Advertisement

Aging and the Cardiovascular-Related Systems

  • José Marín-García
  • Michael J. Goldenthal
  • Gordon W. Moe

Keywords

Growth Hormone Lipid Raft Granulocyte Macrophage Colony Stimulate Factor Aged Mouse Growth Hormone Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 2000;908:244–254PubMedGoogle Scholar
  2. 2.
    De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 2006;80:219–227PubMedGoogle Scholar
  3. 3.
    Solana R, Pawelec G, Tarazona R. Aging and innate immunity. Immunity 2006;24:491–494PubMedGoogle Scholar
  4. 4.
    Weng N. Aging of the immune system: how much can the adaptive immune system adapt? Immunity 2006;24:495–499PubMedGoogle Scholar
  5. 5.
    Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol 2004;5:133–139PubMedGoogle Scholar
  6. 6.
    Tarazona R, Delarosa O, Alonso C, Ostos B, Espejo J, Pena J, Solana R. Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech Ageing Dev 2000:121:77–88Google Scholar
  7. 7.
    Almanzar G, Schwaiger S, Jenewein B, Keller M, Herndler-Brandstetter D, Wurzner R, Schonitzer D, Grubeck-Loebenstein B. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 2005;79:3675–3683PubMedGoogle Scholar
  8. 8.
    Allman D, Miller JP. B cell development and receptor diversity during aging. Curr Opin Immunol 2005;17:463–467PubMedGoogle Scholar
  9. 9.
    Frasca D, Riley RL, Blomberg BB. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol 2005;17:378–384PubMedGoogle Scholar
  10. 10.
    Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol 2005;17:370–377PubMedGoogle Scholar
  11. 11.
    Kovaiou RD, Weiskirchner I, Keller M, Pfister G, Cioca DP, Grubeck-Loebenstein B. Age-related differences in phenotype and function of CD4+ T cells are due to a phenotypic shift from naive to memory effector CD4+ T cells. Int Immunol 2005;17:1359–1366PubMedGoogle Scholar
  12. 12.
    Haynes L., Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci USA 2003;100:15053–15058PubMedGoogle Scholar
  13. 13.
    Kang I, Hong MS, Nolasco H, Park SH, Dan JM, Choi JY, Craft J. Age-associated change in the frequency of memory CD4+ T cells impairs long term CD4+ T cell responses to influenza vaccine. J Immunol 2004;173:673–681PubMedGoogle Scholar
  14. 14.
    Fulop T Jr, Seres I. Signal transduction changes in granulocytes and lymphocytes with aging. Immunol Lett 1994;40:259–268PubMedGoogle Scholar
  15. 15.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135–145PubMedGoogle Scholar
  16. 16.
    Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, Khalil A, Dupuis G. Signal transduction and functional changes in neutrophils with aging. Aging Cell 2004;3:217–226PubMedGoogle Scholar
  17. 17.
    Fu Y-K, Arkins S. Li Y, Dantzer R, Kelley KW. Reduction in superoxide anion secretion and bactericidal activity of neutrophils from aged rats: reversal by combination of interferon and growth hormone. Infect Immun 1994;62:1–8PubMedGoogle Scholar
  18. 18.
    Seres I, Csongor J, Mohacsi A, Leovey A, Fulop T. Age-dependent alterations of human recombinant GM-CSF effects on human granulocytes. Mech Ageing Dev 1993;71:143–154PubMedGoogle Scholar
  19. 19.
    Varga Z, Jacob MP, Csongor J, Robert L, Leovey A, Fulop T Jr. Altered phosphatidylinositol breakdown after K-elastin stimulation in PMNLs of elderly. Mech Ageing Dev 1990;52:61–70PubMedGoogle Scholar
  20. 20.
    Babior BM. Phagocytes and oxidative stress. Am J Med 2000;109:33–44PubMedGoogle Scholar
  21. 21.
    Shao D, Segal AW, Dekker LV. Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 2003;550:101–106PubMedGoogle Scholar
  22. 22.
