Molecular and Cellular Phenotypes of Cardiovascular Aging

  • José Marín-García
  • Michael J. Goldenthal
  • Gordon W. Moe


Telomere Length Nucleotide Excision Repair Cellular Phenotype Aging Heart Cardiovascular Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kawamura S, Takahashi M, Ishihara T, Uchino F. Incidence and distribution of isolated atrial amyloid: histologic and immunohistochemical studies of 100 aging hearts. Pathol Int 1995;45:335–342PubMedGoogle Scholar
  2. 2.
    Kyle RA, Spittell PC, Gertz MA, Li CY, Edwards WD, Olson LJ, Thibodeau SN. The premortem recognition of systemic senile amyloidosis with cardiac involvement. Am J Med 1996;101:395–400PubMedGoogle Scholar
  3. 3.
    Barasch E, Gottdiener JS, Larsen EK, Chaves PH, Newman AB, Manolio TA. Clinical significance of calcification of the fibrous skeleton of the heart and aortosclerosis in community dwelling elderly. The Cardiovascular Health Study (CHS). Am Heart J 2006;151:39–47PubMedGoogle Scholar
  4. 4.
    Srivatsa SS, Harrity PJ, Maercklein PB, Kleppe L, Veinot J, Edwards WD, Johnson CM, Fitzpatrick LA. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves. J Clin Invest 1997;99:996–1009PubMedGoogle Scholar
  5. 5.
    Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 2003;107:2181–2184PubMedGoogle Scholar
  6. 6.
    Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 2004;286:E686–E696PubMedGoogle Scholar
  7. 7.
    Fitzpatrick LA, Turner RT, Ritman ER. Endochondral bone formation in the heart:a possible mechanism of coronary calcification. Endocrinology 2003;144:2214–2219PubMedGoogle Scholar
  8. 8.
    Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 1990;67:871–885PubMedGoogle Scholar
  9. 9.
    Lakatta EG. Cardiovascular aging research: The next horizons. J Am Geriatr Soc 1999;47:613–625PubMedGoogle Scholar
  10. 10.
    Lakatta EG. Changes in cardiovascular function with aging. Eur Heart J 1990;11:22–29PubMedGoogle Scholar
  11. 11.
    Cigola E, Kajstura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocyte cell death in vitro. Exp. Cell Res 1997;231:363–371Google Scholar
  12. 12.
    Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease Enterprises: part II: the aging heart in health: links to heart disease. Circulation 2003;107:346–354PubMedGoogle Scholar
  13. 13.
    Cain BS, Meldrum DR, Joo KS, Wang J-F, Meng X, Cleveland JC, Banerjee A, Harken AH. Human SERCA2a levels correlate inversely with age in senescent human myocardium. J Am Coll Cardiol 1998;32:458–467PubMedGoogle Scholar
  14. 14.
    Anversa P, Puntillo E, Nikitin P, Olivetti G, Capasso JM, Sonnenblick EH. Effects of age on mechanical and structural properties of myocardium of Fischer 344 rats. Am J Physiol 1989;256:H1440–H1449PubMedGoogle Scholar
  15. 15.
    Fraticelli A, Josephson R, Danziger R, Lakatta E, Spurgeon H. Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am J Physiol 1989;257:H259–H265PubMedGoogle Scholar
  16. 16.
    Taffet GE, Tate CA. Ca2+ ATPase content is lower in cardiac sarcoplasmic reticulum isolated from old rats. Am J Physiol Heart Circ Physiol 1993;264:H1609–H1614Google Scholar
  17. 17.
    Jiang M-T, Narayanan N. Effects of aging on phospholamban phosphorylation and calsium transport in rat cardiac sarcoplasmic reticulum. Mech Ageing Dev 1990;54:87–101PubMedGoogle Scholar
  18. 18.
    Xu A, Narayanan N. Effects of aging on sarcoplasmic reticulum Ca2+-cycling proteins and their phosphorylation in rat myocardium. Am J Physiol Heart Circ Physiol 1998;275:H2087–H2094Google Scholar
  19. 19.
    Lompre AM, Lambert F, Lakatta EG, Schwartz K. Expression of sarcoplasmic reticulum Ca(2+)-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 1991;69:1380–1388PubMedGoogle Scholar
  20. 20.
    Zhou YY, Lakatta EG, Xiao RP. Age-associated alterations in calcium current and its modulation in cardiac myocytes. Drugs Aging 1998;13:159–171PubMedGoogle Scholar
  21. 21.
    Walker KE, Lakatta EG, Houser SR. Age associated changes in membrane currents in rat ventricular myocytes. Cardiovasc Res 1993;27:1968–1977PubMedGoogle Scholar
  22. 22.
    Lakatta EG. Myocardial adaptations in advanced age. Basic Res Cardiol 1993;88:125–133PubMedGoogle Scholar
  23. 23.
    Klima M, Burns TR, Chopra A. Myocardial fibrosis in the elderly. Arch Pathol Lab Med 1990;114:938–942PubMedGoogle Scholar
  24. 24.
    Burlew BS. Diastolic dysfunction in the elderly—the interstitial issue. Am J Geriatr Cardiol 2004;13:29–38PubMedGoogle Scholar
  25. 25.
    de Souza RR. Aging of myocardial collagen. Biogerontology 2002;3:325–335PubMedGoogle Scholar
  26. 26.
    Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 2002;91:1103–1113PubMedGoogle Scholar
  27. 27.
    Husse B, Isenberg G. CREB expression in cardiac fibroblasts and CREM expression in ventricular myocytes. Biochem Biophys Res Commun 2005;334:1260–1265PubMedGoogle Scholar
  28. 28.
    Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, Sweterlitsch SE, Spinale FG. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res 2005;66:410–419PubMedGoogle Scholar
  29. 29.
    Fedak PW, Smookler DS, Kassiri Z, Ohno N, Leco KJ, Verma S, Mickle DA, Watson KL, Hojilla CV, Cruz W, Weisel RD, Li RK, Khokha R. TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 2004;110:2401–2409Google Scholar
  30. 30.
