Skip to main content

Overview of Cardiovascular Aging

  • Chapter
Book cover Aging and the Heart

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA. Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci USA 2006;103:1394–1399

    PubMed  CAS  Google Scholar 

  2. Roman MJ, Ganau A, Saba PS, Pini R, Pickering TG, Devereux RB. Impact of arterial stiffening on left ventricular structure. Hypertension 2000;36:489–494

    PubMed  CAS  Google Scholar 

  3. Taddei S, Virdis A, Mattei P, Ghiadoni L, Gennari A, Fasolo CB, Sudano I, Salvetti A. Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation 1995;91: 1981–1987

    PubMed  CAS  Google Scholar 

  4. Lakatta EG, Gerstenblith G, Angell CS, Shock NW, Weisfeldt ML. Prolonged contraction duration in aged myocardium. J Clin Invest 1975;55:61–68

    PubMed  CAS  Google Scholar 

  5. Schulman SP, Lakatta EG, Fleg JL, Lakatta L, Becker LC, Gerstenblith G. Age-related decline in left ventricular filling at rest and exercise. Am J Physiol 1992;263:H1932–H1938

    PubMed  CAS  Google Scholar 

  6. Merillon JP, Motte G, Masquet C, Azancot I, Aumont MC, Guiomard A, Gourgon R. Changes in the physical properties of the arterial system and left ventricular performance with age and in permanent arterial hypertension: their interrelation. Arch Mal Coeur Vaiss 1982;75:127–132

    PubMed  Google Scholar 

  7. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 1993;73:413–467

    PubMed  CAS  Google Scholar 

  8. Edo MD, Andrés V. Aging, telomeres, and atherosclerosis. Cardiovasc Res 2005;66:213–221

    PubMed  CAS  Google Scholar 

  9. Aviv H, Khan MY, Skurnick J, Okuda K, Kimura M, Gardner J, Priolo L, Aviv A. Age dependent aneuploidy and telomere length of the human vascular endothelium. Atherosclerosis 2001;159:281–287

    PubMed  CAS  Google Scholar 

  10. Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 1995;92:11190–11194

    PubMed  CAS  Google Scholar 

  11. Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A. Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 2000;152:391–398

    PubMed  CAS  Google Scholar 

  12. Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, Goddard M, Bennett M. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 2006;99:156–164

    PubMed  CAS  Google Scholar 

  13. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet 2001;358:472–473

    PubMed  CAS  Google Scholar 

  14. Benetos A, Gardner JP, Zureik M, Labat C, Xiaobin L, Adamopoulos C, Temmar M, Bean KE, Thomas F, Aviv A. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 2004;43:182–185

    PubMed  CAS  Google Scholar 

  15. Collerton J, Martin-Ruiz C, Kenny A, Barrass K, von Zglinicki T, Kirkwood T, Keavney B. Telomere length is associated with left ventricular function in the oldest old: the Newcastle 85+ study. Eur Heart J 2007;28:172–176

    Google Scholar 

  16. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002;27:339–344

    Google Scholar 

  17. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 2004;117: 2417–2426

    PubMed  CAS  Google Scholar 

  18. Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 2004;94:768–775

    PubMed  CAS  Google Scholar 

  19. Spyridopoulos I, Haendeler J, Urbich C, Brummendorf TH, Oh H, Schneider MD, Zeiher AM, Dimmeler S. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 2004;110:3136–3142

    PubMed  CAS  Google Scholar 

  20. Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens 2005;23:1699–1706

    PubMed  CAS  Google Scholar 

  21. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000;407:538–541

    PubMed  CAS  Google Scholar 

  22. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S. Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res 2000;87:540–542

    PubMed  CAS  Google Scholar 

  23. Imanishi T, Hano T, Sawamura T, Nishio I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol 2004;31:407–413

    PubMed  CAS  Google Scholar 

  24. Serrano AL, Andres V. Telomeres and cardiovascular disease: does size matter? Circ Res 2004;94:575–584

    PubMed  CAS  Google Scholar 

  25. von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 2000;28:64–74

    Google Scholar 

  26. Forsyth NR, Evans AP, Shay JW, Wright WE. Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2003;2:235–243

    PubMed  CAS  Google Scholar 

  27. Serra V, von Zglinicki T, Lorenz M, Saretzki G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 2003;278:6824–6830

    Google Scholar 

  28. Saretzki G, Murphy MP, von Zglinicki T. MitoQ counteracts telomere shortening and elongates life span of fibroblasts under mild oxidative stress. Aging Cell 2003;2:141–143