    Fulop T Jr, Fouquet C, Allaire P, Perrin N, Lacombe G, Stankova J, Rola-Pleszczynski M, Gagne D, Wagner JR, Khalil A, Dupuis G. Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 1997;96:15–34PubMedGoogle Scholar
  23. 23.
    Fulop T Jr, Larbi A, Linteau A, Desgeorges S, Douziech N. The role of Mcl-1 and Bax expression alteration in the decreased rescue of human neutrophils from apoptosis by GM-CSF with aging. Ann NY Acad Sci 2002;973:305–308PubMedGoogle Scholar
  24. 24.
    Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T. Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J. Leukoc Biol 2006;79:1061–1072PubMedGoogle Scholar
  25. 25.
    Alvarez E, Ruiz-Guttierrez V, Sobrino F, Santa-Maria C. Age-related changes in membrane lipid composition, fluidity and respiratoty burst in rat peripheral neutrophils. Clin Exp Immunol 2001;124:95–102PubMedGoogle Scholar
  26. 26.
    Rao KMK. Age-related decline in ligand-induced actin polymerization in human leukocytes and platelets. J Gerontol 1986;41:561–566PubMedGoogle Scholar
  27. 27.
    Rao KMK, Currie MS, Padmanabhan J, Cohen HJ. Age-related alteration in actin cytoskeleton and receptor expression in human leukocytes. J Gerontol 1992;47:B37–B44PubMedGoogle Scholar
  28. 28.
    Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S. Innate immunity in aging: impact on macrophage function. Aging Cell 2004;3:161–167PubMedGoogle Scholar
  29. 29.
    Ding A, Hwang S, Schwab R. Effect of aging on murine macrophages. Diminished response to IFN-γ, for enhanced oxidative metabolism. J Immunol 1994;153:2146–2152Google Scholar
  30. 30.
    Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 2002;169:4697–701PubMedGoogle Scholar
  31. 31.
    Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev 2005;126:1305–1313PubMedGoogle Scholar
  32. 32.
    Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol 2004;76:291–299PubMedGoogle Scholar
  33. 33.
    Herrero C, Marques L, Lloberas J, Celada A. IFN-gamma-dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J Clin Invest 2001;107:485–493PubMedGoogle Scholar
  34. 34.
    Swift ME., Kleinman HK, DiPietro LA. Impaired wound repair and delayed angiogenesis in aged mice. Lab Invest 1999;79:1479–1487PubMedGoogle Scholar
  35. 35.
    Sadoun E, Reed MJ. Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression. J Histochem Cytochem 2003;51:1119–1130PubMedGoogle Scholar
  36. 36.
    Uyemura K, Castle SC, Makinodan T. The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev 2002;123:955–962PubMedGoogle Scholar
  37. 37.
    Bottino C, Moretta L, Moretta A. NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol 2006;298:175–182PubMedGoogle Scholar
  38. 38.
    Solana R, Mariani E. NK and NK/T cells in human senescence. Vaccine 2000;18:1613–1620PubMedGoogle Scholar
  39. 39.
    Bruunsgaard H, Pedersen AN, Schroll M, Skinhoj P, Pedersen BK. Decreased natural killer cell activity is associated with atherosclerosis in elderly humans. Exp Gerontol 2001;37:127–136PubMedGoogle Scholar
  40. 40.
    Mysliwska J, Trzonkowski P, Szmit E, Brydak LB, Machala M, Mysliwski A. Immunomodulating effect of influenza vaccination in the elderly differing in health status. Exp Gerontol 2004;39:1447–1458PubMedGoogle Scholar
  41. 41.
    Dussault I, Miller SC. Decline in natural killer cell-mediated immunosurveillance in aging mice–a consequence of reduced cell production and tumor binding capacity. Mech Ageing Dev 1994;75:115–129PubMedGoogle Scholar
  42. 42.
    Mariani E, Meneghetti A, Neri S, Ravaglia G, Forti P, Cattini L, Facchini A. Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 2002;32:1524–1529PubMedGoogle Scholar
  43. 43.