    Burgess ML, McCrea JC, Hedrick HL. Age-associated changes in cardiac matrix and integrins. Mech Ageing Dev 2001;122:1739–1756PubMedGoogle Scholar
  31. 31.
    Allessie M, Schotten U, Verheule S, Harks E. Gene therapy for repair of cardiac fibrosis: a long way to Tipperary. Circulation 2005;111:391–393PubMedGoogle Scholar
  32. 32.
    Fast VG, Darrow BJ, Saffitz JE, Kleber AG. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities. Circ Res 1996;79:115–127Google Scholar
  33. 33.
    Camelliti P, Green CR, Kohl P. Structural and functional coupling of cardiac myocytes and fibroblasts. Adv Cardiol 2006;42:132–149PubMedGoogle Scholar
  34. 34.
    Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 2001;104:2608–2614PubMedGoogle Scholar
  35. 35.
    Anyukhovsky EP, Sosunov EA, Plotnikov A, Gainullin RZ, Jhang JS, Marboe CC, Rosen MR. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res 2002;54:462–469PubMedGoogle Scholar
  36. 36.
    Hayashi H, Wang C, Miyauchi Y, Omichi C, Pak HN, Zhou S, Ohara T, Mandel WJ, Lin SF, Fishbein MC, Chen PS, Karagueuzian HS. Aging-related increase to inducible atrial fibrillation in the rat model. J Cardiovasc Electrophysiol 2002;13:801–808PubMedGoogle Scholar
  37. 37.
    Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 1991;68:1560–1568Google Scholar
  38. 38.
    Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, Anversa P. Gender differences and aging: effects on the human heart. J Am Coll Cardiol 1995;26:1068–1079PubMedGoogle Scholar
  39. 39.
    Mallat Z, Fornes P, Costagliola R, Esposito B, Belmin J, Lecomte D, Tedgui A. Age and gender effects on cardiomyocyte apoptosis in the normal human heart. J Gerontol A Biol Sci Med Sci 2001;56:M719–M723PubMedGoogle Scholar
  40. 40.
    Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000;45:528–537PubMedGoogle Scholar
  41. 41.
    Kanoh M, Takemura G, Misao J, Hayakawa Y, Aoyama T, Nishigaki K, Noda T, Fujiwara T, Fukuda K, Minatoguchi S, Fujiwara H. Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 1999;99:2757–2764PubMedGoogle Scholar
  42. 42.
    Kockx MM, Muhring J, Knaapen MW, de Meyer GR. RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. Am J Pathol 1998;152:885–888Google Scholar
  43. 43.
    Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EA. Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 2003;199:221–228PubMedGoogle Scholar
  44. 44.
    Dumont EA, Hofstra L, van Heerde WL, van den Eijnde S, Doevendans PA, DeMuinck E, Daemen MA, Smits JF, Frederik P, Wellens HJ, Daemen MJ, Reutelingsperger CP. Cardiomyocyte death induced by myocardial ischemia and reperfusion: measurement with recombinant human annexin-V in a mouse model. Circulation 2000;102:1564–1568Google Scholar
  45. 45.
    Honda O, Kuroda M, Joja I, Asaumi J, Takeda Y, Akaki S, Togami I, Kanazawa S, Kawasaki S, Hiraki Y. Assessment of secondary necrosis of Jurkat cells using a new microscopic system and double staining method with annexin V and propidium iodide. Int J Oncol 2000;16:283–288PubMedGoogle Scholar
  46. 46.
    Searle J, Kerr JF, Bishop CJ. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Ann 1982;17:229–259Google Scholar
  47. 47.
    Gill C, Mestril R, Samali A. Losing heart: the role of apoptosis in heart disease—a novel therapeutic target. FASEB J 2002;16:135–146PubMedGoogle Scholar
  48. 48.
    Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 2006;43:S31–S44Google Scholar
  49. 49.
    Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 2003;304:463–470PubMedGoogle Scholar
  50. 50.
    Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1998;1366:177–196PubMedGoogle Scholar
  51. 51.
    Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G. Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr 1997;29:185–193PubMedGoogle Scholar
  52. 52.
    Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Fushiki S, Fliss H, Nakagawa M. Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res 2003;59:428–440PubMedGoogle Scholar
  53. 53.
    Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 1996;271:H1215–H1228PubMedGoogle Scholar
  54. 54.
    Goldspink DF, Burniston JG, Tan LB. Cardiomyocyte death and the ageing and failing heart. Exp Physiol 2003;88:447–458PubMedGoogle Scholar
  55. 55.
    Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305–1308PubMedGoogle Scholar
  56. 56.
    Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death—inducing signaling complex. Cell 1996;85:817–827PubMedGoogle Scholar
  57. 57.
    Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS. A unified model for apical caspase activation. Mol Cell 2003;11:529–541PubMedGoogle Scholar
  58. 58.
    Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107PubMedGoogle Scholar
  59. 59.
    Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994;75:426–433PubMedGoogle Scholar
  60. 60.
    Yamaguchi S, Yamaoka M, Okuyama M, Nitoube J, Fukui A, Shirakabe M, Shirakawa K, Nakamura N, Tomoike H. Elevated circulating levels and cardiac secretion of soluble Fas ligand in patients with congestive heart failure. Am J Cardiol 1999;83:1500–1503PubMedGoogle Scholar
  61. 61.
    Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704–711PubMedGoogle Scholar
  62. 62.
    Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996; 98:2854–2865PubMedGoogle Scholar
  63. 63.
    Sack MN, Smith RM, Opie LH. Tumor necrosis factor in myocardial hypertrophy and ischaemia—an anti-apoptotic perspective. Cardiovasc Res 2000;45:688–695PubMedGoogle Scholar
  64. 64.
    Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl.Acad Sci USA 2000;97:5456–5461PubMedGoogle Scholar
  65. 65.
    Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 2004;95:957–970PubMedGoogle Scholar
  66. 66.
    Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42PubMedGoogle Scholar
  67. 67.
    Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001;412:95–99PubMedGoogle Scholar
  68. 68.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–157PubMedGoogle Scholar
  69. 69.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441–446PubMedGoogle Scholar
  70. 70.
    Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423–432PubMedGoogle Scholar
  71. 71.
    Hu Y, Ding L, Spencer DM, Nunez G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem 1998;273:33489–33494PubMedGoogle Scholar
  72. 72.
    Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 1999;399:549–557PubMedGoogle Scholar
  73. 73.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413PubMedGoogle Scholar
  74. 74.
    Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 1999;274:1156–1163PubMedGoogle Scholar
  75. 75.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–490PubMedGoogle Scholar
  76. 76.
    Peter ME. The flip side of FLIP. Biochem J 2004;382:e1–e3PubMedGoogle Scholar
  77. 77.
    Imanishi T, Murry CE, Reinecke H, Hano T, Nishio I, Liles WC, Hofsta L, Kim K, O’Brien KD, Schwartz SM, Han DK. Cellular FLIP is expressed in cardiomyocytes and down-regulated in TUNEL-positive grafted cardiac tissues. Cardiovasc Res 2000;48:101–110PubMedGoogle Scholar
  78. 78.
    Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003;11:519–527PubMedGoogle Scholar
  79. 79.
    Sun C, Cai M, Meadows RP, Xu N, Gunasekera AH, Herrmann J, Wu JC, Fesik SW. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 2000;275:33777–33781PubMedGoogle Scholar
  80. 80.
    Scheubel RJ, Bartling B, Simm A, Silber RE, Drogaris K, Darmer D, Holtz J. Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: fragile balance of myocyte survival? J Am Coll Cardiol 2002;39:481–488PubMedGoogle Scholar
  81. 81.
    Nam YJ, Mani K, Ashton AW, Peng CF, Krishnamurthy B, Hayakawa Y, Lee P, Korsmeyer SJ, Kitsis RN. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 2004;15:901–912PubMedGoogle Scholar
  82. 82.
    Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem 2004;279:21233–21238PubMedGoogle Scholar
  83. 83.
    Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC 3rd, Nunez G. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 1999;85:e70–e77PubMedGoogle Scholar
  84. 84.
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003;300:135–139PubMedGoogle Scholar
  85. 85.
    Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa E. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem 2004;279:50375–50381PubMedGoogle Scholar
  86. 86.
    Phaneuf S, Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Integr Comp Physiol 2002;282:R423–R430Google Scholar
  87. 87.
    Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann NY Acad Sci 2002;959:93–107PubMedGoogle Scholar
  88. 88.
    Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004;94:514–524PubMedGoogle Scholar
  89. 89.
    Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005;309:481–484PubMedGoogle Scholar
  90. 90.
    Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: Central role of complex III. J Biol Chem 2003;278:36027–36031PubMedGoogle Scholar
  91. 91.
    Herrero A, Barja G. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 2000;32:609–615PubMedGoogle Scholar
  92. 92.
    McLennan HR, Degli Esposti M. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 2000;32:153–162PubMedGoogle Scholar
  93. 93.
    Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann NY Acad Sci 2000;908:219–225PubMedGoogle Scholar
  94. 94.
    Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1999;1411:351–369PubMedGoogle Scholar
  95. 95.
    Riobo NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ. Nitric oxide inhibits mitochondrial NADH: ubiquinone reductase activity through peroxynitrite formation. Biochem J 2001;359:139–151PubMedGoogle Scholar
  96. 96.
    Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA. Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 2003;278:37223–37230PubMedGoogle Scholar
  97. 97.
    Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R. Cytochrome c nitration by peroxynitrite. J Biol Chem 2000;275:21409–21415PubMedGoogle Scholar
  98. 98.
    Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 1994;269:29409–29415PubMedGoogle Scholar
  99. 99.
    Packer MA, Scarlett JL, Martin SW, Murphy MP. Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans 1997;25:909–914PubMedGoogle Scholar
  100. 100.
    Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 2005;66:222–232Google Scholar
  101. 101.
    Brookes PS, Darley-Usmar VM. Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. Am J Physiol Heart Circ Physiol 2004;286:H39–H46PubMedGoogle Scholar
  102. 102.
    Suh JH, Heath SH, Hagen T. Two subpopulations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radic Biol Med 2003;35:1064–1072PubMedGoogle Scholar
  103. 103.
    Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 2005;19:419–421PubMedGoogle Scholar
  104. 104.
    Okuda M, Lee HC, Kumar C, Chance B. Comparison of the effect of a mitochondrial uncoupler, 2,4-dinitrophenol and adrenaline on oxygen radical production in the isolated perfused rat liver. Acta Physiol Scand 1992;145:159–168PubMedGoogle Scholar
  105. 105.
    Korshunov SS, Korkina OV, Ruuge EK, Skulachev VP, Starkov AA. Fatty acids as natural uncouplers preventing generation of O2^- and H2O2 by mitochondria in the resting state. FEBS Lett 1998;435:215–218PubMedGoogle Scholar
  106. 106.
    Casteilla L, Rigoulet M, Penicaud L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 2001;52:181–188PubMedGoogle Scholar
  107. 107.
    Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 2004;182:321–333PubMedGoogle Scholar
  108. 108.
    Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci USA 2002;99:14988–14993PubMedGoogle Scholar
  109. 109.
    Hansford RG, Castro F. Age-linked changes in the activity of enzymes of the tricarboxylate cycle and lipid oxidation, and of carnitine content, in muscles of the rat. Mech Ageing Dev 1982;19:191–200PubMedGoogle Scholar
  110. 110.
    Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta 1996;1276:87–105PubMedGoogle Scholar
  111. 111.
    Wei YH, Lu CY, Lee HC, Pang CY, Ma YS. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann NY Acad Sci 1998; 854:155–170PubMedGoogle Scholar
  112. 112.
    Maklashina E, Ackrell BA. Is defective electron transport at the hub of aging? Aging Cell 2004;3:21–27PubMedGoogle Scholar
  113. 113.
    Miro O, Casademont J, Casals E, Perea M, Urbano-Marquez A, Rustin P, Cardellach F. Aging is associated with increased lipid peroxidation in human hearts, but not with mitochondrial respiratory chain enzyme defects. Cardiovasc Res 2000;47:624–631PubMedGoogle Scholar
  114. 114.
    Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ. Human mitochondrial function during cardiac growth and development. Mol Cell Biochem 1998;179:21–26PubMedGoogle Scholar
  115. 115.
    Torii K, Sugiyama S, Takagi K, Satake T, Ozawa T. Age-related decrease in respiratory muscle mitochondrial function in rats. Am J Respir Cell Mol Biol 1992;6:88–92PubMedGoogle Scholar
  116. 116.
    Barazzoni R, Short KR, Nair KS. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 2000;275:3343–3347PubMedGoogle Scholar
  117. 117.
    Lenaz G, D’Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, Parenti Castelli G. Mitochondrial bioenergetics in aging. Biochim Biophys Acta 2000;1459:397–404PubMedGoogle Scholar
  118. 118.
    Genova ML, Castelluccio C, Fato R, Parenti Castelli G, Merlo Pich M, Formiggini G, Bovina C, Marchetti M, Lenaz G. Major changes in complex I activity in mitochondria from aged rats may not be detected by direct assay of NADH:coenzyme Q reductase. Biochem J 1995;311:105–109PubMedGoogle Scholar
  119. 119.
    Muller-Hocker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart—an age-related phenomenon. A histochemical ultracytochemical study. Am J Pathol 1989;134:1167–1173.PubMedGoogle Scholar
  120. 120.
    Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett 1997;406:136–138PubMedGoogle Scholar
  121. 121.
    Guerrieri F, Capozza G, Kalous M, Zanotti F, Drahota Z, Papa S. Age-dependent changes in the mitochondrial F0F1 ATP synthase. Arch Gerontol Geriatr 1992;14:299–308PubMedGoogle Scholar
  122. 122.
    Davies SM, Poljak A, Duncan MW, Smythe GA, Murphy MP. Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med 2001;31:181–190PubMedGoogle Scholar
  123. 123.
    Hoppel CL, Moghaddas S, Lesnefsky EJ. Interfibrillar cardiac mitochondrial comples III defects in the aging rat heart. Biogerontology 2002;3:41–44PubMedGoogle Scholar
  124. 124.
    Lesnefsky EJ, Gudz TI, Moghaddas S, Migita CT, Ikeda-Saito M, Turkaly PJ, Hoppel CL. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J Mol Cell Cardiol 2001;33:37–47PubMedGoogle Scholar
  125. 125.
    Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys 1999;372:399–407PubMedGoogle Scholar
  126. 126.
    Terman A, Brunk UT. Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 2005;68:355–365PubMedGoogle Scholar
  127. 127.
    Yoshida K, Hanafusa T, Matoba R, Wakasugi C. Proteolysis of myosin and troponin in human myocardium of elderly subjects. Jpn Heart J 1990;31:683–691PubMedGoogle Scholar
  128. 128.
    Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem 2000;275:31505–31513PubMedGoogle Scholar
  129. 129.
    Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem 2004;263:55–72PubMedGoogle Scholar
  130. 130.
    Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6:463–477PubMedGoogle Scholar
  131. 131.
    Ohsumi Y, Mizushima N. Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 2004;15:231–236PubMedGoogle Scholar
  132. 132.
    Kissova I, Deffieu M, Manon S, Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 2004;279:39068–39074PubMedGoogle Scholar
  133. 133.
    Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005;8:3–5PubMedGoogle Scholar
  134. 134.
    Terman A, Brunk UT. The aging myocardium: roles of mitochondrial damage and lysosomal degradation. Heart Lung Circ 2005;14:107–114PubMedGoogle Scholar
  135. 135.
    Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 2005;102:13807–13812PubMedGoogle Scholar
  136. 136.
    Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H. Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy 2006;2:212–214PubMedGoogle Scholar
  137. 137.
    Terman A, Brunk UT. On the degradability and exocytosis of ceroid/lipofuscin in cultured rat cardiac myocytes. Mech Ageing Dev 1998;100:145–156PubMedGoogle Scholar
  138. 138.
    Grune T, Merker K, Jung T, Sitte N, Davies KJ. Protein oxidation and degradation during postmitotic senescence. Free Radic Biol Med 2005;39:1208–1215PubMedGoogle Scholar
  139. 139.
    Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 1996;93:15364–15369PubMedGoogle Scholar
  140. 140.
    Brunk UT, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 2002;269:1996–2002PubMedGoogle Scholar
  141. 141.
    Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Ann NY Acad Sci 2004;1019:70–77PubMedGoogle Scholar
  142. 142.
    Terman A, Brunk UT. Myocyte aging and mitochondrial turnover. Exp Gerontol 2004;39:701–705PubMedGoogle Scholar
  143. 143.
    Terman A, Dalen H, Brunk UT. Ceroid/lipofuscin-loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Exp Gerontol 1999;34:943–957PubMedGoogle Scholar
  144. 144.
    Terman A, Abrahamsson N, Brunk UT. Ceroid/lipofuscin-loaded human fibroblasts show increased susceptibility to oxidative stress. Exp Gerontol 1999;34:755–770PubMedGoogle Scholar
  145. 145.
    Brunk UT, Neuzil J, Eaton JW. Lysosomal involvement in apoptosis. Redox Report 2001;6:91–97PubMedGoogle Scholar
  146. 146.
    Terman A, Gustafsson B, Brunk UT. The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact. 2006 May 1Google Scholar
  147. 147.
    Yan L, Sadoshima J, Vatner DE, Vatner SF. Autophagy: a novel protective mechanism in chronic ischemia. Cell Cycle 2006;5:1175–1177PubMedGoogle Scholar
  148. 148.
    Kunapuli S, Rosanio S, Schwarz ER. “How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. J Card Fail 2006;12:381–391PubMedGoogle Scholar
  149. 149.
    Kanski J, Behring A, Pelling J, Schoneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol 2005;288:H371–H381PubMedGoogle Scholar
  150. 150.
    Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11:81–128PubMedGoogle Scholar
  151. 151.
    Kim CH, Zou Y, Kim DH, Kim ND, Yu BP, Chung HY. Proteomic analysis of nitrated and 4-hydroxy-2-nonenal-modified serum proteins during aging. J Gerontol A Biol Sci Med Sci 2006;61:332–338PubMedGoogle Scholar
  152. 152.
    Lucas DT, Szweda LI. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA 1998;95:510–514PubMedGoogle Scholar
  153. 153.
    Moreau R, Heath SH, Doneanu CE, Lindsay JG, Hagen TM. Age-related increase in 4-hydroxynonenal adduction to rat heart alpha-ketoglutarate dehydrogenase does not cause loss of its catalytic activity. Antioxid Redox Signal 2003;5:517–527PubMedGoogle Scholar
  154. 154.
    Benderdour M, Charron G, Comte B, Ayoub R, Beaudry D, Foisy S, Deblois D, Des Rosiers C. Decreased cardiac mitochondrial NADP+-isocitrate dehydrogenase activity and expression: a marker of oxidative stress in hypertrophy development. Am J Physiol Heart Circ Physiol 2004;287:H2122–H2131PubMedGoogle Scholar
  155. 155.
    Knyushko TV, Sharov VS, Williams TD, Schoneich C, Bigelow DJ. 3-Nitro-tyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry 2005;44:13071–13081PubMedGoogle Scholar
  156. 156.
    Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987;262:5488–5491PubMedGoogle Scholar
  157. 157.
    Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997;272:20313–20316PubMedGoogle Scholar
  158. 158.
    Yan LJ, Sohal RS. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 1998;95:12896–12901PubMedGoogle Scholar
  159. 159.
    Das N, Levine RL, Orr WC, Sohal RS. Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J 2001;360:209–216PubMedGoogle Scholar
  160. 160.
    Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 1997;10:485–494PubMedGoogle Scholar
  161. 161.
    Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003;25:207–218PubMedGoogle Scholar
  162. 162.
    Thomas JA, Mallis RJ. Aging and oxidation of reactive protein sulfhydryls. Exp Gerontol 2001;36:1519–1526PubMedGoogle Scholar
  163. 163.
    Avendano GF, Agarwal RK, Bashey RI, Lyons MM, Soni BJ, Jyothirmayi GN, Regan TJ. Effects of glucose intolerance on myocardial function and collagen-linked glycation. Diabetes 1999;48:1443–1447PubMedGoogle Scholar
  164. 164.
    Burgess ML, McCrea JC, Hedrick HL. Age-associated changes in cardiac matrix and integrins. Mech Ageing Dev 2001;122:1739–1756PubMedGoogle Scholar
  165. 165.
    Reiser KM. Influence of age and long-term dietary restriction on enzymatically mediated crosslinks and nonenzymatic glycation of collagen in mice. J Gerontol 1994;49:B71–B79PubMedGoogle Scholar
  166. 166.
    Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996;93:1905–1912PubMedGoogle Scholar
  167. 167.
    Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci USA 2000;97:2809–2813PubMedGoogle Scholar
  168. 168.
    Liu J, Masurekar MR, Vatner DE, Jyothirmayi GN, Regan TJ, Vatner SF, Meggs LG, Malhotra A. Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Physiol Heart Circ Physiol 2003;285:H2587–H2589PubMedGoogle Scholar
  169. 169.
    Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A, Migheli A, Stern D. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 1993;143:1699–1712PubMedGoogle Scholar
  170. 170.
    Simm A, Casselmann C, Schubert A, Hofmann S, Reimann A, Silber RE. Age associated changes of AGE-receptor expression: RAGE upregulation is associated with human heart dysfunction. Exp Gerontol 2004;39:407–413PubMedGoogle Scholar
  171. 171.
    Bucciarelli LG, Kaneko M, Ananthakrishnan R, Harja E, Lee LK, Hwang YC, Lerner S, Bakr S, Li Q, Lu Y, Song F, Qu W, Gomez T, Zou YS, Yan SF, Schmidt AM, Ramasamy R. Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury. Circulation 2006;113:1226–1234PubMedGoogle Scholar
  172. 172.
    Petrova R, Yamamoto Y, Muraki K, Yonekura H, Sakurai S, Watanabe T, Li H, Takeuchi M, Makita Z, Kato I, Takasawa S, Okamoto H, Imaizumi Y, Yamamoto H. Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol 2002;34:1425–1431PubMedGoogle Scholar
  173. 173.
    Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell 2005;120:497–512PubMedGoogle Scholar
  174. 174.
    Baynes JW. The Maillard hypothesis on aging: time to focus on DNA. Ann NY Acad Sci 2002;959:360–367PubMedGoogle Scholar
  175. 175.
    Stopper H, Schinzel R, Sebekova K, Heidland A. Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett 2003;190:151–156PubMedGoogle Scholar
  176. 176.
    Grist SA, McCarron M, Kutlaca A, Turner DR, Morley AA. In vivo human somatic mutation: frequency and spectrum with age. Mutat Res 1992;266:189–196PubMedGoogle Scholar
  177. 177.
    King CM, Gillespie ES, McKenna PG, Barnett YA. An investigation of mutation as a function of age in humans. Mutat Res 1994;316:79–90PubMedGoogle Scholar
  178. 178.
    Morley A. Somatic mutation and aging. Ann NY Acad Sci 1998;854:20–22PubMedGoogle Scholar
  179. 179.
    Odagiri Y, Uchida H, Hosokawa M, Takemoto K, Morley AA, Takeda T. Accelerated accumulation of somatic mutations in the senescence-accelerated mouse. Nat Genet 1998;19:116–117PubMedGoogle Scholar
  180. 180.
    Aidoo A, Mittelstaedt RA, Bishop ME, Lyn-Cook LE, Chen YJ, Duffy P, Heflich RH. Effect of caloric restriction on Hprt lymphocyte mutation in aging rats. Mutat Res 2003;527:57–66PubMedGoogle Scholar
  181. 181.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300PubMedGoogle Scholar
  182. 182.
    Biesalski HK. Free radical theory of aging. Curr Opin Clin Nutr Metab Care 2002;5:5–10PubMedGoogle Scholar
  183. 183.
    Anson RM, Mason PA, Bohr VA. Gene-specific and mitochondrial repair of oxidative DNA damage. Methods Mol Biol 2006;314:155–181PubMedGoogle Scholar
  184. 184.
    Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997;94:514–519PubMedGoogle Scholar
  185. 185.
    Driggers WJ, Holmquist GP, LeDoux SP, Wilson GL. Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA. Nucleic Acids Res 1997;25:4362–4369PubMedGoogle Scholar
  186. 186.
    Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988;85:6465–6467PubMedGoogle Scholar
  187. 187.
    Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 1988;85:2706–2708PubMedGoogle Scholar
  188. 188.
    Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990;87:4533–4537PubMedGoogle Scholar
  189. 189.
    Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993;34:609–616PubMedGoogle Scholar
  190. 190.
    Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T. Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 1991;179:1023–1029PubMedGoogle Scholar
  191. 191.
    Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 1992;189:979–985PubMedGoogle Scholar
  192. 192.
    Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 2001;98:10469–10474PubMedGoogle Scholar
  193. 193.
    Anson RM, Hudson E, Bohr VA. Mitochondrial endogenous oxidative damage has been overestimated. FASEB J 2000;14:355–360PubMedGoogle Scholar
  194. 194.
    Claycamp HG. Phenol sensitization of DNA to subsequent oxidative damage in 8-hydroxyguanine assays. Carcinogenesis 1992;13:1289–1292PubMedGoogle Scholar
  195. 195.
    Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA. Gene regulation and DNA damage in the ageing human brain. Nature 2004;429:883–891PubMedGoogle Scholar
  196. 196.
    Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 2006;38:518–520PubMedGoogle Scholar
  197. 197.
    Meissner C, Bruse P, Oehmichen M. Tissue-specific deletion patterns of the mitochondrial genome with advancing age. Exp Gerontol 2006;41:518–524PubMedGoogle Scholar
  198. 198.
    Mohamed SA, Hanke T, Erasmi AW, Bechtel MJ, Scharfschwerdt M, Meissner C, Sievers HH, Gosslau A. Mitochondrial DNA deletions and the aging heart. Exp Gerontol 2006;41:508–517PubMedGoogle Scholar
  199. 199.
    Coller HA, Bodyak ND, Khrapko K. Frequent intracellular clonal expansions of somatic mtDNA mutations: significance and mechanisms. Ann NY Acad Sci 2002;959:434–447PubMedGoogle Scholar
  200. 200.
    Khrapko K, Bodyak N, Thilly WG, van Orsouw NJ, Zhang X, Coller HA, Perls TT, Upton M, Vijg J, Wei JY. Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res 1999;27:2434–2441Google Scholar
  201. 201.
    Cao Z, Wanagat J, McKiernan SH, Aiken JM. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res 2001;29:4502–4508PubMedGoogle Scholar
  202. 202.
    Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta 1995;1271:177–189PubMedGoogle Scholar
  203. 203.
    Samuels DC, Schon EA, Chinnery PF. Two direct repeats cause most human mtDNA deletions. Trends Genet 2004;20:393–398PubMedGoogle Scholar
  204. 204.
    Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, Fabrizi GM, Koga Y, DiMauro S, Schon EA. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 1990;18:561–567PubMedGoogle Scholar
  205. 205.
    Srivastava S, Moraes CT. Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet 2005;14:893–902PubMedGoogle Scholar
  206. 206.
    Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, Spelbrink JN. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 2004;32:3053–3064PubMedGoogle Scholar
  207. 207.
    Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, Comi GP, Keranen S, Peltonen L, Suomalainen A. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 2000;289:782–785PubMedGoogle Scholar
  208. 208.
    Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 1989;244:346–349PubMedGoogle Scholar
  209. 209.
    Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci USA 1989;86:7952–7956PubMedGoogle Scholar
  210. 210.
    Yowe DL, Ames BN. Quantitation of age-related mitochondrial DNA deletions in rat tissues shows that their pattern of accumulation differs from that of humans. Gene 1998;209:23–30PubMedGoogle Scholar
  211. 211.
    Zhang C, Bills M, Quigley A, Maxwell RJ, Linnane AW, Nagley P. Varied prevalence of age-associated mitochondrial DNA deletions in different species and tissues: a comparison between human and rat. Biochem Biophys Res Commun 1997;230:630–635PubMedGoogle Scholar
  212. 212.
    Muscari C, Giaccari A, Stefanelli C, Viticchi C, Giordano E, Guarnieri C, Caldarera CM. Presence of a DNA-4236 bp deletion and 8-hydroxy-deoxyguanosine in mouse cardiac mitochondrial DNA during aging. Aging (Milano) 1996;8:429–433Google Scholar
  213. 213.
    Wanagat J, Wolff MR, Aiken JM. Age-associated changes in function, structure and mitochondrial genetic and enzymatic abnormalities in the Fischer 344 x Brown Norway F(1) hybrid rat heart. J Mol Cell Cardiol 2002;34:17–28PubMedGoogle Scholar
  214. 214.
    Pak JW, Vang F, Johnson C, McKenzie D, Aiken JM. MtDNA point mutations are associated with deletion mutations in aged rat. Exp Gerontol 2005;40:209–218PubMedGoogle Scholar
  215. 215.
    Chomyn A, Attardi G. MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 2003;304:519–529PubMedGoogle Scholar
  216. 216.
    Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafe M, Olivieri F, Passarino G, De Benedictis G, Franceschi C, Attardi G. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci USA 2003;100:1116–1121PubMedGoogle Scholar
  217. 217.
    Marín-García J, Zoubenko O, Goldenthal MJ. Mutations in the cardiac mtDNA control region associated with cardiomyopathy and aging. J Cardiac Failure 2002;8:93–100Google Scholar
  218. 218.
    Song X, Deng JH, Liu CJ, Bai Y. Specific point mutations may not accumulate with aging in the mouse mitochondrial DNA control region. Gene 2005;350:193–199PubMedGoogle Scholar
  219. 219.
    Khaidakov M, Heflich RH, Manjanatha MG, Myers MB, Aidoo A. Accumulation of point mutations in mitochondrial DNA of aging mice. Mutat Res 2003;526:1–7PubMedGoogle Scholar
  220. 220.
    Nekhaeva E, Bodyak ND, Kraytsberg Y, McGrath SB, Van Orsouw NJ, Pluzhnikov A, Wei JY, Vijg J, Khrapko K. Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci USA 2002;99:5521–5526PubMedGoogle Scholar
  221. 221.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004;27:417–423Google Scholar
  222. 222.
    Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 2005;102:17993–17998PubMedGoogle Scholar
  223. 223.
    Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci USA 2005;102:18769–18770PubMedGoogle Scholar
  224. 224.
    Khrapko K, Kraytsberg Y, de Grey AD, Vijg J, Schon EA. Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell 2006;5:279–282PubMedGoogle Scholar
  225. 225.
    Gokey NG, Cao Z, Pak JW, Lee D, McKiernan SH, McKenzie D, Weindruch R, Aiken JM. Molecular analyses of mtDNA deletion mutations in microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell 2004;3:319–326PubMedGoogle Scholar
  226. 226.
    Soong NW, Hinton DR, Cortopassi G, Arnheim N. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 1992;2:318–323PubMedGoogle Scholar
  227. 227.
    Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, Denniger G, Zassenhaus HP. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 2003;57:147–157PubMedGoogle Scholar
  228. 228.
    Zhang D, Mott JL, Chang SW, Stevens M, Mikolajczak P, Zassenhaus HP. Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol 2005;288:H2476–H2483PubMedGoogle Scholar
  229. 229.
    Zhang D, Ezekiel UR, Chang SW, Zassenhaus HP. Gene expression profile in dilated cardiomyopathy caused by elevated frequencies of mitochondrial DNA mutations in the mouse heart. Cardiovasc Pathol 2005;14:61–69PubMedGoogle Scholar
  230. 230.
    Mott JL, Zhang D, Chang SW, Zassenhaus HP. Mitochondrial DNA mutations cause resistance to opening of the permeability transition pore. Biochim Biophys Acta 2006;1757:596–603PubMedGoogle Scholar
  231. 231.
    Vijg J, Dolle ME, Martus HJ, Boerrigter ME. Transgenic mouse models for studying mutations in vivo: applications in aging research. Mech Ageing Dev 1997;98:189–202PubMedGoogle Scholar
  232. 232.
    Dolle ME, Giese H, Hopkins CL, Martus HJ, Hausdorff JM, Vijg J. Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet 1997;17:431–434PubMedGoogle Scholar
  233. 233.
    Dolle ME, Snyder WK, Gossen JA, Lohman PH, Vijg J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc Natl Acad Sci USA 2000;97:8403–8408PubMedGoogle Scholar
  234. 234.
    Hsie AW, Recio L, Katz DS, Lee CQ, Wagner M, Schenley RL. Evidence for reactive oxygen species inducing mutations in mammalian cells. Proc Natl Acad Sci USA 1986;83:9616–9620PubMedGoogle Scholar
  235. 235.
    Gille JJ, van Berkel CG, Joenje H. Mutagenicity of metabolic oxygen radicals in mammalian cell cultures. Carcinogenesis.1994;15:2695–2699Google Scholar
  236. 236.
    Ono T, Ikehata H, Nakamura S, Saito Y, Hosoi Y, Takai Y, Yamada S, Onodera J, Yamamoto K. Age-associated increase of spontaneous mutant frequency and molecular nature of mutation in newborn and old lacZ-transgenic mouse. Mutat Res 2000;447:165–177PubMedGoogle Scholar
  237. 237.
    Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 2004;38:445–476PubMedGoogle Scholar
  238. 238.
    Holmquist GP. Endogenous lesions, S-phase-independent spontaneous mutations, and evolutionary strategies for base excision repair. Mutat Res 1998;400:59–68PubMedGoogle Scholar
  239. 239.
    Lindahl T, Karran P, Wood RD. DNA excision repair pathways. Curr Opin Genet Dev 1997;7:158–169PubMedGoogle Scholar
  240. 240.
    Cabelof DC, Raffoul JJ, Yanamadala S, Ganir C, Guo Z, Heydari AR. Attenuation of DNA polymerase beta-dependent base excision repair and increased DMS-induced mutagenicity in aged mice. Mutat Res 2002;500:135–145PubMedGoogle Scholar
  241. 241.
    de Souza-Pinto NC, Hogue BA, Bohr VA. DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic Biol Med 2001;30:916–923PubMedGoogle Scholar
  242. 242.
    Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 2004;18:595–597PubMedGoogle Scholar
  243. 243.
    Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J. Aging and genome maintenance: lessons from the mouse? Science 2003;299:1355–1359PubMedGoogle Scholar
  244. 244.
    Schofield MJ, Hsieh P. DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol 2003;57:579–608PubMedGoogle Scholar
  245. 245.
    Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004;73:39–85PubMedGoogle Scholar
  246. 246.
    Gillet LC, Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006;106:253–276PubMedGoogle Scholar
  247. 247.
    Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF. The eukaryotic nucleotide excision repair pathway. Biochimie 2003;85:1083–1099PubMedGoogle Scholar
  248. 248.
    Mitchell JR, Hoeijmakers JH, Niedernhofer LJ. Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol 2003;15:232–240PubMedGoogle Scholar
  249. 249.
    Bassing CH, Alt FW. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst.) 2004;3:781–796Google Scholar
  250. 250.
    Karanjawala ZE, Lieber MR. DNA damage and aging. Mech Ageing Dev 2004;125:405–416PubMedGoogle Scholar
  251. 251.
    Bryant HE, Helleday T. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 2006;34:1685–1691PubMedGoogle Scholar
  252. 252.
    Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 2001;20:5572–5579PubMedGoogle Scholar
  253. 253.
    Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P. Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci USA 1999;96:10770–10775PubMedGoogle Scholar
  254. 254.
    Espejel S, Martin M, Klatt P, Martin-Caballero J, Flores JM, Blasco MA. Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice. EMBO Rep 2004;5:503–509PubMedGoogle Scholar
  255. 255.
    Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW. Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 2004;18:1283–1292PubMedGoogle Scholar
  256. 256.
    Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998;17:5497–5508PubMedGoogle Scholar
  257. 257.
    Helleday T. Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 2003;532:103–115PubMedGoogle Scholar
  258. 258.
    Scharer OD. Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 2003;42:2946–2974PubMedGoogle Scholar
  259. 259.
    West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 2003;4:435–445PubMedGoogle Scholar
  260. 260.
    Wang HC, Chou WC, Shieh SY, Shen CY. Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res 2006;66:1391–1400PubMedGoogle Scholar
  261. 261.