    PubMed  CAS  Google Scholar 

  29. Passos JF, von Zglinicki T. Mitochondria, telomeres and cell senescence. Exp Gerontol 2005;40:466–472

    PubMed  CAS  Google Scholar 

  30. Kirkwood TB. Understanding the odd science of aging. Cell 2005;120:437–447

    PubMed  CAS  Google Scholar 

  31. Cook SA, Sugden PH, Clerk A. Regulation of Bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 1999;85:940–949

    PubMed  CAS  Google Scholar 

  32. Long X, Goldenthal MJ, Wu GM, Marín-García J. Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocyte response to H_2O_2. J Mol Cell Cardiol 2004;37:63–70

    Google Scholar 

  33. Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann NY Acad Sci 2002;959:93–107

    PubMed  CAS  Google Scholar 

  34. Marin-Garcia J, Pi Y, Goldenthal MJ. Mitochondrial-nuclear cross-talk in the aging and failing heart. Cardiovasc Drugs Ther 2006;20:477–491

    PubMed  CAS  Google Scholar 

  35. Narula J, Haider N, Arbustini E, Chandrashekhar Y. Mechanisms of disease: apoptosis in heart failure–seeing hope in death. Nat Clin Pract Cardiovasc Med 2006;3:681–688

    PubMed  CAS  Google Scholar 

  36. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007;100:460–473

    PubMed  CAS  Google Scholar 

  37. Webster KA, Graham RM, Thompson JW, Spiga MG, Frazier DP, Wilson A, Bishopric NH. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal 2006;8:1667–1676

    PubMed  CAS  Google Scholar 

  38. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205–219

    PubMed  CAS  Google Scholar 

  39. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001;412:95–99

    PubMed  CAS  Google Scholar 

  40. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441–446

    PubMed  CAS  Google Scholar 

  41. Joza N, Oudit GY, Brown D, Benit P, Kassiri Z, Vahsen N, Benoit L, Patel MM, Nowikovsky K, Vassault A, Backx PH, Wada T, Kroemer G, Rustin P, Penninger JM. Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 2005;25:10261–10272

    PubMed  CAS  Google Scholar 

  42. Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G. AIF deficiency compromises oxidative phosphorylation. EMBO J 2004;23:4679–4689

    PubMed  CAS  Google Scholar 

  43. Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D. Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 2006;281:22943–22952

    PubMed  CAS  Google Scholar 

  44. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–157

    PubMed  CAS  Google Scholar 

  45. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423–432

    PubMed  CAS  Google Scholar 

  46. Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 2007 Feb 6

    Google Scholar 

  47. Kroemer G. Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 2003;304:433–435

    PubMed  CAS  Google Scholar 

  48. Correa F, Soto V, Zazueta C. Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart. Int J Biochem Cell Biol 2007 Jan 21

    Google Scholar 

  49. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2 related proteins. J Exp Med 1998;187:1261–1267

    PubMed  CAS  Google Scholar 

  50. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes S, Mannella CA, Korsmeyer SJ. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002;2:55–67

    PubMed  CAS  Google Scholar 

  51. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC 3rd, Nunez G. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 1999;85:e70–e77

    PubMed  CAS  Google Scholar 

  52. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003;300:135–139

    Google Scholar 

  53. Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006;40:553–560

    PubMed  CAS  Google Scholar 

  54. Jacobson J, Duchen MR. Mitochondrial oxidative stress and cell death in astrocytes—requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 2002;115:1175–1188

    PubMed  CAS  Google Scholar 

  55. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999;402:309–313

    PubMed  CAS  Google Scholar 

  56. Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci PG. The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential, J Biol Chem 2004;279:25689–25695

    PubMed  CAS  Google Scholar 

  57. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG. A p53–p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 2002;21:3872–3878

    PubMed  CAS  Google Scholar 

  58. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005;122:221–233

    PubMed  CAS  Google Scholar 

  59. Zaccagnini G, Martelli F, Fasanaro P, Magenta A, Gaetano C, Di Carlo A, Biglioli P, Giorgio M, Martin-Padura I, Pelicci PG, Capogrossi MC. p66ShcA modulates tissue response to hindlimb ischemia. Circulation 2004;109:2917–2923

    PubMed  Google Scholar 

  60. Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 2003;100:2112–2116

    PubMed  CAS  Google Scholar 

  61. Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004; 94:514–524

    PubMed  CAS  Google Scholar 

  62. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005;309:481–484

    PubMed  CAS  Google Scholar 

  63. Ball AJ, Levine F. Telomere-independent cellular senescence in human fetal cardiomyocytes. Aging Cell 2005;4:21–30

    PubMed  CAS  Google Scholar 

  64. Uhrbom L, Nister M, Westermark B. Induction of senescence in human malignant glioma cells by p16INK4A. Oncogene 1997;15:505–514