    Lutz CT, Moore MB, Bradley S, Shelton BJ, Lutgendorf SK. Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev 2005;126:722–731PubMedGoogle Scholar
  44. 44.
    Murasko DM, Jiang J. Response of aged mice to primary virus infections. Immunol Rev 2005;205:285–296PubMedGoogle Scholar
  45. 45.
    Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 1999;34:253–265PubMedGoogle Scholar
  46. 46.
    Albright JW, Albright JF. Impaired natural killer cell function as a consequence of aging. Exp Gerontol 1998;33:13–25PubMedGoogle Scholar
  47. 47.
    Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002;347:185–192PubMedGoogle Scholar
  48. 48.
    Zareparsi S, Buraczynska M, Branham KE, Shah S, Eng D, Li M, Pawar H, Yashar BM, Moroi SE, Lichter PR, Petty HR, Richards JE, Abecasis GR, Elner VM, Swaroop A. Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet 2005;14:1449–1455PubMedGoogle Scholar
  49. 49.
    Balistreri CR, Candore G, Colonna-Romano G, Lio D, Caruso M, Hoffmann E, Franceschi C, Caruso C. Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA 2004;292:2339–2340PubMedGoogle Scholar
  50. 50.
    Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafe M, Cavallone L, Franceschi C, Caruso C. Gender-specific association between -1082 IL-10 promoter polymorphism and longevity. Genes Immun 2002;3:30–33PubMedGoogle Scholar
  51. 51.
    Lio D, Licastro F, Scola L, Chiappelli M, Grimaldi LM, Crivello A, Colonna-Romano G, Candore G, Franceschi C, Caruso C. Interleukin-10 promoter polymorphism in sporadic Alzheimer’s disease. Genes Immun 2003;4:234–238PubMedGoogle Scholar
  52. 52.
    Wang XY, Hurme M, Jylha M, Hervonen A. Lack of association between human longevity and polymorphisms of IL-1 cluster, IL-6, IL-10 and TNF-alpha genes in Finnish nonagenarians. Mech Ageing Dev 2001;123:29–38PubMedGoogle Scholar
  53. 53.
    Ross OA, Curran MD, Meenagh A, Williams F, Barnett YA, Middleton D, Rea IM. Study of age-association with cytokine gene polymorphisms in an aged Irish population. Mech Ageing Dev 2003;124:199–206PubMedGoogle Scholar
  54. 54.
    Bonafe M, Olivieri F, Cavallone L, Giovagnetti S, Mayegiani F, Cardelli M, Pieri C, Marra M, Antonicelli R, Lisa R, Rizzo MR, Paolisso G, Monti D, Franceschi C. A gender—dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol 2001;31:2357–2361PubMedGoogle Scholar
  55. 55.
    Flex A, Gaetani E, Pola R, Santoliquido A, Aloi F, Papaleo P, Dal Lago A, Pola E, Serricchio M, Tondi P, Pola P. The -174 G/C polymorphism of the interleukin-6 gene promoter is associated with peripheral artery occlusive disease. Eur J Vasc Endovasc Surg 2002;24:264–268PubMedGoogle Scholar
  56. 56.
    Rea IM, Ross OA, Armstrong M, McNerlan S, Alexander DH, Curran MD, Middleton D. Interleukin-6-gene C/G 174 polymorphism in nonagenarian and octogenarian subjects in the BELFAST study. Reciprocal effects on IL-6, soluble IL-6 receptor and for IL-10 in serum and monocyte supernatants. Mech Ageing Dev 2003;124:555–561PubMedGoogle Scholar
  57. 57.
    Lio D, Scola L, Crivello A, Bonafe M, Franceschi C, Olivieri F, Colonna-Romano G, Candore G, Caruso C. Allele frequencies of +874T->A single nucleotide polymorphism at the first intron of interferon-gamma gene in a group of Italian centenarians. Exp Gerontol 2002;37:315–319PubMedGoogle Scholar
  58. 58.
    Grimaldi MP, Candore G, Vasto S, Caruso M, Caimi G, Hoffmann E, Colonna-Romano G, Lio D, Shinar Y, Franceschi C, Caruso C. Role of the pyrin M694V (A2080G) allele in acute myocardial infarction and longevity: a study in the Sicilian population. J Leukoc Biol 2006;79:611–615PubMedGoogle Scholar
  59. 59.
    Bonafe M, Marchegiani F, Cardelli M, Olivieri F, Cavallone L, Giovagnetti S, Pieri C, Marra M, Antonicelli R, Troiano L, Gueresi P, Passeri G, Berardelli M, Paolisso G, Barbieri M, Tesei S, Lisa R, De Benedictis G, Franceschi C. Genetic analysis of Paraoxonase (PON1) locus reveals an increased frequency of Arg192 allele in centenarians. Eur J Hum Genet 2002;10:292–296PubMedGoogle Scholar
  60. 60.
    Rea IM, McKeown PP, McMaster D, Young IS, Patterson C, Savage MJ, Belton C, Marchegiani F, Olivieri F, Bonafe M, Franceschi C. Paraoxonase polymorphisms PON1 192 and 55 and longevity in Italian centenarians and Irish nonagenarians. A pooled analysis. Exp Gerontol 2004;39:629–635PubMedGoogle Scholar
  61. 61.
    Boekholdt SM, Agema WR, Peters RJ, Zwinderman AH, van der Wall EE, Reitsma PH, Kastelein JJ, Jukema JW. REgression GRowth Evaluation Statin Study Group. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003;107:2416–2421Google Scholar
  62. 62.
    Holloway JW, Yang IA, Ye S. Variation in the toll-like receptor 4 gene and susceptibility to myocardial infarction. Pharmacogenet Genomics 2005;15:15–21PubMedGoogle Scholar
  63. 63.
    Morange PE, Tiret L, Saut N, Luc G, Arveiler D, Ferrieres J, Amouyel P, Evans A, Ducimetiere P, Cambien F, Juhan-Vague I. PRIME Study Group. TLR4/Asp299Gly, CD14/C-260T, plasma levels of the soluble receptor CD14 and the risk of coronary heart disease: the PRIME Study. Eur J Hum Genet 2004;12:1041–1049Google Scholar
  64. 64.
    Koch W, Hoppmann P, Pfeufer A, Schomig A, Kastrati A. Toll-like receptor 4 gene polymorphisms and myocardial infarction: no association in a Caucasian population. Eur Heart J 2006;27:2524–2529PubMedGoogle Scholar
  65. 65.
    Wang XY, Hurme M, Jylha M, Hervonen A. Lack of association between human longevity and polymorphisms of IL-1 cluster, IL-6, IL-10 and TNF-alpha genes in Finnish nonagenarians. Mech Ageing Dev 2001;123:29–38PubMedGoogle Scholar
  66. 66.
    Cavallone L, Bonafe M, Olivieri F, Cardelli M, Marchegiani F, Giovagnetti S, Di Stasio G, Giampieri C, Mugianesi E, Stecconi R, Sciacca F, Grimaldi LM, De Benedictis G, Lio D, Caruso C, Franceschi C. The role of IL-1 gene cluster in longevity: a study in Italian population. Mech Ageing Dev 2003;124:533–538Google Scholar
  67. 67.
    Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 1993;23:2375–2378PubMedGoogle Scholar
  68. 68.
    Young DG, Skibinski G, Mason JI, James K. The influence of age and gender on serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6 sR) and transforming growth factor beta 1 (TGF-beta1) levels in normal healthy blood donors. Clin Exp Immunol 1999;117:476–481PubMedGoogle Scholar
  69. 69.
    Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 2000;51:245–270PubMedGoogle Scholar
  70. 70.
    Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem 2000;275:18138–18144PubMedGoogle Scholar
  71. 71.
    Ross R. Atherosclerosis is an inflammatory disease. Am. Heart J 1999;138:S419–S420PubMedGoogle Scholar
  72. 72.
    Basso F, Lowe GD, Rumley A, McMahon AD, Humphries SE. Interleukin-6-174G > C polymorphism and risk of coronary heart disease in west of Scotland coronary prevention study (WOSCOPS). Arterioscler Thromb Vasc Biol 2002;22:599–604PubMedGoogle Scholar
  73. 73.
    Bruunsgaard H, Christiansen L, Pedersen AN, Schroll M, Jorgensen T, Pedersen BK. The IL-6 -174G>C polymorphism is associated with cardiovascular diseases and mortality in 80-year-old humans. Exp Gerontol 2004;39:255–261PubMedGoogle Scholar
  74. 74.
    Licastro F, Grimaldi LM, Bonafe M, Martina C, Olivieri F, Cavallone L, Giovanietti S, Masliah E, Franceschi C. Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. Neurobiol Aging 2003;24:921–926PubMedGoogle Scholar
  75. 75.
    van Oijen M, Arp PP, de Jong FJ, Hofman A, Koudstaal PJ, Uitterlinden AG, Breteler MM. Polymorphisms in the interleukin 6 and transforming growth factor beta1 gene and risk of dementia. The Rotterdam Study. Neurosci Lett 2006;402:113–117PubMedGoogle Scholar
  76. 76.
    Ravaglia G, Paola F, Maioli F, Martelli M, Montesi F, Bastagli L, Bianchin M, Chiappelli M, Tumini E, Bolondi L, Licastro F. Interleukin-1beta and interleukin-6 gene polymorphisms as risk factors for AD: a prospective study. Exp Gerontol 2006;41:85–92PubMedGoogle Scholar
  77. 77.
    Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafe M, Cavallone L, Marchegiani F, Olivieri F, Franceschi C, Caruso C. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10 -1082 promoter SNP and its interaction with TNF-alpha -308 promoter SNP. J Med Genet 2003;40:296–9PubMedGoogle Scholar
  78. 78.
    Lio D, Candore G, Crivello A, Scola L, Colonna-Romano G, Cavallone L, Hoffmann E, Caruso M, Licastro F, Caldarera CM, Branzi A, Franceschi C, Caruso C. Opposite effects of interleukin 10 common gene polymorphisms in cardiovascular diseases and in successful ageing: genetic background of male centenarians is protective against coronary heart disease. J Med Genet 2004;41:790–794PubMedGoogle Scholar
  79. 79.
    Pes GM, Lio D, Carru C, Deiana L, Baggio G, Franceschi C, Ferrucci L, Oliveri F, Scola L, Crivello A, Candore G, Colonna-Romano G, Caruso C. Association between longevity and cytokine gene polymorphisms. A study in Sardinian centenarians. Aging Clin Exp Res 2004;16:244–248PubMedGoogle Scholar
  80. 80.
    Senti M, Tomas M, Vila J, Marrugat J, Elosua R, Sala J, Masia R. Relationship of age-related myocardial infarction risk and Gln/Arg 192 variants of the human paraoxonase1 gene: the REGICOR study. Atherosclerosis 2001;156:443–449PubMedGoogle Scholar
  81. 81.
    Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M, Salvioli S, Valensin S, De Benedictis G, Di Iorio A, Caruso C, Paolisso G, Monti D. Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 2005;126:351–361Google Scholar
  82. 82.
    Marchegiani F, Marra M, Spazzafumo L, James RW, Boemi M, Olivieri F, Cardelli M, Cavallone L, Bonfigli AR, Franceschi C. Paraoxonase activity and genotype predispose to successful aging. J Gerontol A Biol Sci Med Sci 2006;61:541–546PubMedGoogle Scholar
  83. 83.
    He XM, Zhang ZX, Zhang JW, Zhou YT, Tang MN, Wu CB, Hong Z. Gln192Arg polymorphism in paraoxonase 1 gene is associated with Alzheimer disease in a Chinese Han ethnic population. Chin Med J (Engl) 2006;119:1204–1209Google Scholar
  84. 84.
    Sapolsky RM, Krey LC, McEwen B. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 1986;7:284–301PubMedGoogle Scholar
  85. 85.
    Seeman TE, Robbins RJ. Aging and hypothalamic-pituitary-adrenal response to challenge in humans. Endocr Rev 1994;15:233–260PubMedGoogle Scholar
  86. 86.
    Djordjevic-Markovic R, Radic O, Jelic V, Radojcic M, Rapic-Otrin V, Ruzdijic S, Krstic-Demonacos M, Kanazir S, Kanazir D. Glucocorticoid receptors in ageing rats. Exp Gerontol 1999;34:971–982PubMedGoogle Scholar
  87. 87.
    van Eekelen JA, Rots NY, Sutanto W, Oitzl MS, de Kloet ER. Brain corticosteroid receptor gene expression and neuroendocrine dynamics during aging. J Steroid Biochem Mol Biol 1991;40:679–683PubMedGoogle Scholar
  88. 88.
    Keck ME, Hatzinger M, Wotjak CT, Landgraf R, Holsboer F, Neumann ID. Ageing alters intrahypothalamic release patterns of vasopressin and oxytocin in rats. Eur J Neurosci 2000;12:1487–1494PubMedGoogle Scholar
  89. 89.
    Cizza G, Calogero AE, Brady LS, Bagdy G, Bergamini E, Blackman MR, Chrousos GP, Gold PW. Male Fischer 344/N rats show a progressive central impairment of the hypothalamic-pituitary-adrenal axis with advancing age. Endocrinology 1994;134:1611–1620PubMedGoogle Scholar
  90. 90.
    Tizabi YG, Aguilera G, Gilad GM. Age-related reduction in pituitary corticotropin-releasing hormone receptors in two rat strains. Neurobiol Aging 1992;13:227–230PubMedGoogle Scholar
  91. 91.
    Hauger RL, Thrivikraman KV, Plotsky PM. Age-related alterations of hypothalamic-pituitary-adrenal axis function in male Fischer 344 rats. Endocrinology 1994;134:1528–1536PubMedGoogle Scholar
  92. 92.
    Heroux JA, Grigoriadis DE, De Souza EB. Age-related decreases in corticotropin-releasing factor (CRF) receptors in rat brain and anterior pituitary gland. Brain Res 1991;542:155–158PubMedGoogle Scholar
  93. 93.
    Ceccatelli S, Calza L, Giardino L. Age-related changes in the expression of corticotropin-releasing hormone receptor mRNA in the rat pituitary. Brain Res Mol Brain Res 1996;37:175–180PubMedGoogle Scholar
  94. 94.
    De Souza EB. Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 1995;20:789–819PubMedGoogle Scholar
  95. 95.
    Herman JP, Larson BR, Speert DB, Seasholtz AF. Hypothalamo-pituitary-adrenocortical dysregulation in aging F344/Brown-Norway F1 hybrid rats. Neurobiol Aging 2001;22:323–332PubMedGoogle Scholar
  96. 96.
    McClennen SJ, Cortright DN, Seasholtz AF. Regulation of pituitary corticotropin-releasing hormone-binding protein messenger ribonucleic acid levels by restraint stress and adrenalectomy. Endocrinology 1998;139:4435–4441PubMedGoogle Scholar
  97. 97.
    Xiao C, Sartin J, Mulchahey JJ, Segar T, Sheriff S, Herman JP, Kasckow JW. Aging associated changes in amygdalar corticotropin-releasing hormone (CRH) and CRH-binding protein in Fischer 344 rats. Brain Res 2006;1073–1074:325–331Google Scholar
  98. 98.
    Magri F, Cravello L, Barili L, Sarra S, Cinchetti W, Salmoiraghi F, Micale G, Ferrari E. Stress and dementia: the role of the hypothalamicpituitary-adrenal axis. Aging Clin Exp Res 2006;18:167–170PubMedGoogle Scholar
  99. 99.
    Bauer ME. Stress, glucocorticoids and ageing of the immune system. Stress 2005;8:69–83PubMedGoogle Scholar
  100. 100.
    Rehman HU, Masson EA. Neuroendocrinology of ageing. Age Ageing 2001;30:279–287PubMedGoogle Scholar
  101. 101.
    Lai Z, Roos P, Zhai O, Olsson Y, Fholenhag K, Larsson C, Nyberg F. Age-related reduction of human growth hormone-binding sites in the human brain. Brain Res 1993;621:260–266PubMedGoogle Scholar
  102. 102.
    Garnero P, Sornay-Rendu E, Delmas PF. Low serum IGF-1 and occurrence of osteoporotic fractures in postmenopausal women. Lancet 2000;355:898–899Google Scholar
  103. 103.
    Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE. Effects of human growth hormone in men over 60 years old. N Engl J Med 1990;323:1–6PubMedGoogle Scholar
  104. 104.
    Copeland KC, Nair KS. Acute growth hormone effects on amino acid and lipid metabolism. J Clin Endocrinol Metab 1994;78:1040–1047PubMedGoogle Scholar
  105. 105.
    Fryburg DA, Louard RJ, Gerow KE, Gelfand RA, Barrett EJ. Growth hormone stimulates skeletal muscle protein synthesis and antagonizes insulin’s antiproteolytic action in humans. Diabetes 1992;41:424–429PubMedGoogle Scholar
  106. 106.
    Fryburg DA, Gelfand RA, Barrett EJ. Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am J Physiol 1991;260:E499–E504PubMedGoogle Scholar
  107. 107.
    Binnerts A, Swart GR, Wilson JH, Hoogerbrugge N, Pols HA, Birkenhager JC, Lamberts SW. The effect of growth hormone administration in growth hormone deficient adults on bone, protein, carbohydrate and lipid homeostasis, as well as on body composition. Clin Endocrinol (Oxf) 1992;37:79–87Google Scholar
  108. 108.
    Colao A, Cuocolo A, Di Somma C, Cerbone G, Della Morte AM, Nicolai E, Lucci R, Salvatore M, Lombardi G. Impaired cardiac performance in elderly patients with growth hormone deficiency. J Clin Endocrinol Metab 1999;84:3950–3955Google Scholar
  109. 109.
    Thuesen L, Christiansen JS, Sorensen KE, Jorgensen JO, Orskov H, Henningsen P. Increased myocardial contractility following growth hormone administration in normal man. An echocardiographic study. Dan Med Bull 1988;35:193–196PubMedGoogle Scholar
  110. 110.
    Groban L, Pailes NA, Bennett CD, Carter CS, Chappell MC, Kitzman DW, Sonntag WE. Growth hormone replacement attenuates diastolic dysfunction and cardiac angiotensin II expression in senescent rats. J Gerontol A Biol Sci Med Sci 2006;61:28–35PubMedGoogle Scholar
  111. 111.
    Isgaard J, Bergh CH, Caidahl K, Lomsky M, Hjalmarson A, Bengtsson BA. A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J 1998;19:1704–1711PubMedGoogle Scholar
  112. 112.
    Bocchi E, Moura L, Guimaraes G, Conceicao Souza GE, Ramires JA. Beneficial effects of high doses of growth hormone in the introduction and optimization of medical treatment in decompensated congestive heart failure. Int J Cardiol 2006;110:313–317PubMedGoogle Scholar
  113. 113.
    Isgaard J, Johansson I. Ghrelin and GHS on cardiovascular applications/functions. J Endocrinol Invest 2005;28:838–842PubMedGoogle Scholar
  114. 114.
    Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, Ueno K, Kitakaze M, Miyatake K, Kangawa K. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 2004;110:3674–3679PubMedGoogle Scholar
  115. 115.
    Harman SM, Blackman MR. Use of growth hormone for prevention or treatment of effects of aging. J Gerontol A Biol Sci Med Sci 2004;59:652–658PubMedGoogle Scholar
  116. 116.
    Sonntag WE, Lynch CD, Cooney PT, Hutchins PM. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 1997;138:3515–3520PubMedGoogle Scholar
  117. 117.
    Khan AS, Lynch CD, Sane DC, Willingham MC, Sonntag WE. Growth hormone increases regional coronary blood flow and capillary density in aged rats. J Gerontol A Biol Sci Med Sci 2001;56:B364–B371PubMedGoogle Scholar
  118. 118.
    Bruel A, Oxlund H. Growth hormone influences the content and composition of collagen in the aorta from old rats. Mech Ageing Dev 2002;123:627–635PubMedGoogle Scholar
  119. 119.
    Castillo C, Cruzado M, Ariznavarreta C, Gil-Loyzaga P, Lahera V, Cachofeiro V, Tresguerres JA. Body composition and vascular effects of growth hormone administration in old female rats. Exp Gerontol 2003;38:971–979PubMedGoogle Scholar
  120. 120.
    Castillo C, Cruzado M, Ariznavarreta C, Gil-Loyzaga P, Lahera V, Cachofeiro V, Tresguerres JA. Effect of recombinant human growth hormone administration on body composition and vascular function and structure in old male Wistar rats. Biogerontology 2005;6:303–312PubMedGoogle Scholar
  121. 121.
    Ceda GP, Dall’Aglio E, Maggio M, Lauretani F, Bandinelli S, Falzoi C, Grimaldi W, Ceresini G, Corradi F, Ferrucci L, Valenti G, Hoffman AR. Clinical implications of the reduced activity of the GH-IGF-I axis in older men. J Endocrinol Invest 2005;28:96–100PubMedGoogle Scholar
  122. 122.
    Nair KS. Aging muscle. Am J Clin Nutr 2005;81:953–963PubMedGoogle Scholar
  123. 123.
    Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 1988;84:275–294PubMedGoogle Scholar
  124. 124.
    Short KR, Vittone J, Bigelow ML, Proctor DN, Nair KS. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol 2004;286:E92–E101Google Scholar
  125. 125.
    Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin JD, Roy TA, Hurley BF. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol 1997;83:1581–1587PubMedGoogle Scholar
  126. 126.
    Balagopal P, Rooyackers OE, Adey DB, Ades PA, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 1997;273:E790–E800PubMedGoogle Scholar
  127. 127.
    Thompson LV. Effects of age and training on skeletal muscle physiology and performance. Phys Ther 1994;74:71–81PubMedGoogle Scholar
  128. 128.
    Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 1995;50:11–16PubMedGoogle Scholar
  129. 129.
    Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004;2:e294Google Scholar
  130. 130.
    Barazzoni R, Short KR, Nair KS. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 2000;275:3343–3347PubMedGoogle Scholar
  131. 131.
    Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 1996;93:15364–15369PubMedGoogle Scholar
  132. 132.
    Yarovaya NO, Kramarova L, Borg J, Kovalenko SA, Caragounis A, Linnane AW. Age-related atrophy of rat soleus muscle is accompanied by changes in fibre type composition, bioenergy decline and mtDNA rearrangements. Biogerontology 2002;3:25–27PubMedGoogle Scholar
  133. 133.
    Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005;102:5618–5623PubMedGoogle Scholar
  134. 134.
    Wanagat J, Cao Z, Pathare P, Aiken JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 2001;15:322–332PubMedGoogle Scholar
  135. 135.
    McKenzie D, Bua E, McKiernan S, Cao Z, Aiken JM, Wanagat J. Mitochondrial DNA deletion mutations: a causal role in sarcopenia. Eur J Biochem 2002;269:2010–2015PubMedGoogle Scholar
  136. 136.
    Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005;35:473–483PubMedGoogle Scholar
  137. 137.
    Rice KM, Blough ER. Sarcopenia-related apoptosis is regulated differently in fast- and slow-twitch muscles of the aging F344/N x BN rat model. Mech Ageing Dev 2006;127:670–679PubMedGoogle Scholar
  138. 138.
    Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003;34:806–812PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Marín-García
    • 1
  • Michael J. Goldenthal
    • 2
  • Gordon W. Moe
    • 3
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  2. 2.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  3. 3.University of TorontoTorontoCanada

Personalised recommendations