    Lowndes NF, Toh GW. DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 2005;15:R99–R102Google Scholar
  262. 262.
    Bender CF, Sikes ML, Sullivan R, Huye LE, Le Beau MM, Roth DB, Mirzoeva OK, Oltz EM, Petrini JH. Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev 2002;16:2237–2251Google Scholar
  263. 263.
    Cao L, Li W, Kim S, Brodie SG, Deng CX. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 2003;17:201–213PubMedGoogle Scholar
  264. 264.
    Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A. Genomic instability in mice lacking histone H2AX. Science 2002;296:922–927PubMedGoogle Scholar
  265. 265.
    Y, Yang EM, Brugarolas J, Jacks T, Baltimore D. Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm-/- mice. Mol Cell Biol 1998;18:4385–4390PubMedGoogle Scholar
  266. 266.
    Wong KK, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 2003;421:643–648PubMedGoogle Scholar
  267. 267.
    Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 2005;5:89–108PubMedGoogle Scholar
  268. 268.
    Clayton DA, Doda JN, Friedberg EC. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 1974;71:2777–2781PubMedGoogle Scholar
  269. 269.
    LeDoux SP, Wilson GL, Beecham EJ, Stevnsner T, Wassermann K, Bohr VA. Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 1992;13:1967–1973PubMedGoogle Scholar
  270. 270.
    Mason PA, Matheson EC, Hall AG, Lightowlers RN. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res 2003;31:1052–1058PubMedGoogle Scholar
  271. 271.
    Thyagarajan B, Padua RA, Campbell C. Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 1996;271:27536–27543PubMedGoogle Scholar
  272. 272.
    Lakshmipathy U, Campbell C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res 1999;27:1198–1204PubMedGoogle Scholar
  273. 273.
    Yoshida Y, Izumi H, Ise T, Uramoto H, Torigoe T, Ishiguchi H, Murakami T, Tanabe M, Nakayama Y, Itoh H, Kasai H, Kohno K. Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA. Biochem Biophys Res Commun 2002;295:945–951PubMedGoogle Scholar
  274. 274.
    Alam TI, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, Takio K, Hamasaki N, Kang D. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 2003;31:1640–1645PubMedGoogle Scholar
  275. 275.
    Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, Hamasaki N, Kang D. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 2004;24:9823–9834PubMedGoogle Scholar
  276. 276.
    Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Bruning JC, Kahn CR, Clayton DA, Barsh GS, Thoren P, Larsson NG. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 1999;21:133–137PubMedGoogle Scholar
  277. 277.
    Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA 2001;98:4038–4043PubMedGoogle Scholar
  278. 278.
    Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 2003;63:3729–3734PubMedGoogle Scholar
  279. 279.
    Kyng KJ, Bohr VA. Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Res Rev 2005;4:579–602PubMedGoogle Scholar
  280. 280.
    Kyng KJ, May A, Kolvraa S, Bohr VA. Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proc Natl Acad Sci USA 2003;100:12259–12264PubMedGoogle Scholar
  281. 281.
    Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein CA, Vijg J. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 2006;441:1011–1014PubMedGoogle Scholar
  282. 282.
    de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH. Premature aging in mice deficient in DNA repair and transcription. Science 2002;296:1276–1279Google Scholar
  283. 283.
    Ljungman M, Lane DP. Transcription – guarding the genome by sensing DNA damage. Nat Rev Cancer 2004;4:727–737PubMedGoogle Scholar
  284. 284.
    de Lange T. Protection of mammalian telomeres. Oncogene 2002;21:532–540PubMedGoogle Scholar
  285. 285.
    Karlseder J. Telomere repeat binding factors: keeping the ends in check. Cancer Lett 2003;194:189–197PubMedGoogle Scholar
  286. 286.
    Burkle A, Brabeck C, Diefenbach J, Beneke S. The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol 2005;37:1043–1053PubMedGoogle Scholar
  287. 287.
    d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426:194–198PubMedGoogle Scholar
  288. 288.
    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279:349–352PubMedGoogle Scholar
  289. 289.
    Blasco MA. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 2005;24:1095–1103PubMedGoogle Scholar
  290. 290.
    Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999;283:1321–1325Google Scholar
  291. 291.
    Zhang P, Furukawa K, Opresko PL, Xu X, Bohr VA, Mattson MP. TRF2 dysfunction elicits DNA damage responses associated with senescence in proliferating neural cells and differentiation of neurons. J Neurochem 2006;97:567–581PubMedGoogle Scholar
  292. 292.
    Goyns MH, Lavery WL. Telomerase and mammalian ageing: a critical appraisal. Mech Ageing Dev 2000;114:69–77PubMedGoogle Scholar
  293. 293.
    Kipling D. Telomeres, replicative senescence and human ageing. Maturitas 2001;38:25–37PubMedGoogle Scholar
  294. 294.
    Samper E, Flores JM, Blasco MA. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc-/- mice with short telomeres. EMBO Rep 2001;2:800–807PubMedGoogle Scholar
  295. 295.
    Leri A, Franco S, Zacheo A, Barlucchi L, Chimenti S, Limana F, Nadal-Ginard B, Kajstura J, Anversa P, Blasco MA. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003;22:131–139PubMedGoogle Scholar
  296. 296.
    Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004;94:514–524PubMedGoogle Scholar
  297. 297.
    Leri A, Malhotra A, Liew CC, Kajstura J, Anversa P. Telomerase activity in rat cardiac myocytes is age and gender dependent. J Mol Cell Cardiol 2000;32:385–390PubMedGoogle Scholar
  298. 298.
    Passos JF, von Zglinicki T. Mitochondria, telomeres and cell senescence. Exp Gerontol 2005;40:466–472PubMedGoogle Scholar
  299. 299.
    Serrano AL, Andres V. Telomeres and cardiovascular disease: does size matter? Circ Res 2004;94:575–584PubMedGoogle Scholar
  300. 300.
    Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 2003;93:604–613PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Marín-García
    • 1
  • Michael J. Goldenthal
    • 2
  • Gordon W. Moe
    • 3
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  2. 2.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  3. 3.University of TorontoTorontoCanada

Personalised recommendations