Molecular and Cellular Methodologies: A Primer

  • José Marín-García
  • Michael J. Goldenthal
  • Gordon W. Moe


Telomere Length Cardiac Myocytes Comet Assay Replicative Senescence Physiol Heart Circ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhou YY, Wang SQ, Zhu WZ, Chruscinski A, Kobilka BK, Ziman B, Wang S, Lakatta EG, Cheng H, Xiao RP. Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol 2000;279:H429–H436PubMedGoogle Scholar
  2. 2.
    Suzuki T, Ohta M, Hoshi H. Serum-free, chemically defined medium to evaluate the direct effects of growth factors and inhibitors on proliferation and function of neonatal rat cardiac muscle cells in culture. In Vitro Cell Dev Biol 1989;25:601–606PubMedGoogle Scholar
  3. 3.
    Kajstura J, Cheng W, Reiss K, Anversa P. The IGF-1-IGF-1 receptor system modulates myocyte proliferation but not myocyte cellular hypertrophy in vitro. Exp Cell Res 1994;215:273–283PubMedGoogle Scholar
  4. 4.
    Weiner HL, Swain JL. Acidic fibroblast growth factor mRNA is expressed by cardiac myocytes in culture and the protein is localized to the extracellular matrix. Proc Natl Acad Sci USA 1989;86:2683–2687PubMedGoogle Scholar
  5. 5.
    Long CS, Kariya K, Karns L, Simpson PC. Trophic factors for cardiac myocytes. J Hypertens 1990;8: S219–S224Google Scholar
  6. 6.
    Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T. Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci USA 1995;92:467–471PubMedGoogle Scholar
  7. 7.
    Pasumarthi KB, Kardami E, Cattini PA. High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circ Res 1996;78:126–136PubMedGoogle Scholar
  8. 8.
    Sheikh F, Fandrich RR, Kardami E, Cattini PA. Overexpression of long or short FGFR-1 results in FGF-2-mediated proliferation in neonatal cardiac myocyte cultures. Cardiovasc Res 1999;42:696–705PubMedGoogle Scholar
  9. 9.
    Busk PK, Hinrichsen R, Bartkova J, Hansen AH, Christoffersen TE, Bartek J, Haunso S. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy. Exp Cell Res 2005;304:149–161PubMedGoogle Scholar
  10. 10.
    Tamamori-Adachi M, Ito H, Sumrejkanchanakij P, Adachi S, Hiroe M, Shimizu M, Kawauchi J, Sunamori M, Marumo F, Kitajima S, Ikeda MA. Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation. Circ Res 2003;92:e12–e19PubMedGoogle Scholar
  11. 11.
    Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Ann NY Acad Sci 2004;1019:70–77PubMedGoogle Scholar
  12. 12.
    Terman A, Brunk UT. On the degradability and exocytosis of ceroid/lipofuscin in cultured rat cardiac myocytes. Mech Ageing Dev 1998;100:145–156PubMedGoogle Scholar
  13. 13.
    Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT. Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 2003;38:863–876PubMedGoogle Scholar
  14. 14.
    Bicknell KA, Coxon CH, Brooks G. Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 2004;382:411–416PubMedGoogle Scholar
  15. 15.
    Kardami E. Stimulation and inhibition of cardiac myocyte proliferation in vitro. Mol Cell Biochem 1990;92:129–135PubMedGoogle Scholar
  16. 16.
    Reiss K, Cheng W, Ferber A, Kajstura J, Li P, Li B, Olivetti G, Homcy CJ, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci USA 1996;93:8630–8635PubMedGoogle Scholar
  17. 17.
    Pasumarthi KBS, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res 2002;90:1044–1054PubMedGoogle Scholar
  18. 18.
    Clark WA, Rudnick SJ, Simpson DG, LaPres JJ, Decker RS. Cultured adult cardiac myocytes maintain protein synthetic capacity of intact adult hearts. Am J Physiol 1993;264:H573–H582PubMedGoogle Scholar
  19. 19.
    Bell D, McDermott BJ. Contribution of de novo protein synthesis to the hypertrophic effect of IGF-1 but not of thyroid hormones in adult ventricular cardiomyocytes. Mol Cell Biochem 2000;206:113–124PubMedGoogle Scholar
  20. 20.
    Guo W, Kamiya K, Hojo M, Kodama I, Toyama J. Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells. J Mol Cell Cardiol 1998;30: 1449–1455PubMedGoogle Scholar
  21. 21.
    Schaub MC, Hefti MA, Harder BA, Eppenberger HM. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 1997;75:901–920PubMedGoogle Scholar
  22. 22.
    Erusalimsky JD, Kurz DJ. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol 2005;40:634–642PubMedGoogle Scholar
  23. 23.
    Hampel B, Malisan F, Niederegger H, Testi R, Jansen-Durr P. Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 2004;39:1713–1721PubMedGoogle Scholar
  24. 24.
    Ruiz-Torres A, Gimeno A, Melon J, Mendez L, Munoz FJ, Macia M. Age-related loss of proliferative activity of human vascular smooth muscle cells in culture. Mech Ageing Dev 1999;110:49–55PubMedGoogle Scholar
  25. 25.
    Moon SK, Thompson LJ, Madamanchi N, Ballinger S, Papaconstantinou J, Horaist C, Runge MS, Patterson C. Aging, oxidative responses, and proliferative capacity in cultured mouse aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2001;280:H2779–H2788PubMedGoogle Scholar
  26. 26.
    Camelliti P, Green CR, Kohl P. Structural and functional coupling of cardiac myocytes and fibroblasts. Adv Cardiol 2006;42:132–149PubMedGoogle Scholar
  27. 27.
    Eisenberg LM, Eisenberg CA. Embryonic myocardium shows increased longevity as a functional tissue when cultured in the presence of a noncardiac tissue layer. Tissue Eng 2006;12:853–865PubMedGoogle Scholar
  28. 28.
    Sumbilla C, Ma H, Seth M, Inesi G. Dependence of exogenous SERCA gene expression on coxsackie adenovirus receptor levels in neonatal and adult cardiac myocytes. Arch Biochem Biophys 2003;415:178–183PubMedGoogle Scholar
  29. 29.
    Communal C, Huq F, Lebeche D, Mestel C, Gwathmey JK, Hajjar RJ. Decreased efficiency of adenovirus-mediated gene transfer in aging cardiomyocytes. Circulation 2003;107:1170–1175PubMedGoogle Scholar
  30. 30.
    Michele DE, Szatkowski ML, Albayya FP, Metzger JM. Parvalbumin gene delivery improves diastolic function in the aged myocardium in vivo. Mol Ther 2004;10:399–403PubMedGoogle Scholar
  31. 31.
    Huq F, Lebeche D, Iyer V, Liao R, Hajjar RJ. Gene transfer of parvalbumin improves diastolic dysfunction in senescent myocytes. Circulation 2004;109:2780–2785PubMedGoogle Scholar
  32. 32.
    Schmidt U, Zhu X, Lebeche D, Huq F, Guerrero JL, Hajjar RJ. In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. Cardiovasc Res 2005;66:318–323PubMedGoogle Scholar
  33. 33.
    Brown KA, Chu Y, Lund DD, Heistad DD, Faraci FM. Gene transfer of extracellular superoxide dismutase protects against vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 2006;290:H2600–H2605PubMedGoogle Scholar
  34. 34.
    van der Veer E, Ho C, O’Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 2007 Feb 16; [Epub ahead of print]Google Scholar
  35. 35.
    Guo KK, Ren J. Cardiac overexpression of alcohol dehydrogenase (ADH) alleviates aging-associated cardiomyocyte contractile dysfunction: role of intracellular Ca2+ cycling proteins. Aging Cell 2006;5:259–265PubMedGoogle Scholar
  36. 36.
    Yang X, Doser TA, Fang CX, Nunn JM, Janardhanan R, Zhu M, Sreejayan N, Quinn MT, Ren J. Metallothionein prolongs survival and antagonizes senescence-associated cardiomyocyte diastolic dysfunction: role of oxidative stress. FASEB J 2006;20:1024–1026PubMedGoogle Scholar
  37. 37.
    Schmidt U, del Monte F, Miyamoto MI, Matsui T, Gwathmey JK, Rosenzweig A, Hajjar RJ. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca2+-ATPase. Circulation 2000;101:790–796Google Scholar
  38. 38.
    Wang H, Keiser JA, Olszewski B, Rosebury W, Robertson A, Kovesdi I, Gordon D. Delayed angiogenesis in aging rats and therapeutic effect of adenoviral gene transfer of VEGF. Int J Mol Med 2004;13: 581–587PubMedGoogle Scholar
  39. 39.
    Sato Y, Schmidt AG, Kiriazis H, Hoit BD, Kranias EG. Compensated hypertrophy of cardiac ventricles in aged transgenic FVB/N mice overexpressing calsequestrin. Mol Cell Biochem 2003;242:19–25PubMedGoogle Scholar
  40. 40.
    Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909–1911PubMedGoogle Scholar
  41. 41.
    Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004;94:514–524PubMedGoogle Scholar
  42. 42.
    Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, Yodoi J. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal 2002;4:693–696PubMedGoogle Scholar
  43. 43.
    Headrick JP, Willems L, Ashton KJ, Holmgren K, Peart J, Matherne GP. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression. J Physiol 2003;549:823–833PubMedGoogle Scholar
  44. 44.
    Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999;402:309–313PubMedGoogle Scholar
  45. 45.
    Graiani G, Lagrasta C, Migliaccio E, Spillmann F, Meloni M, Madeddu P, Quaini F, Padura IM, Lanfrancone L, Pelicci P, Emanueli C. Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage Hypertension 2005;46:433–440PubMedGoogle Scholar
  46. 46.
    Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Luscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 2006;99:42–52PubMedGoogle Scholar
  47. 47.
    Li W, Mital S, Ojaimi C, Csiszar A, Kaley G, Hintze TH. Premature death and age-related cardiac dysfunction in male eNOS-knockout mice. J Mol Cell Cardiol 2004;37:671–680PubMedGoogle Scholar
  48. 48.
    Howroyd P, Swanson C, Dunn C, Cattley RC, Corton JC. Decreased longevity and enhancement of age-dependent lesions in mice lacking the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Toxicol Pathol 2004;32:591–599PubMedGoogle Scholar
  49. 49.
    Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 2000;275:22293–22299PubMedGoogle Scholar
  50. 50.
    Park DS, Cohen AW, Frank PG, Razani B, Lee H, Williams TM, Chandra M, Shirani J, De Souza AP, Tang B, Jelicks LA, Factor SM, Weiss LM, Tanowitz HB, Lisanti MP. Caveolin-1 null (-/-) mice show dramatic reductions in life span. Biochemistry 2003;42:15124–15131PubMedGoogle Scholar
  51. 51.
    Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, Lee JK, Kamiya K, Kitaichi K, Yamamoto K, Ito M, Kondo T, Iino S, Inden Y, Hirai M, Murohara T, Kodama I, Nabeshima Y. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 2004;109: 1776–1782PubMedGoogle Scholar
  52. 52.
    Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE. Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res 2004;95:1035–1041PubMedGoogle Scholar
  53. 53.
    Samuel CS, Zhao C, Bathgate RA, DU XJ, Summers RJ, Amento EP, Walker LL, McBurnie M, Zhao L, Tregear GW. The relaxin gene-knockout mouse: a model of progressive fibrosis. Ann NY Acad Sci 2005;1041:173–181PubMedGoogle Scholar
  54. 54.
    Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, Ji L, Iwamoto Y, Li E, Schneider M, Russell KS, Fu XY. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA 2003;100:12929–12934PubMedGoogle Scholar
  55. 55.
    Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci USA 2002;99:14988–14993PubMedGoogle Scholar
  56. 56.
    Park SK, Prolla TA. Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res 2005;66:205–212PubMedGoogle Scholar
  57. 57.
    Dhahbi JM, Tsuchiya T, Kim HJ, Mote PL, Spindler SR. Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol A Biol Sci Med Sci 2006;61:218–231PubMedGoogle Scholar
  58. 58.
    Bodyak N, Kang PM, Hiromura M, Sulijoadikusumo I, Horikoshi N, Khrapko K. Gene expression profiling of the aging mouse cardiac myocytes. Nucleic Acids Res 2002;30:3788–3794PubMedGoogle Scholar
  59. 59.
    Lee CK, Klopp RG, Weindruch R, Prolla TA, Gene expression profile of aging and its retardation by caloric restriction. Science 1999;285:1390–1393PubMedGoogle Scholar
  60. 60.
    Kayo T, Allison DB, Weindruch R, Prolla TA. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 2001;98:5093–5098PubMedGoogle Scholar
  61. 61.
    Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA. Gene expression profile of aging in human muscle. Physiol Genomics 2003;14:149–159PubMedGoogle Scholar
  62. 62.
    McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 2004;36:197–204PubMedGoogle Scholar
  63. 63.
    Machida S, Booth FW. Increased nuclear proteins in muscle satellite cells in aged animals as compared to young growing animals. Exp Gerontol 2004;39:1521–1525PubMedGoogle Scholar
  64. 64.
    Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, Thornton CA. Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women. Exp Gerontol 2004;39:369–377PubMedGoogle Scholar
  65. 65.
    de Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett 2006 Sep 27; [Epub ahead of print]Google Scholar
  66. 66.
    Horky M, Kuchtickova S, Vojtesek B, Kolar F. Induction of cell-cycle inhibitor p21 in rat ventricular myocytes during early postnatal transition from hyperplasia to hypertrophy. Physiol Res 1997;46:233–235PubMedGoogle Scholar
  67. 67.
    Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, Dzau VJ, Liew CC. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics 2002;10:31–44PubMedGoogle Scholar
  68. 68.
    Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, Zheng Q, Protter AA, Schreiner GF, White RT. Altered patterns of gene expression in response to myocardial infarction. Circ Res 2000:86:939–945Google Scholar
  69. 69.
    Archacki SR, Angheloiu G, Tian XL, Tan FL, DiPaola N, Shen GQ, Moravec C, Ellis S, Topol EJ, Wang Q. Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiol Genomics 2003;15:65–74PubMedGoogle Scholar
  70. 70.
    Kim YH, Lim do S, Lee JH, Shim WJ, Ro YM, Park GH, Becker KG, Cho-Chung YS, Kim MK. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med 2003;35:336–349PubMedGoogle Scholar
  71. 71.
    Ueno S, Ohki R, Hashimoto T, Takizawa T, Takeuchi K, Yamashita Y, Ota J, Choi YL, Wada T, Koinuma K, Yamamoto K, Ikeda U, Shimada K, Mano H. DNA microarray analysis of in vivo progression mechanism of heart failure. Biochem Biophys Res Commun 2003;307:771–777PubMedGoogle Scholar
  72. 72.
    Vazquez-Padron RI, Lasko D, Li S, Louis L, Pestana IA, Pang M, Liotta C, Fornoni A, Aitouche A, Pham SM. Aging exacerbates neointimal formation, and increases proliferation and reduces susceptibility to apoptosis of vascular smooth muscle cells in mice. J Vasc Surg 2004;40:1199–1207PubMedGoogle Scholar
  73. 73.
    Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics 2004;17:21–30PubMedGoogle Scholar
  74. 74.
    Ishihata A, Katano Y. Investigation of differentially expressed genes in the ventricular myocardium of senescent rats. Ann NY Acad Sci 2006;1067:142–151PubMedGoogle Scholar
  75. 75.
    McGregor E, Dunn MJ. Proteomics of the heart: unraveling disease. Circ Res 2006;98:309–321PubMedGoogle Scholar
  76. 76.
    Fu Q, Van Eyk JE. Proteomics and heart disease: identifying biomarkers of clinical utility. Expert Rev Proteomics 2006;3:237–249PubMedGoogle Scholar
  77. 77.
    Westbrook JA, Wheeler JX, Wait R, Welson SY, Dunn MJ. The human heart proteome: Two-dimensional maps using narrow-range immobilised pH gradients. Electrophoresis 2006;27:1547–1555PubMedGoogle Scholar
  78. 78.
    Yan L, Ge H, Li H, Lieber SC, Natividad F, Resuello RR, Kim SJ, Akeju S, Sun A, Loo K, Peppas AP, Rossi F, Lewandowski ED, Thomas AP, Vatner SF, Vatner DE. Gender-specific proteomic alterations in glycolytic and mitochondrial pathways in aging monkey hearts. J Mol Cell Cardiol 2004;37:921–929PubMedGoogle Scholar
  79. 79.
    Lal SP, Christopherson RI, dos Remedios CG. Antibody arrays: an embryonic but rapidly growing technology. Drug Discov Today 2002;7:S143–S149Google Scholar
  80. 80.
    Kiri AN, Tran HC, Drahos KL, Lan W, McRorie DK, Horn MJ. Proteomic changes in bovine heart mitochondria with age: using a novel technique for organelle separation and enrichment. J Biomol Tech 2005;16: 371–379PubMedGoogle Scholar
  81. 81.
    Drahos KL, Tran HC, Kiri AN, Lan W, McRorie DK, Horn MJ. Comparison of Golgi apparatus and endoplasmic reticulum proteins from livers of juvenile and aged rats using a novel technique for separation and enrichment of organelles. J Biomol Tech 2005;16:347–355PubMedGoogle Scholar
  82. 82.
    Kanski J, Behring A, Pelling J, Schoneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol 2005;288:H371–H381PubMedGoogle Scholar
  83. 83.
    Soreghan BA, Yang F, Thomas SN, Hsu J, Yang AJ. High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brain. Pharm Res 2003;20:1713–1720PubMedGoogle Scholar
  84. 84.
    Kamino H, Hiratsuka M, Toda T, Nishigaki R, Osaki M, Ito H, Inoue T, Oshimura M. Searching for genes involved in arteriosclerosis: proteomic analysis of cultured human umbilical vein endothelial cells undergoing replicative senescence. Cell Struct Funct 2003;28:495–503PubMedGoogle Scholar
  85. 85.
    Cremona O, Muda M, Appel RD, Frutiger S, Hughes GJ, Hochstrasser DF, Geinoz A, Gabbiani G. Differential protein expression in aortic smooth muscle cells cultured from newborn and aged rats. Exp Cell Res 1995;217:280–287PubMedGoogle Scholar
  86. 86.
    Mayr M, Siow R, Chung YL, Mayr U, Griffiths JR, Xu Q. Proteomic and metabolomic analysis of vascular smooth muscle cells: role of PKCdelta. Circ Res 2004;94:e87–e96PubMedGoogle Scholar
  87. 87.
    Mayr M, Chung YL, Mayr U, McGregor E, Troy H, Baier G, Leitges M, Dunn MJ, Griffiths JR, Xu Q. Loss of PKC-delta alters cardiac metabolism. Am J Physiol Heart Circ Physiol 2004;287:H937–H945PubMedGoogle Scholar
  88. 88.
    Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 1989;44:388–396PubMedGoogle Scholar
  89. 89.
    Ben Yehuda A, Globerson A, Krichevsky S, Bar On H, Kidron M, Friedlander Y, Friedman G, Ben Yehuda D. Ageing and the mismatch repair system. Mech Ageing Dev 2000;121:173–179PubMedGoogle Scholar
  90. 90.
    Coolbaugh-Murphy MI, Xu J, Ramagli LS, Brown BW, Siciliano MJ. Microsatellite instability (MSI) increases with age in normal somatic cells. Mech Ageing Dev 2005;126:1051–1059PubMedGoogle Scholar
  91. 91.
    Murakami M, Hirokawa H, Hayata I. Analysis of radiation damage of DNA by atomic force microscopy in comparison with agarose gel electrophoresis studies. J Biochem Biophys Methods 2000;44:31–40PubMedGoogle Scholar
  92. 92.
    Schroder HC, Batel R, Schwertner H, Boreiko O, Muller WE. Fast micromethod DNA single-strand-break assay. Methods Mol Biol 2006;314:287–305PubMedGoogle Scholar
  93. 93.
    Longo JA, Nevaldine B, Longo SL, Winfield JA, Hahn PJ. An assay for quantifying DNA double-strand break repair that is suitable for small numbers of unlabeled cells. Radiat Res 1997;147:35–40PubMedGoogle Scholar
  94. 94.
    Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods Mol Biol 2005;291:85–95PubMedGoogle Scholar
  95. 95.
    Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, Rosenzweig A, Martyn JA. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem 2003;51:873–885PubMedGoogle Scholar
  96. 96.
    Gavrilov B, Vezhenkova I, Firsanov D, Solovjeva L, Svetlova M, Mikhailov V, Tomilin N. Slow elimination of phosphorylated histone gamma-H2AX from DNA of terminally differentiated mouse heart cells in situ. Biochem Biophys Res Commun 2006;347:1048–1052PubMedGoogle Scholar
  97. 97.
    Corbucci GG, Perrino C, Donato G, Ricchi A, Lettieri B, Troncone G, Indolfi C, Chiariello M, Avvedimento EV. Transient and reversible deoxyribonucleic acid damage in human left ventricle under controlled ischemia and reperfusion. J Am Coll Cardiol 2004;43:1992–1999PubMedGoogle Scholar
  98. 98.
    Leppard JB, Dong Z, Mackey ZB, Tomkinson AE. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 2003;23:5919–5927PubMedGoogle Scholar
  99. 99.
    Nakamura J, Asakura S, Hester SD, de Murcia G, Caldecott KW, Swenberg JA. Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time. Nucleic Acids Res 2003;31:e104Google Scholar
  100. 100.
    Parsons JL, Dianova II, Allinson SL, Dianov GL. Poly(ADP-ribose) polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts. FEBS J 2005;272: 2012–2021PubMedGoogle Scholar
  101. 101.
    Grube K, Burkle A. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci USA 1992;89:11759–11763PubMedGoogle Scholar
  102. 102.
    Thorslund T, von Kobbe C, Harrigan JA, Indig FE, Christiansen M, Stevnsner T, Bohr VA. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol Cell Biol 2005;25:7625–7636PubMedGoogle Scholar
  103. 103.
    von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA. Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 2003;23:8601–8613Google Scholar
  104. 104.
    Burkle A, Diefenbach J, Brabeck C, Beneke S. Ageing and PARP. Pharmacol Res 2005;52:93–99PubMedGoogle Scholar
  105. 105.
    Vir´g L, Szabó C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002;54:375–429Google Scholar
  106. 106.
    Pacher P, Cziraki A, Mabley JG, Liaudet L, Papp L, Szabo C. Role of poly(ADP-ribose) polymerase activation in endotoxin-induced cardiac collapse in rodents. Biochem Pharmacol. 2002;64:1785–1791PubMedGoogle Scholar
  107. 107.
    Thiemermann C, Bowes J, Myint FP, Vane JR. Inhibition of the activity of poly(ADP ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc Natl Acad Sci USA 1997;94:679–683PubMedGoogle Scholar
  108. 108.
    Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL. Myocardial postischemic injury is reduced by polyADPribose polymerase-1 gene disruption. Mol Med 2000;6:271–282PubMedGoogle Scholar
  109. 109.
    Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozotocin. Nat Med 1999;5:314–319PubMedGoogle Scholar
  110. 110.
    Murthy KG, Xiao CY, Mabley JG, Chen M, Szabo C. Activation of poly(ADP-ribose) polymerase in circulating leukocytes during myocardial infarction. Shock 2004;21:230–234PubMedGoogle Scholar
  111. 111.
    Pacher P, Liaudet L, Mabley J, Komjati K, Szabo C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 2002;40:1006–1016PubMedGoogle Scholar
  112. 112.
    Pacher P, Vaslin A, Benko R, Mabley JG, Liaudet L, Hasko G, Marton A, Batkai S, Kollai M, Szabo C. A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging. J Pharmacol Exp Ther 2004;311:485–491PubMedGoogle Scholar
  113. 113.
    Schawalder J, Paric E, Neff NF. Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase. BMC Cell Biol 2003;4:15PubMedGoogle Scholar
  114. 114.
    Barnett YA, Barnett CR. DNA damage and mutation: contributors to the age-related alterations in T cell-mediated immune responses? Mech Ageing Dev 1998;102:165–175PubMedGoogle Scholar
  115. 115.
    Grist SA, McCarron M, Kutlaca A, Turner DR, Morley AA. In vivo human somatic mutation: frequency and spectrum with age. Mutat Res 1992;266:189–196PubMedGoogle Scholar
  116. 116.
    Vijg J, Busuttil RA, Bahar R, Dolle ME. Aging and genome maintenance. Ann NY Acad Sci 2005;1055:35–47PubMedGoogle Scholar
  117. 117.
    Dolle ME, Vijg J. Genome dynamics in aging mice. Genome Res 2002;12:1732–1738PubMedGoogle Scholar
  118. 118.
    Vijg J, Dolle ME. Large genome rearrangements as a primary cause of aging. Mech Ageing Dev 2002;123: 907–915PubMedGoogle Scholar
  119. 119.
    Dolle ME, Snyder WK, Gossen JA, Lohman PH, Vijg J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc Natl Acad Sci USA 2000;97:8403–8408PubMedGoogle Scholar
  120. 120.
    Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein CA, Vijg J. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 2006;441:1011–1014PubMedGoogle Scholar
  121. 121.
    Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO, Shah N, Goggins M, Califano J, Sidransky D, Chakravarti A. The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res 2004;14:812–819PubMedGoogle Scholar
  122. 122.
    Zhou S, Kassauei K, Cutler DJ, Kennedy GC, Sidransky D, Maitra A, Califano J. An oligonucleotide microarray for high-throughput sequencing of the mitochondrial genome. J Mol Diagn 2006;8:476–482PubMedGoogle Scholar
  123. 123.
    Khaidakov M, Heflich RH, Manjanatha MG, Myers MB, Aidoo A. Accumulation of point mutations in mitochondrial DNA of aging mice. Mutat Res 2003;526:1–7PubMedGoogle Scholar
  124. 124.
    Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 1999;286:774–779PubMedGoogle Scholar
  125. 125.
    Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, Yarasheski KE, Miller CA, Askanas V, Engel WK, Bhasin S, Attardi G. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA 2001;98:4022–4027PubMedGoogle Scholar
  126. 126.
    Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafe M, Olivieri F, Passarino G, De Benedictis G, Franceschi C, Attardi G. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci USA 2003;100:1116–1121PubMedGoogle Scholar
  127. 127.
    Bai RK, Wong LJ. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 2004;50: 996–1001PubMedGoogle Scholar
  128. 128.
    Mohamed SA, Hanke T, Erasmi AW, Bechtel MJ, Scharfschwerdt M, Meissner C, Sievers HH, Gosslau A. Mitochondrial DNA deletions and the aging heart. Exp Gerontol 2006;41:508–517PubMedGoogle Scholar
  129. 129.
    He L, Chinnery PF, Durham SE, Blakely EL, Wardell TM, Borthwick GM, Taylor RW, Turnbull DM. Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 2002;30:e68Google Scholar
  130. 130.
    Masuyama M, Iida R, Takatsuka H, Yasuda T, Matsuki T. Quantitative change in mitochondrial DNA content in various mouse tissues during aging. Biochim Biophys Acta. 2005;1723:302–308PubMedGoogle Scholar
  131. 131.
    Londono-Vallejo JA, DerSarkissian H, Cazes L, Thomas G. Differences in telomere length between homologous chromosomes in humans. Nucleic Acids Res 2001;29:3164–3171PubMedGoogle Scholar
  132. 132.
    de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE. Structure and variability of human chromosome ends. Mol Cell Biol 1990;10:518–527PubMedGoogle Scholar
  133. 133.
    Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MA. Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997;90:182–193PubMedGoogle Scholar
  134. 134.
    Lin KW, Yan J. The telomere length dynamic and methods of its assessment. J Cell Mol Med 2005;9:977–989PubMedGoogle Scholar
  135. 135.
    Allshire RC, Dempster M, Hastie ND. Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 1989;17:4611–4627PubMedGoogle Scholar
  136. 136.
    Norwood D, Dimitrov DS. Sensitive method for measuring telomere lengths by quantifying telomeric DNA content of whole cells. Biotechniques 1998;25:1040–1045PubMedGoogle Scholar
  137. 137.
    Nakamura Y, Hirose M, Matsuo H, Tsuyama N, Kamisango K, Ide T. Simple, rapid, quantitative, and sensitive detection of telomere repeats in cell lysate by a hybridization protection assay. Clin Chem 1999;45:1718–1724PubMedGoogle Scholar
  138. 138.
    Hultdin M, Gronlund E, Norrback K, Eriksson-Lindstrom E, Just T, Roos G. Telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res 1998;26:3651–3656PubMedGoogle Scholar
  139. 139.
    Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res 2002;30:e47PubMedGoogle Scholar
  140. 140.
    Baird DM, Rowson J, Wynford-Thomas D, Kipling D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 2003;33:203–207PubMedGoogle Scholar
  141. 141.
    Huffman KE, Levene SD, Tesmer VM, Shay JW, Wright WE. Telomere shortening is proportional to the size of the G-rich telomeric 3^′-overhang. J Biol Chem 2000;275:19719–19722PubMedGoogle Scholar
  142. 142.
    Cimino-Reale G, Pascale E, Battiloro E, Starace G, Verna R, D’Ambrosio E. The length of telomeric G-rich strand 3’-overhang measured by oligonucleotide ligation assay. Nucleic Acids Res 2001;29:E35PubMedGoogle Scholar
  143. 143.
    Yan J, Chen BZ, Bouchard EF, Drouin R. The labeling efficiency of human telomeres is increased by double-strand PRINS. Chromosoma 2004;113:204–209PubMedGoogle Scholar
  144. 144.
    Therkelsen AJ, Nielsen A, Koch J, Hindkjaer J, Kolvraa S. Staining of human telomeres with primed in situ labeling (PRINS). Cytogenet Cell Genet 1995;68:115–118PubMedGoogle Scholar
  145. 145.
    Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 1999;100:193–202PubMedGoogle Scholar
  146. 146.
    Etzion S, Battler A, Barbash IM, Cagnano E, Zarin P, Granot Y, Kedes LH, Kloner RA, Leor J. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 2001;33:1321–1330PubMedGoogle Scholar
  147. 147.
    Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907–921PubMedGoogle Scholar
  148. 148.
    Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1237–1238Google Scholar
  149. 149.
    Doetschman T, Shull M, Kier A, Coffin JD. Embryonic stem cell model systems for vascular morphogenesis and cardiac disorders. Hypertension 1993;22:618–629PubMedGoogle Scholar
  150. 150.
    He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003;93:32–39PubMedGoogle Scholar
  151. 151.
    Muller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G, Muller OJ, Schlenke P, Frese S, Wobus AM, Hescheler J, Katus HA, Franz WM. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 2000;14:2540–2548PubMedGoogle Scholar
  152. 152.
    Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005;85:635–678PubMedGoogle Scholar
  153. 153.
    Min JY, Chen Y, Malek S, Meissner A, Xiang M, Ke Q, Feng X, Nakayama M, Kaplan E, Morgan JP. Stem cell therapy in the aging hearts of Fisher 344 rats: synergistic effects on myogenesis and angiogenesis. J Thorac Cardiovasc Surg 2005;130:547–553PubMedGoogle Scholar
  154. 154.
    Kessler PD, Byrne BJ. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 1999;61:219–42PubMedGoogle Scholar
  155. 155.
    Menasche P. Cell transplantation for the treatment of heart failure. Semin Thorac Cardiovasc Surg 2002;14: 157–66PubMedGoogle Scholar
  156. 156.
    Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 2003;100:7808–7811PubMedGoogle Scholar
  157. 157.
    Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41:1078–1083PubMedGoogle Scholar
  158. 158.
    Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98:10344–10349PubMedGoogle Scholar
  159. 159.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–705PubMedGoogle Scholar
  160. 160.
    Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration. Circ Res 2002;91:1092–1102PubMedGoogle Scholar
  161. 161.
    Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141–148PubMedGoogle Scholar
  162. 162.
    Lee MS, Makkar RR. Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 2004;140:729–737PubMedGoogle Scholar
  163. 163.
    Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–1918PubMedGoogle Scholar
  164. 164.
    Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024–1032PubMedGoogle Scholar
  165. 165.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93–98PubMedGoogle Scholar
  166. 166.
    Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafe M, Nadal-Ginard B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005;96:127–137PubMedGoogle Scholar
  167. 167.
    Eisenberg CA, Burch JB, Eisenberg LM. Bone marrow cells transdifferentiate to cardiomyocytes when introduced into the embryonic heart. Stem Cells 2006 Jan 12; [Epub ahead of print]Google Scholar
  168. 168.
    Matsuura K, Wada H, Nagai T, Iijima Y, Minamino T, Sano M, Akazawa H, Molkentin JD, Kasanuki H, Komuro I. Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J Cell Biol 2004;167:351–363PubMedGoogle Scholar
  169. 169.
    Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10year point. Circulation 2005;112: 3174–3183PubMedGoogle Scholar
  170. 170.
    Reinecke H, Minami E, Poppa V, Murry CE. Evidence for fusion between cardiac and skeletal muscle cells. Circ Res 2004;94:e56–e60PubMedGoogle Scholar
  171. 171.
    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664–668PubMedGoogle Scholar
  172. 172.
    Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, Verma S, Weisel RD, Keating A, Li RK. c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 2006;116:1865–1877PubMedGoogle Scholar
  173. 173.
    Lehrke S, Mazhari R, Durand DJ, Zheng M, Bedja D, Zimmet JM, Schuleri KH, Chi AS, Gabrielson KL, Hare JM. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ Res 2006;99:553–560PubMedGoogle Scholar
  174. 174.
    Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 2004;94:952–959PubMedGoogle Scholar
  175. 175.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776PubMedGoogle Scholar
  176. 176.
    Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 2005;102:3766–3771PubMedGoogle Scholar
  177. 177.
    Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, Behringer RR, Schwartz RJ, Entman ML, Schneider MD. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann NY Acad Sci 2004;1015:182–189PubMedGoogle Scholar
  178. 178.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003;100:12313–12318PubMedGoogle Scholar
  179. 179.
    Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 2004;279:11384–11391PubMedGoogle Scholar
  180. 180.
    Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005;433:647–653PubMedGoogle Scholar
  181. 181.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004;95:911–921PubMedGoogle Scholar
  182. 182.
    Gude N, Muraski J, Rubio M, Kajstura J, Schaefer E, Anversa P, Sussman MA. Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res 2006;99:381–388PubMedGoogle Scholar
  183. 183.
    Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 2003;93:604–613PubMedGoogle Scholar
  184. 184.
    Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 2006;113:1451–1463PubMedGoogle Scholar
  185. 185.
    Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol 2005;288:H1620–H1626PubMedGoogle Scholar
  186. 186.
    Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE Jr, Bischoff J. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2004;287:H480–H487Google Scholar
  187. 187.
    Shen G, Tsung HC, Wu CF, Liu XY, Wang XY, Liu W, Cui L, Cao YL. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells. Cell Res 2003;13:335–341PubMedGoogle Scholar
  188. 188.
    Taylor PM, Sachlos E, Dreger SA, Chester AH, Czernuszka JT, Yacoub MH. Interaction of human valve interstitial cells with collagen matrices manufactured using rapid prototyping. Biomaterials 2006;27:2733–2737PubMedGoogle Scholar
  189. 189.
    Knight RL, Booth C, Wilcox HE, Fisher J, Ingham E. Tissue engineering of cardiac valves: re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. J Heart Valve Dis 2005;14:806–813PubMedGoogle Scholar
  190. 190.
    Sutherland FWH, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, Garcia GA, McLellan DL, Engelmayr GC Jr, Sacks MS, Schoen FJ, Mayer JE Jr. From stem cells to viable autologous semilunar heart valve. Circulation 2005;111:2783–2791PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Marín-García
    • 1
  • Michael J. Goldenthal
    • 2
  • Gordon W. Moe
    • 3
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  2. 2.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  3. 3.University of TorontoTorontoCanada

Personalised recommendations