    PubMed  CAS  Google Scholar 

  65. Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann NY Acad Sci 2000;908:219–225

    PubMed  CAS  Google Scholar 

  66. Lenaz G, D’Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, Parenti Castelli G. Mitochondrial bioenergetics in aging. Biochim Biophys Acta 2000;1459:397–404

    PubMed  CAS  Google Scholar 

  67. Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Exp Gerontol 2005;40:751–758

    PubMed  Google Scholar 

  68. Hansford RG, Tsuchiya N, Pepe S. Mitochondria in heart ischaemia and aging. Biochem Soc Symp 1999; 66:141–7; Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 2004;182:321–331

    PubMed  CAS  Google Scholar 

  69. Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 2005;66:222–232

    PubMed  Google Scholar 

  70. Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A. Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev 2001;122:1073–1086

    PubMed  CAS  Google Scholar 

  71. Russell LK, Finck BN, Kelly DP. Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 2005;38:81–91

    PubMed  CAS  Google Scholar 

  72. Chakravarti B, Chakravarti DN. Oxidative modification of proteins: age-related changes. Gerontology 2006;53:128–139

    PubMed  Google Scholar 

  73. Levine RL, Stadtman ER. Oxidative modification of proteins during aging. Exp Gerontol 2001;36:1495–1502

    PubMed  CAS  Google Scholar 

  74. Stadtman ER, Levine RL. Protein oxidation. Ann. NY Acad.Sci 2000;899:191–208

    PubMed  CAS  Google Scholar 

  75. Yarian CS, Rebrin I, Sohal RS. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 2005;330:151–156

    PubMed  CAS  Google Scholar 

  76. Yan LJ, Sohal RS. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 1998;95:12896–12890

    PubMed  CAS  Google Scholar 

  77. Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J. Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 2004;1688:95–101

    PubMed  CAS  Google Scholar 

  78. Vasquez-Vivar J, Kalyanaraman B, Kennedy MC. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 2000;2751:4064–4069

    Google Scholar 

  79. Viner RI, Ferrington DA, Williams TD, Bigelow DJ, Schoneich C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J 1999;340:657–669

    PubMed  CAS  Google Scholar 

  80. Knyushko TV, Sharov VS, Williams TD, Schoneich C, Bigelow DJ. 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry 2005;44:13071–13081

    PubMed  CAS  Google Scholar 

  81. Xu S, Ying J, Jiang B, Guo W, Adachi T, Sharov V, Lazar H, Menzoian J, Knyushko TV, Bigelow D, Schoneich C, Cohen RA. Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 2006;290:H2220–H2227

    PubMed  CAS  Google Scholar 

  82. Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA. Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 2003;278:37223–37230

    PubMed  CAS  Google Scholar 

  83. Kanski J, Behring A, Pelling J, Schoneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol 2005;288:H371–H381

    PubMed  CAS  Google Scholar 

  84. LeDoux SP, Wilson GL. Base excision repair of mitochondrial DNA damage in mammalian cells. Prog Nucleic Acid Res Mol Biol 2001;68:273–284

    PubMed  CAS  Google Scholar 

  85. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997;94:514–519

    PubMed  CAS  Google Scholar 

  86. Yowe DL, Ames BN. Quantitation of age-related mitochondrial DNA deletions in rat tissues shows that their pattern of accumulation differs from that of humans. Gene 1998;209:23–30

    PubMed  CAS  Google Scholar 

  87. Zhang C, Bills M, Quigley A, Maxwell RJ, Linnane AW, Nagley P. Varied prevalence of age-associated mitochondrial DNA deletions in different species and tissues: a comparison between human and rat. Biochem Biophys Res Commun 1997;230:630–635

    PubMed  CAS  Google Scholar 

  88. Muscari C, Giaccari A, Stefanelli C, Viticchi C, Giordano E, Guarnieri C, Caldarera CM. Presence of a DNA-4236 bp deletion and 8-hydroxy-deoxyguanosine in mouse cardiac mitochondrial DNA during aging. Aging (Milano) 1996;8:429–433

    CAS  Google Scholar 

  89. Wanagat J, Wolff MR, Aiken JM. Age-associated changes in function, structure and mitochondrial genetic and enzymatic abnormalities in the Fischer 344 -Brown Norway F(1) hybrid rat heart. J Mol Cell Cardiol 2002;34:17–28

    PubMed  CAS  Google Scholar 

  90. Pak JW, Vang F, Johnson C, McKenzie D, Aiken JM. MtDNA point mutations are associated with deletion mutations in aged rat. Exp Gerontol 2005;40:209–218

    PubMed  CAS  Google Scholar 

  91. Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, Yarasheski KE, Miller CA, Askanas V, Engel WK, Bhasin S, Attardi G. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA 2001;98:4022–4027

    PubMed  CAS  Google Scholar 

  92. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 1999;286:774–779

    PubMed  CAS  Google Scholar 

  93. Marín-García J, Zoubenko O, Goldenthal MJ. Mutations in the cardiac mtDNA control region associated with cardiomyopathy and aging. J Card Fail 2002;8:93–100

    PubMed  Google Scholar 

  94. Song X, Deng JH, Liu CJ, Bai Y. Specific point mutations may not accumulate with aging in the mouse mitochondrial DNA control region. Gene 2005;350:193–199

    PubMed  CAS  Google Scholar 

  95. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004;27:417–423

    Google Scholar 

  96. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 2005;102:17993–17998

    PubMed  CAS  Google Scholar 

  97. Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci USA 2005;102:18769–18770

    PubMed  CAS  Google Scholar 

  98. Suh JH, Heath SH, Hagen T. Two subpopulations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radic Biol Med 2003;35:1064–1072

    PubMed  CAS  Google Scholar 

  99. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 2005;19:419–421

    PubMed  CAS  Google Scholar 

  100. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J Biol Chem 2004;279:34682–34690

    PubMed  CAS  Google Scholar 

  101. Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 2003;100:5407–5412

    PubMed  CAS  Google Scholar 

  102. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909–1911

    PubMed  CAS  Google Scholar 

  103. Ren J, Li Q, Wu S, Li SY, Babcock SA. Cardiac overexpression of antioxidant catalase attenuates aging-induced cardiomyocyte relaxation dysfunction. Mech Ageing Dev 2007;128:276–285

    PubMed  CAS  Google Scholar 

  104. Chung HY, Sung B, Jung KJ, Zou Y, Yu BP. The molecular inflammatory process in aging. Antioxid Redox Signal 2006;8:572–581

    PubMed  CAS  Google Scholar 

  105. Kritchevsky SB, Cesari M, Pahor M. Inflammatory markers and cardiovascular health in older adults. Cardiovasc Res 2005;66:265–275

    PubMed  CAS  Google Scholar 

  106. Deten A, Marx G, Briest W, Volz HC, Zimmer H-G. Heart function and molecular biological parameters are comparable in young adult and aged rats after chronic myocardial infarction. Cardiovasc Res 2005;66:364–373

    PubMed  CAS  Google Scholar 

  107. Antonicelli R, Olivieri F, Bonafe M, Cavallone L, Spazzafumo L, Marchegiani F, Cardelli M, Recanatini A, Testarmata P, Boemi M, Parati G, Franceschi C. The interleukin-6 -174 G>C promoter polymorphism is associated with a higher risk of death after an acute coronary syndrome in male elderly patients. Int J Cardiol 2005;103:266–271

    PubMed  Google Scholar 

  108. White M, Roden R, Minobe W, Khan MF, Larrabee P, Wollmering M, Port JD, Anderson F, Campbell D, Feldman AM. Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 1994;90:1225–1238

    PubMed  CAS  Google Scholar 

  109. Brodde OE, Konschak U, Becker K, Ruter F, Poller U, Jakubetz J, Radke J, Zerkowski H. Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest 1998;101:471–478

    PubMed  CAS  Google Scholar 

  110. Giraldo E, Martos F, Gomez A, Garcia A, Vigano MA, Ladinsky H, Sanchez de la Cuesta F. Characterization of muscarinic receptor subtypes in human tissues. Life Sci 1988;43:1507–1515

    Google Scholar 

  111. Deighton NM, Motomura S, Borquez D, Zerkowski, HR, Doetsch N, Brodde OE. Muscarinic cholinoceptors in the human heart: demonstration, subclassification, and distribution. Naunyn-Schmiedeberg’s Arch Pharmacol 1990;341:414–421

    Google Scholar 

  112. Böhm M, Gierschik P, Jakobs KH, Piesk B, Schnabel P, Ungerer PM, Erdmann E. Increase of Gi in human hearts with dilated but not ischemic cardiomyopathy. Circulation 1990;82:1249–1265

    PubMed  Google Scholar 

  113. Von Scheidt W, Böhm M, Stäblein A, Autenrieth G, Erdmann E. Antiadrenergic effect of M-cholinoceptor stimulation on human ventricular contractility in vivo. Am J Physiol 1992;263:H1927–H1931

    Google Scholar 

  114. Landzberg JS, Parker JD, Gauthier DF, Colucci WS. Effect of intracoronary acetylcholine and atropine on basal and dobutamine-stimulated left ventricular contractility. Circulation 1994;89:164–168

    PubMed  CAS  Google Scholar 

  115. Turner MJ, Mier CM, Spina RJ, Ehsani AA. Effects of age and gender on cardiovascular responses to phenylephrine. J Gerontol A Biol Sci Med Sci 1999;54:M17–M24

    PubMed  CAS  Google Scholar 

  116. Hees PS, Fleg JL, Mirza ZA, Ahmed S, Siu CO, Shapiro EP. Effects of normal aging on left ventricular lusitropic, inotropic, and chronotropic responses to dobutamine. J Am Coll Cardiol 2006;47:1440–1447

    PubMed  CAS  Google Scholar 

  117. Korzick DH, Holiman DA, Boluyt MO, Laughlin MH, Lakatta EG. Diminished alpha1-adrenergic-mediated contraction and translocation of PKC in senescent rat heart. Am J Physiol Heart Circ Physiol 2001;281: H581–H589

    PubMed  CAS  Google Scholar 

  118. Korzick DH, Hunter JC, McDowell MK, Delp MD, Tickerhoof MM, Carson LD. Chronic exercise improves myocardial inotropic reserve capacity through alpha1-adrenergic and protein kinase C-dependent effects in Senescent rats. J Gerontol A Biol Sci Med Sci 2004;59:1089–1098

    PubMed  Google Scholar 

  119. Hunter JC, Korzick DH. Age- and sex-dependent alterations in protein kinase C (PKC) and extracellular regulated kinase 1/2 (ERK1/2) in rat myocardium. Mech Ageing Dev 2005;126:535–550

    PubMed  CAS  Google Scholar 

  120. Montagne O, Le Corvoisier P, Guenoun T, Laplace M, Crozatier B. Impaired alpha1-adrenergic responses in aged rat hearts. Fundam Clin Pharmacol 2005;19:331–339

    Google Scholar 

  121. Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol 2000;35:S1–S7

    PubMed  CAS  Google Scholar 

  122. Kaye D, Esler M. Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovasc Res 2005;66:256–64

    PubMed  CAS  Google Scholar 

  123. Kilts JD, Akazawa T, El-Moalem HE, Mathew JP, Newman MF, Kwatra MM. Age increases expression and receptor-mediated activation of Galpha i in human atria. J Cardiovasc Pharmacol 2003;42:662–670

    PubMed  CAS  Google Scholar 

  124. Kilts JD, Akazawa T, Richardson MD, Kwatra MM. Age increases cardiac Galpha (i2) expression, resulting in enhanced coupling to G protein-coupled receptors. J Biol Chem 2002;277:31257–31262

    PubMed  CAS  Google Scholar 

  125. Brodde O-E, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 1999;51:651–689

    PubMed  CAS  Google Scholar 

  126. Richardson MD, Kilts JD, Kwatra MM. Increased expression of Gi-coupled muscarinic acetylcholine receptor and Gi in atrium of elderly diabetic subjects. Diabetes 2004;53:2392–2396

    PubMed  CAS  Google Scholar 

  127. Brodde O-E, Konschack U, Becker K, Rüter F, Poller U, Jakubetz J, Radke J, Zerkowski H-R. Cardiac muscarinic receptors decrease with age:in vitro and in vivo studies. J Clin Invest 1998;101:471–478

    PubMed  CAS  Google Scholar 

  128. Oberhauser V, Schwertfeger E, Rutz T, Beyersdorf F, Rump LC. Acetylcholine release in human heart atrium: influence of muscarinic autoreceptors, diabetes, and age. Circulation 2001;103:1638–1643

    PubMed  CAS  Google Scholar 

  129. Halls ML, van der Westhuizen ET, Bathgate RA, Summers RJ. Relaxin Family Peptide Receptors – former orphans reunite with their parent ligands to activate multiple signalling pathways. Br J Pharmacol. 2007 Feb 12

    Google Scholar 

  130. Hisaw FL. Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med 1926;23:661–663

    Google Scholar 

  131. Bathgate RAD, Hsueh AJW, Sherwood OD. Physiology and molecular biology of the relaxin peptide family. In: Neill JD, editor. Knobil and Neill’s physiology of reproduction 3rd edn. New York: Academic Press; 2006.

    Google Scholar 

  132. Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev 2006;58:7–31

    PubMed  CAS  Google Scholar 

  133. Long X, Boluyt MO, O’Neill L, Zheng JS, Wu G, Nitta YK, Crow MT, Lakatta EG. Myocardial retinoid X receptor, thyroid hormone receptor, and myosin heavy chain gene expression in the rat during adult aging. J Gerontol A Biol Sci Med Sci 1999;54:B23–B27

    PubMed  CAS  Google Scholar 

  134. Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Matsuda M, Yamaguchi I. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am J Physiol Heart Circ Physiol 2004;286:H1696–H1705

    PubMed  CAS  Google Scholar 

  135. Tang F. Effect of sex and age on serum aldosterone and thyroid hormones in the laboratory rat. Horm Metab Res 1985;17:507–509

    PubMed  CAS  Google Scholar 

  136. Buttrick P, Malhotra A, Factor S, Greenen D, Leinwand L, Scheuer J. Effect of aging and hypertension on myosin biochemistry and gene expression in the rat heart. Circ Res 1991;68:645–652

    PubMed  CAS  Google Scholar 

  137. Schmidt U, del Monte F, Miyamoto MI, Matsui T, Gwathmey JK, Rosenzweig A, Hajjar RJ. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation 2000;101:790–796

    PubMed  CAS  Google Scholar 

  138. Cain BS, Meldrum DR, Joo KS, Wang JF, Meng X, Cleveland JC Jr, Banerjee A, Harken AH. Human SERCA2a levels correlate inversely with age in senescent human myocardium. J Am Coll Cardiol 1998;32:458–467

    PubMed  CAS  Google Scholar 

  139. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003;299: 1346–1351

    PubMed  CAS  Google Scholar 

  140. Muller EE, Cella SG, De Gennaro Colonna V, Parenti M, Cocchi D, Locatelli V. Aspects of the neuroendocrine control of growth hormone secretion in ageing mammals. J Reprod Fertil Suppl 1993;46:99–114

    PubMed  CAS  Google Scholar 

  141. Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 2005;146:3718–3723

    PubMed  CAS  Google Scholar 

  142. Brown-Borg HM, Borg KF, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature 1996;384:33

    Google Scholar 

  143. Hsieh CC, de Ford JH, Flurkey K, Harrison DE, Papaconstantinou J. Effects of the Pit1 mutation on the insulin signaling pathway: implication on the longevity of the long lived Snell dwarf mouse. Mech Ageing Dev 2002;123:1254–1255

    Google Scholar 

  144. Barbieri M, Bonafe M, Franceschi C, Paolisso G. Insulin/IGF-1-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 2003;285:E1064–E1071

    PubMed  CAS  Google Scholar 

  145. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003;299:572–574

    PubMed  Google Scholar 

  146. Steger RW, Bartke A, Cecim M. Premature ageing in transgenic mice expressing different growth hormone genes. J Reprod Fertil Suppl 1993;46:61–75

    PubMed  CAS  Google Scholar 

  147. Muller F. Growth hormone receptor knockout (Laron) mice. http://sageke.sciencemag.org/cgi/content/full/sageke;2002/8/tg1

    Google Scholar 

  148. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates life span and resistance to oxidative stress in mice. Nature 2003;421:182–186

    Google Scholar 

  149. Goodman-Gruen D, Barrett-Connor E. Epidemiology of insulin-like growth factor-I in elderly men and women. The Rancho Bernardo Study. Am J Epidemiol 1997;145:970–976

    PubMed  CAS  Google Scholar 

  150. Lieberman SA, Mitchell AM, Marcus R, Hintz RL, Hoffman AR. The insulin-like growth factor I generation test: resistance to growth hormone with aging and estrogen replacement therapy. Horm Metab Res 1994;26: 229–233

    PubMed  CAS  Google Scholar 

  151. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 2002;54:25–35

    PubMed  CAS  Google Scholar 

  152. Vasan RS, Sullivan LM, D’Agostino RB, Roubenoff R, Harris T, Sawyer DB, Levy D, Wilson PW. Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med 2003;139:642–648

    PubMed  CAS  Google Scholar 

  153. Roubenoff R, Parise H, Payette HA, Abad LW, D’Agostino R, Jacques PF, Wilson PW, Dinarello CA, Harris TB. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am J Med 2003;115:429–435

    PubMed  CAS  Google Scholar 

  154. Ghigo E, Arvat E, Gianotti L, Ramunni J, DiVito L, Maccagno B, Grottoli S, Camanni F. Human aging and the GH-IGF-1 axis. J Pediatr Endocrinol Metab 1996;9:271–278

    PubMed  Google Scholar 

  155. Takahashi S, Meites J. GH binding to liver in young and old female rats: relation to somatomedin-C secretion. Proc Soc Exp Biol Med 1987;186:229–233

    PubMed  CAS  Google Scholar 

  156. Xu X, Bennett SA, Ingram RL, Sonntag WE. Decreases in growth hormone receptor signal transduction contribute to the decline in insulin-like growth factor I gene expression with age. Endocrinology 1995;136: 4551–4557

    PubMed  CAS  Google Scholar 

  157. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 2002;54:25–35

    PubMed  CAS  Google Scholar 

  158. Colao A, Marzullo P, Di Somma C, Lombardi G. Growth hormone and the heart. Clin Endocrinol 2001;54: 137–154

    CAS  Google Scholar 

  159. Osterziel KJ, Strohm O, Schuler J, Friedrich M, Hänlein D, Willenbrock R, Anker SD, Poole-Wilson PA, Ranke MB, Dietz R. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 1998;351:1233–1237

    PubMed  CAS  Google Scholar 

  160. Wang PH. Roads to survival: insulin-like growth factor-1 signaling pathways in cardiac muscle. Circ Res 2001;88:552–554

    PubMed  CAS  Google Scholar 

  161. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829–1833

    PubMed  CAS  Google Scholar 

  162. Bartke A. Long-lived Klotho mice: new insights into the roles of IGF-1 and insulin in aging. Trends Endocrinol Metab 2006;17:33–35

    PubMed  CAS  Google Scholar 

  163. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 2005;280:38029–33834

    PubMed  CAS  Google Scholar 

  164. Brunt UT, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 2002;269:1996–2002

    Google Scholar 

  165. Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 1996;93:15364–15369

    PubMed  CAS  Google Scholar 

  166. Hamacher-Brady A, Brady NR, Gottlieb RA. The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 2006;20:445–462

    PubMed  CAS  Google Scholar 

  167. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290:1717–1721

    PubMed  CAS  Google Scholar 

  168. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22:8608–8618

    PubMed  CAS  Google Scholar 

  169. Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 2006;15:1209–1216

    PubMed  CAS  Google Scholar 

  170. Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem 2005;92:1228–1242

    PubMed  CAS  Google Scholar 

  171. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122:927–939

    PubMed  CAS  Google Scholar 

  172. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004;6:1221–1228

    PubMed  CAS  Google Scholar 

  173. Fleg JL, O’Connor F, Gerstenblith G, Becker LC, Clulow J, Schulman SP, Lakatta EG. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol 1995;78: 890–900

    PubMed  CAS  Google Scholar 

  174. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 2005;112:2254–2262

    PubMed  Google Scholar 

  175. Abbott RD, Curb JD, Rodriguez BL, Masaki KH, Yano K, Schatz IJ, Ross GW, Petrovitch H. Age-related changes in risk factor effects on the incidence of coronary heart disease. Ann Epidemiol 2002;12:173–181

    PubMed  Google Scholar 

  176. Saito H, Papaconstantinou J. Age-associated differences in cardiovascular inflammatory gene induction during endotoxic stress. J Biol Chem 2001;276:29307–29312

    PubMed  CAS  Google Scholar 

  177. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. Mutation of the mouse klotho gene leads to a syndrome resembling aging. Nature 1997;390:45–51

    PubMed  CAS  Google Scholar 

  178. Masuda H, Chikuda H, Suga T, Kawaguchi H, Kuro-o M. Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech Ageing Dev 2005;126:1274–1283

    PubMed  CAS  Google Scholar 

  179. Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, Fried L, Hamosh A, Dey S, McIntosh I, Dietz HC. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA 2002;99:856–861

    Google Scholar 

  180. Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, Becker LC, Dietz HC. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 2003;2:1154–1161

    Google Scholar 

  181. Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 2005;96:412–418

    PubMed  CAS  Google Scholar 

  182. Paternostro G, Vignola C, Bartsch DU, Omens JH, McCulloch AD, Reed JC. Age-associated cardiac dysfunction in Drosophila melanogaster. Circ Res 2001;88:1053–1058

    PubMed  CAS  Google Scholar 

  183. Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R. Insulin regulation of heart function in aging fruit flies. Nat Genet 2004;36:1275–1281

    PubMed  CAS  Google Scholar 

  184. Ocorr K, Akasaka T, Bodmer R. Age-related cardiac disease model of Drosophila. Mech Ageing Dev 2007;128:112–116

    PubMed  CAS  Google Scholar 

  185. Roth DA, White CD, Podolin DA, Mazzeo RS. Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. J Appl Physiol 1998;84:177–184

    PubMed  CAS  Google Scholar 

  186. Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, Sakai S, Ohmori H, Matsuda M, Yamaguchi I. Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol 2002;283:H1750–H1760

    PubMed  CAS  Google Scholar 

  187. Maeda S, Tanabe T, Miyauchi T, Otsuki T, Sugawara J, Iemitsu M, Kuno S, Ajisaka R, Yamaguchi I, Matsuda M. Aerobic exercise training reduce plasma endothelin-1 concentration in older women. J Appl Physiol 2003;95: 336–341

    PubMed  CAS  Google Scholar 

  188. Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, Kuno S, Ajisaka R, Matsuda M. Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res 2004;27:947–953

    PubMed  CAS  Google Scholar 

  189. DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 2000;102:1351–1357

    PubMed  CAS  Google Scholar 

  190. Smith DT, Hoetzer GL, Greiner JJ, Stauffer BL, DeSouza CA. Effects of ageing and regular aerobic exercise on endothelial fibrinolytic capacity in humans. J Physiol 2003;546:289–298

    PubMed  CAS  Google Scholar 

  191. DeSouza CA, Van Guilder GP, Greiner JJ, Smith DT, Hoetzer GL, Stauffer BL. Basal endothelial nitric oxide release is preserved in overweight and obese adults. Obes Res 2005;13:1303–1306

    PubMed  CAS  Google Scholar 

  192. Van Guilder GP, Hoetzer GL, Smith DT, Irmiger HM, Greiner JJ, Stauffer BL, Desouza CA. Endothelial t-PA release is impaired in overweight and obese adults but can be improved with regular aerobic exercise. Am J Physiol Endocrinol Metab 2005;289:E807–E813

    PubMed  Google Scholar 

  193. Quindry J, French J, Hamilton K, Lee Y, Mehta JL, Powers S. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Exp Gerontol 2005;40:416–425

    PubMed  CAS  Google Scholar 

  194. French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK, Powers SK. Ischemia-reperfusion induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol 2005;290:H128–H136

    PubMed  Google Scholar 

  195. Gielen S, Adams V, Niebauer J, Schuler G, Hambrecht R. Aging and heart failure – similar syndromes of exercise intolerance? Implications for exercise-based interventions. Heart Fail Monit 2005;4:130–136

    PubMed  Google Scholar 

  196. Musch TI, Eklund KE, Hageman KS, Poole DC. Altered regional blood flow responses to submaximal exercise in older rats. J Appl Physiol 2004;96:81–88

    PubMed  Google Scholar 

  197. Eklund KE, Hageman KS, Poole DC, Musch TI. Impact of aging on muscle blood flow in chronic heart failure. J Appl Physiol 2005;99:505–514

    PubMed  Google Scholar 

  198. Terry DF, Wilcox M, McCormick MA, Lawler E, Perls TT. Cardiovascular advantages among the offspring of centenarians. J Gerontol A Biol Sci Med Sci 2003;58:M425–M431

    PubMed  Google Scholar 

  199. Perls T, Terry D. Genetics of exceptional longevity. Exp Gerontol 2003;38:725–730

    PubMed  Google Scholar 

  200. Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N. Clinical phenotype of families with longevity. J Am Geriatr Soc 2004;52:274–277

    PubMed  Google Scholar 

  201. Terry DF, McCormick M, Andersen S, Pennington J, Schoenhofen E, Palaima E, Bausero M, Ogawa K, Perls TT, Asea A. Cardiovascular disease delay in centenarian offspring: role of heat shock proteins. Ann NY Acad Sci 2004;1019:502–505

    PubMed  CAS  Google Scholar 

  202. Terry DF, Wyszynski DF, Nolan VG, Atzmon G, Schoenhofen EA, Pennington JY, Andersen SL, Wilcox MA, Farrer LA, Barzilai N, Baldwin CT, Asea A. Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mech Ageing Dev 2006;127:862–868

    PubMed  CAS  Google Scholar 

  203. Dominguez LJ, Galioto A, Ferlisi A, Pineo A, Putignano E, Belvedere M, Costanza G, Barbagallo M. Ageing, lifestyle modifications, and cardio-vascular disease in developing countries. J Nutr Health Aging 2006;10: 143–149

    PubMed  CAS  Google Scholar 

  204. Daviglus ML, Lloyd-Jones DM, Pirzada A. Preventing cardiovascular disease in the 21st century: therapeutic and preventive implications of current evidence. Am J Cardiovasc Drugs 2006;6:87–101

    PubMed  CAS  Google Scholar 

  205. Daviglus ML, Stamler J, Pirzada A, Yan LL, Garside DB, Liu K, Wang R, Dyer AR, Lloyd-Jones DM, Greenland P. Favorable cardiovascular risk profile in young women and long-term risk of cardiovascular and all-cause mortality. JAMA 2004;292:1588–1592

    PubMed  CAS  Google Scholar 

  206. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98:10344–10349

    PubMed  CAS  Google Scholar 

  207. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Chimerism of the transplanted heart. N Engl J Med 2002;346:5–15

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J., Goldenthal, M.J., Moe, G.W. (2008). Overview of Cardiovascular Aging. In: Aging and the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74072-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74072-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74071-3

  • Online ISBN: 978-0-387-74072-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics