJ, Kozy HM, Mantha S, Goodman SI, Ursell PC, Epstein CJ. Genetic modification of prenatal lethality and dilated cardiomyopathy in Mn superoxide dismutase mutant mice. Free Radic Biol Med 2001;31:1101–1110

    Article  PubMed  CAS  Google Scholar 

  129. Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 2004;94:525–533

    Article  PubMed  CAS  Google Scholar 

  130. Nebigil CG, Jaffre F, Messaddeq N, Hickel P, Monassier L, Launay JM, Maroteaux L. Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation 2003;107:3223–3229

    Article  PubMed  CAS  Google Scholar 

  131. Xiaofei E, Wada Y, Dakeishi M, Hirasawa F, Murata K, Masuda H, Sugiyama T, Nikaido H, Koizumi A. Age-associated cardiomyopathy in heterozygous carrier mice of a pathological mutation of carnitine transporter gene, OCTN2. J Gerontol A Biol Sci Med Sci 2002;57:B270–B278

    PubMed  CAS  Google Scholar 

  132. Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, Welch MJ, Fettig NM, Sharp TL, Sambandam N, Olson KM, Ory DS, Schaffer JE. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 2005;96:225–233

    Article  PubMed  CAS  Google Scholar 

  133. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPAR overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002;109:121–130

    Article  PubMed  CAS  Google Scholar 

  134. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2001;107:813–822

    PubMed  CAS  Google Scholar 

  135. Marin-Garcia J, Pi Y, Goldenthal MJ. Mitochondrial-nuclear cross-talk in the aging and failing heart. Cardiovasc Drugs Ther 2006;20:477–491

    Article  PubMed  CAS  Google Scholar 

  136. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909–1911

    Article  PubMed  CAS  Google Scholar 

  137. Wu S, Li Q, Du M, Li SY, Ren J. Cardiac-specific overexpression of catalase prolongs lifespan and attenuates ageing-induced cardiomyocyte contractile dysfunction and protein damage. Clin Exp Pharmacol Physiol 2007;34:81–87

    Article  PubMed  CAS  Google Scholar 

  138. Ren J, Li Q, Wu S, Li SY, Babcock SA. Cardiac overexpression of antioxidant catalase attenuates aging-induced cardiomyocyte relaxation dysfunction. Mech Ageing Dev 2007;128:276–285

    Article  PubMed  CAS  Google Scholar 

  139. Ocorr K, Akasaka T, Bodmer R. Age-related cardiac disease model of Drosophila. Mech Ageing Dev 2007;128:112–116

    Article  PubMed  CAS  Google Scholar 

  140. Bing OH, Conrad CH, Boluyt MO, Robinson KG, Brooks WW. Studies of prevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat. Heart Fail Rev 2002;7:71–88

    Article  PubMed  Google Scholar 

  141. Heyen JR, Blasi ER, Nikula K, Rocha R, Daust HA, Frierdich G, Van Vleet JF, De Ciechi P, McMahon EG, Rudolph AE. Structural, functional, and molecular characterization of the SHHF model of heart failure. Am J Physiol Heart Circ Physiol 2002;283:H1775–H1784

    PubMed  CAS  Google Scholar 

  142. Khadour FH, Kao RH, Park S, Armstrong PW, Holycross BJ, Schulz R. Age-dependent augmentation of cardiac endothelial NOS in a genetic rat model of heart failure. Am J Physiol 1997;273:H1223–H1230

    Google Scholar 

  143. Boluyt MO, Bing OH. Matrix gene expression and decompensated heart failure: the aged SHR model. Cardiovasc Res 2000;46:239–249

    Article  PubMed  CAS  Google Scholar 

  144. Minieri M, Fiaccavento R, Carosella L, Peruzzi G, Di Nardo P. The cardiomyopathic hamster as model of early myocardial aging. Mol Cell Biochem 1999;198:1–6

    Article  PubMed  CAS  Google Scholar 

  145. Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T, Hanaoka F. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA 1997;94:13873–13878

    Article  PubMed  CAS  Google Scholar 

  146. Nigro V, Okazaki Y, Belsito A, Piluso G, Matsuda Y, Politano L, Nigro G, Ventura C, Abbondanza C, Molinari AM, Acampora D, Nishimura M, Hayashizaki Y, Puca GA. Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Genet 1997;6:601–607

    Article  PubMed  CAS  Google Scholar 

  147. Serose A, Salmon A, Fiszman MY, Fromes Y. Short-term treatment using insulin like growth factor-1 (IGF-1) improves life expectancy of the delta-sarcoglycan deficient hamster. J Gene Med 2006;8:1048–1055

    Article  PubMed  CAS  Google Scholar 

  148. Fiaccavento R, Carotenuto F, Minieri M, Masuelli L, Vecchini A, Bei R, Modesti A, Binaglia L, Fusco A, Bertoli A, Forte G, Carosella L, Di Nardo P. Alpha-linolenic acid-enriched diet prevents myocardial damage and expands longevity in cardiomyopathic hamsters. Am J Pathol 2006;169:1913–1924

    Article  PubMed  CAS  Google Scholar 

  149. Toyo-oka T, Kawada T, Xi H, Nakazawa M, Masui F, Hemmi C, Nakata J, Tezuka A, Iwasawa K, Urabe M, Monahan J, Ozawa K. Gene therapy prevents disruption of dystrophin-related proteins in a model of hereditary dilated cardiomyopathy in hamsters. Heart Lung Circ 2002;11:174–181

    Article  PubMed  Google Scholar 

  150. McLean AJ, Le Couteur DG. Aging biology and geriatric clinical pharmacology. Pharmacol Rev 2004;56:163–184

    Article  PubMed  CAS  Google Scholar 

  151. Flather MD, Yusuf S, Kober L, Pfeffer M, Hall A, Murray G, Torp-Pedersen C, Ball S, Pogue J, Moye L, Braunwald E. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 2000;355:1575–1581

    Article  PubMed  CAS  Google Scholar 

  152. Richardson LG, Rocks M. Women and heart failure. Heart Lung 2001;30:87–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J., Goldenthal, M.J., Moe, G.W. (2008). Cardiomyopathy and Heart Failure in Aging. In: Aging and the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74072-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74072-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74071-3

  • Online ISBN: 978-0-387-74072-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics