Advertisement

Nutrition and Exercise in Cardiovascular Aging: Metabolic and Pharmacological Interventions

  • José Marín-García
  • Michael J. Goldenthal
  • Gordon W. Moe

Keywords

Exercise Training Caloric Restriction Maximum Life Span Cardiovascular Aging Methionine Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhahbi JM, Tsuchiya T, Kim HJ, Mote PL, Spindler SR. Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol A Biol Sci Med Sci 2006;61:218–31PubMedGoogle Scholar
  2. 2.
    Mattison JA, Roth GS, Lane MA, Ingram DK. Dietary restriction in aging nonhuman primates. Interdiscip Top Gerontol 2007;35:137–158PubMedGoogle Scholar
  3. 3.
    Verdery RB, Ingram DK, Roth GS, Lane MA. Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am J Physiol 1997;273:E714–E719PubMedGoogle Scholar
  4. 4.
    Roth GS, Lesnikov V, Lesnikov M, Ingram DK, Lane MA. Dietary caloric restriction prevents the age-related decline in plasma melatonin levels of rhesus monkeys. J Clin Endocrinol Metab 2001;86:3292–3295PubMedCrossRefGoogle Scholar
  5. 5.
    Zainal TA, Oberley TD, Allison DB, Szweda LI, Weindruch R. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 2000;14:1825–1836PubMedCrossRefGoogle Scholar
  6. 6.
    Lane MA, Ball SS, Ingram DK, Cutler RG, Engel J, Read V, Roth GS. Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points. Am J Physiol 1995;268:E941–E948PubMedGoogle Scholar
  7. 7.
    Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ. Biomarkers of caloric restriction may predict longevity in humans. Science 2002;297:811PubMedCrossRefGoogle Scholar
  8. 8.
    Masoro EJ. Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ 2003;2003:RE2PubMedCrossRefGoogle Scholar
  9. 9.
    Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005;126:913–922PubMedCrossRefGoogle Scholar
  10. 10.
    Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci USA 2002;99:14988–14993PubMedCrossRefGoogle Scholar
  11. 11.
    Park SK, Prolla TA. Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res 2005;66:205–212PubMedCrossRefGoogle Scholar
  12. 12.
    Park SK, Prolla TA. Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev 2005;4:55–65PubMedCrossRefGoogle Scholar
  13. 13.
    Lee CK, Pugh TD, Klopp RG, Edwards J, Allison DB, Weindruch R, Prolla TA. The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice. Free Radic Biol Med 2004;36:1043–1057PubMedCrossRefGoogle Scholar
  14. 14.
    Weindruch R, Kayo T, Lee CK, Prolla TA. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 2001;131:918S–923SPubMedGoogle Scholar
  15. 15.
    Cefalu WT, Wang ZQ, Bell-Farrow AD, Collins J, Morgan T, Wagner JD. Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4-year intervention trial. J Gerontol A Biol Sci Med Sci 2004;59:1007–1014PubMedGoogle Scholar
  16. 16.
    Barja G. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev 2004;79:235–251PubMedCrossRefGoogle Scholar
  17. 17.
    Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996;273:59–63PubMedCrossRefGoogle Scholar
  18. 18.
    Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS. Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 1998;25:1089–1097PubMedCrossRefGoogle Scholar
  19. 19.
    Gredilla R, Sanz A, Lopez-Torres M, Barja G. Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J 2001;15:1589–1591PubMedGoogle Scholar
  20. 20.
    Lopez-Torres M, Gredilla R, Sanz A, Barja G. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 2002;32:882–889PubMedCrossRefGoogle Scholar
  21. 21.
    Sanz A, Caro P, Ibanez J, Gomez J, Gredilla R, Barja G. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 2005;37:83–90PubMedCrossRefGoogle Scholar
  22. 22.
    Gredilla R, Lopez-Torres M, Barja G. Effect of time of restriction on the decrease in mitochondrial H2O2 production and oxidative DNA damage in the heart of food-restricted rats. Microsc Res Tech 2002;59:273–277PubMedCrossRefGoogle Scholar
  23. 23.
    Gredilla R, Phaneuf S, Selman C, Kendaiah S, Leeuwenburgh C, Barja G. Short-term caloric restriction and sites of oxygen radical generation in kidney and skeletal muscle mitochondria. Ann NY Acad Sci 2004;1019:333–342PubMedCrossRefGoogle Scholar
  24. 24.
    Lambert AJ, Wang B, Yardley J, Edwards J, Merry BJ. The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption. Exp Gerontol 2004;39:289–295PubMedCrossRefGoogle Scholar
  25. 25.
    Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 2003;284:R474–R480PubMedGoogle Scholar
  26. 26.
    Hepple RT, Baker DJ, Kaczor JJ, Krause DJ. Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function. FASEB J 2005;19:1320–1332PubMedGoogle Scholar
  27. 27.
    Baker DJ, Betik AC, Krause DJ, Hepple RT. No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity. J Gerontol A Biol Sci Med Sci 2006;61:675–684PubMedGoogle Scholar
  28. 28.
    Hepple RT, Baker DJ, McConkey M, Murynka T, Norris R. Caloric restriction protects mitochondrial function with aging in skeletal and cardiac muscles. Rejuvenation Res 2006;9:219–222PubMedCrossRefGoogle Scholar
  29. 29.
    Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006;103:1768–1773Google Scholar
  30. 30.
    Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005;310:314–317PubMedCrossRefGoogle Scholar
  31. 31.
    Leon TI, Lim BO, Yu BP, Lim Y, Jeon EJ, Park DK. Effect of dietary restriction on age-related increase of liver susceptibility to peroxidation in rats. Lipids 2001;36:589–593PubMedCrossRefGoogle Scholar
  32. 32.
    Judge S, Judge A, Grune T, Leeuwenburgh C. Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content. Am J Physiol Regul Integr Comp Physiol 2004;286:R254–R259PubMedGoogle Scholar
  33. 33.
    Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994;74:121–133PubMedCrossRefGoogle Scholar
  34. 34.
    Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988;85:6465–6467PubMedCrossRefGoogle Scholar
  35. 35.
    Zastawny TH, Dabrowska M, Jaskolski T, Klimarczyk M, Kulinski L, Koszela A, Szczesniewicz M, Sliwinska M, Witkowski P, Olinski R. Comparison of oxidative base damage in mitochondrial and nuclear DNA. Free Radic Biol Med 1998;24:722–725PubMedCrossRefGoogle Scholar
  36. 36.
    Dianov GL, Souza-Pinto N, Nyaga SG, Thybo T, Stevnsner T, Bohr VA. Base excision repair in nuclear and mitochondrial DNA. Prog Nucleic Acid Res Mol Biol 2001;68:285–297PubMedGoogle Scholar
  37. 37.
    Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 2002;32:804–812PubMedCrossRefGoogle Scholar
  38. 38.
    Szczesny B, Hazra TK, Papaconstantinou J, Mitra S, Boldogh I. Age-dependent deficiency in import of mitochondrial DNA glycosylases required for repair of oxidatively damaged bases. Proc Natl Acad Sci USA 2003;100:10670–10675PubMedCrossRefGoogle Scholar
  39. 39.
    Imam SZ, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol Aging 2006;27:1129–1136PubMedCrossRefGoogle Scholar
  40. 40.
    Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 2001;98:10469–10474PubMedCrossRefGoogle Scholar
  41. 41.
    Hamilton ML, Guo Z, Fuller CD, Van Remmen H, Ward WF, Austad SN, Troyer DA, Thompson I, Richardson A. A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res 2001;29:2117–2126PubMedCrossRefGoogle Scholar
  42. 42.
    Melov S, Hinerfeld D, Esposito L, Wallace DC. Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucl Acids Res 1997;25:974–982PubMedCrossRefGoogle Scholar
  43. 43.
    Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 2004;18:595–597PubMedGoogle Scholar
  44. 44.
    Donati A, Taddei M, Cavallini G, Bergamini E. Stimulation of macroautophagy can rescue older cells from 8-OHdG mtDNA accumulation: a safe and easy way to meet goals in the SENS agenda. Rejuvenation Res 2006;9:408–412PubMedCrossRefGoogle Scholar
  45. 45.
    Herrero A, Barja G. 8-oxo-deoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging. Aging (Milano) 1999;11:294–300Google Scholar
  46. 46.
    Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 2000;14:312–318PubMedGoogle Scholar
  47. 47.
    Ku H H, Brunk UT, Sohal RS. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Rad Biol Med 1993;15:621–627PubMedCrossRefGoogle Scholar
  48. 48.
    Cabelof DC, Yanamadala S, Raffoul JJ, Guo Z, Soofi A, Heydari AR. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair (Amst) 2003;2:295–307CrossRefGoogle Scholar
  49. 49.
    Cabelof DC, Raffoul JJ, Ge Y, Van Remmen H, Matherly LH, Heydari AR. Age-related loss of the DNA repair response following exposure to oxidative stress. J Gerontol A Biol Sci Med Sci 2006;61:427–434PubMedGoogle Scholar
  50. 50.
    Mayer PJ, Lange CS, Bradley MO, Nichols WW. Gender differences in age-related decline in DNA double-strand break damage and repair in lymphocytes. Ann Hum Biol 1991;18:405–415PubMedCrossRefGoogle Scholar
  51. 51.
    Um JH, Kim SJ, Kim DW, Ha MY, Jang JH, Kim DW, Chung BS, Kang CD, Kim SH. Tissue-specific changes of DNA repair protein Ku and mtHSP70 in aging rats and their retardation by caloric restriction. Mech Ageing Dev 2003;124:967–975PubMedCrossRefGoogle Scholar
  52. 52.
    D’Costa AP, Lenham JE, Ingram RL, Sonntag WE. Moderate caloric restriction increases type 1 IGF receptors and protein synthesis in aging rats. Mech Ageing Dev 1993;71:59–71PubMedCrossRefGoogle Scholar
  53. 53.
    Sonntag WE, Lynch CD, Cefalu WT, Ingram RL, Bennett SA, Thornton PL, Khan AS. Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. J Gerontol A Biol Sci Med Sci 1999;54:B521–B538PubMedGoogle Scholar
  54. 54.
    Bartke A, Masternak MM, Al-Regaiey KA, Bonkowski MS. Effects of dietary restriction on the expression of insulin-signaling-related genes in long-lived mutant mice. Interdiscip Top Gerontol 2007;35:69–82PubMedGoogle Scholar
  55. 55.
    Al-Regaiey KA, Masternak MM, Bonkowski M, Sun L, Bartke A. Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor i/insulin signaling and caloric restriction. Endocrinology 2005;146:851–860PubMedCrossRefGoogle Scholar
  56. 56.
    Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS, Bartke A. Effects of caloric restriction on insulin pathway gene expression in the skeletal muscle and liver of normal and long-lived GHR-KO mice. Exp Gerontol 2005;40:679–684PubMedCrossRefGoogle Scholar
  57. 57.
    Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS, Kopchick JJ, Wang Z, Bartke A. Caloric restriction and growth hormone receptor knockout: effects on expression of genes involved in insulin action in the heart. Exp Gerontol 2006;41:417–429PubMedCrossRefGoogle Scholar
  58. 58.
    Corton JC, Brown-Borg HM. Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Gerontol A Biol Sci Med Sci 2005;60:1494–1509PubMedGoogle Scholar
  59. 59.
    Sung B, Park S, Yu BP, Chung HY. Modulation of PPAR in aging, inflammation, and calorie restriction. J Gerontol A Biol Sci Med Sci 2004;59:997–1006PubMedGoogle Scholar
  60. 60.
    Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS, Kopchick JJ, Bartke A. Effects of caloric restriction and growth hormone resistance on the expression level of peroxisome proliferator-activated receptors superfamily in liver of normal and long-lived growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 2005;60:1394–1398PubMedGoogle Scholar
  61. 61.
    Zhu M, Miura J, Lu LX, Bernier M, DeCabo R, Lane MA, Roth GS, Ingram DK. Circulating adiponectin levels increase in rats on caloric restriction: the potential for insulin sensitization. Exp Gerontol 2004;39:1049–1059PubMedCrossRefGoogle Scholar
  62. 62.
    Corton JC, Apte U, Anderson SP, Limaye P, Yoon L, Latendresse J, Dunn C, Everitt JI, Voss KA, Swanson C, Kimbrough C, Wong JS, Gill SS, Chandraratna RA, Kwak MK, Kensler TW, Stulnig TM, Steffensen KR, Gustafsson JA, Mehendale HM. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem 2004;279:46204–46212PubMedCrossRefGoogle Scholar
  63. 63.
    Guarente L, Picard F. Calorie restriction – the SIR2 connection. Cell 2005;120:473–482PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390–392PubMedCrossRefGoogle Scholar
  65. 65.
    Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776Google Scholar
  66. 66.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113–118PubMedCrossRefGoogle Scholar
  67. 67.
    Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006;103:10230–10235PubMedCrossRefGoogle Scholar
  68. 68.
    Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105–117PubMedCrossRefGoogle Scholar
  69. 69.
    Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic y cells. PLoS Biol 2006;4:31CrossRefGoogle Scholar
  70. 70.
    Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–2015PubMedCrossRefGoogle Scholar
  71. 71.
    Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W. Negative control of p53 by Sir2 promotes cell survival under stress. Cell 2001;107:137–148PubMedCrossRefGoogle Scholar
  72. 72.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369–2380PubMedCrossRefGoogle Scholar
  73. 73.
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149–159PubMedCrossRefGoogle Scholar
  74. 74.
    Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 2004;101:10042–10047PubMedCrossRefGoogle Scholar
  75. 75.
    Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004;116:551–563PubMedCrossRefGoogle Scholar
  76. 76.
    Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004;13:627–638PubMedCrossRefGoogle Scholar
  77. 77.
    Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16:93–105PubMedCrossRefGoogle Scholar
  78. 78.
    Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004;95:971–980PubMedCrossRefGoogle Scholar
  79. 79.
    Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623–4635PubMedCrossRefGoogle Scholar
  80. 80.
    Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006;124:315–329PubMedCrossRefGoogle Scholar
  81. 81.
    Kim JW, Zou Y, Yoon S, Lee JH, Kim YK, Yu BP, Chung HY. Vascular aging: molecular modulation of the prostanoid cascade by calorie restriction. J Gerontol A Biol Sci Med Sci 2004;59:B876–B885PubMedGoogle Scholar
  82. 82.
    Son TG, Zou Y, Yu BP, Lee J, Chung HY. Aging effect on myeloperoxidase in rat kidney and its modulation by calorie restriction. Free Radic Res 2005;39:283–289PubMedCrossRefGoogle Scholar
  83. 83.
    Zou Y, Yoon S, Jung KJ, Kim CH, Son TG, Kim MS, Kim YJ, Lee J, Yu BP, Chung HY. Upregulation of aortic adhesion molecules during aging. J Gerontol A Biol Sci Med Sci 2006;61:232–244PubMedGoogle Scholar
  84. 84.
    Zou Y, Jung KJ, Kim JW, Yu BP, Chung HY. Alteration of soluble adhesion molecules during aging and their modulation by calorie restriction. FASEB J 2004;18:320–322PubMedGoogle Scholar
  85. 85.
    Fornieri C, Taparelli F, Quaglino D Jr, Contri MB, Davidson JM, Algeri S, Ronchetti IP. The effect of caloric restriction on the aortic tissue of aging rats. Connect Tissue Res 1999;40:131–143PubMedGoogle Scholar
  86. 86.
    Sanz A, Caro P, Barja G. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr 2004;36:545–552PubMedCrossRefGoogle Scholar
  87. 87.
    Sanz A, Caro P, Sanchez JG, Barja G. Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage. Ann NY Acad Sci 2006;1067:200–209PubMedCrossRefGoogle Scholar
  88. 88.
    Sanz A, Gomez J, Caro P, Barja G. Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 2006;38:327–333PubMedCrossRefGoogle Scholar
  89. 89.
    Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 2006;20:1064–1073PubMedCrossRefGoogle Scholar
  90. 90.
    Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 1994;8:1302–1307PubMedGoogle Scholar
  91. 91.
    Orentreich N, Matias JR, DeFelice A, Zimmerman JA. Low methionine ingestion by rats extends life span. J Nutr 1993;123:269–274PubMedGoogle Scholar
  92. 92.
    Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 2006;1757:496–508PubMedCrossRefGoogle Scholar
  93. 93.
    Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 2000;14:2135–2137PubMedGoogle Scholar
  94. 94.
    Mobbs CV, Mastaitis JW, Zhang M, Isoda F, Cheng H, Yen K. Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease. Interdiscip Top Gerontol 2007;35:39–68PubMedGoogle Scholar
  95. 95.
    Suji G, Sivakami S. Glucose, glycation and aging. Biogerontology 2004;5:365–373PubMedCrossRefGoogle Scholar
  96. 96.
    Pasinetti GM, Zhao Z, Qin W, Ho L, Shrishailam Y, Macgrogan D, Ressmann W, Humala N, Liu X, Romero C, Stetka B, Chen L, Ksiezak-Reding H, Wang J. Caloric intake and Alzheimer’s disease. Experimental approaches and therapeutic implications. Interdiscip Top Gerontol 2007;35:159–175PubMedGoogle Scholar
  97. 97.
    Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, Pasinetti GM. Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 2005;19:659–661PubMedCrossRefGoogle Scholar
  98. 98.
    Weindruch R, Keenan KP, Carney JM, Fernandes G, Feuers RJ, Floyd RA, Halter JB, Ramsey JJ, Richardson A, Roth GS, Spindler SR. Caloric restriction mimetics: metabolic interventions. J Gerontol A Biol Sci Med Sci 2001;56:20–33PubMedGoogle Scholar
  99. 99.
    Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R. Calorie restriction mimetics: an emerging research field. Aging Cell 2006;5:97–108Google Scholar
  100. 100.
    Ingram DK, Anson RM, de Cabo R, Mamczarz J, Zhu M, Mattison J, Lane MA, Roth GS. Development of calorie restriction mimetics as a prolongevity strategy. Ann NY Acad Sci 2004;1019:412–423PubMedCrossRefGoogle Scholar
  101. 101.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae life span. Nature 2003;425:191–196PubMedCrossRefGoogle Scholar
  102. 102.
    Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004;430:686–689PubMedCrossRefGoogle Scholar
  103. 103.
    Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs life span and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 2006;16:296–300PubMedCrossRefGoogle Scholar
  104. 104.
    Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005;280:17038–17045PubMedCrossRefGoogle Scholar
  105. 105.
    Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 2005;280:17187–17195PubMedCrossRefGoogle Scholar
  106. 106.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337–342Google Scholar
  107. 107.
    Yang H, Baur JA, Chen A, Miller C, Sinclair DA. Design and synthesis of compounds that extend yeast replicative life span. Aging Cell 2007;6:35–43PubMedCrossRefGoogle Scholar
  108. 108.
    Demetrius L. Caloric restriction, metabolic rate, and entropy. J Gerontol A Biol Sci Med Sci 2004;59:B902–B915PubMedGoogle Scholar
  109. 109.
    Demetrius L. Aging in mouse and human systems: a comparative study. Ann NY Acad Sci 2006;1067:66–82PubMedCrossRefGoogle Scholar
  110. 110.
    Mockett RJ, Cooper TM, Orr WC, Sohal RS. Effects of caloric restriction are species-specific. Biogerontology 2006;7:157–160PubMedCrossRefGoogle Scholar
  111. 111.
    Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 2006;127:1–7PubMedCrossRefGoogle Scholar
  112. 112.
    Calabrese V, Giuffrida Stella AM, Calvani M, Butterfield DA. Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 2006;17:73–88PubMedCrossRefGoogle Scholar
  113. 113.
    Hagen TM, Moreau R, Suh JH, Visioli F. Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-L-cartinine and/or lipoic acid. Ann NY Acad Sci 2002;959:491–507PubMedCrossRefGoogle Scholar
  114. 114.
    Lesnefsky EJ, He D, Moghaddas S, Hoppel CL. Reversal of mitochondrial defects before ischemia protects the aged heart. FASEB J 2006;20:1543–1545PubMedCrossRefGoogle Scholar
  115. 115.
    Suh JH, Wang H, Liu RM, Liu J, Hagen TM. (R)-alpha-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: evidence for increased cysteine requirement for GSH synthesis. Arch Biochem Biophys 2004;423:126–135PubMedCrossRefGoogle Scholar
  116. 116.
    Kumaran S, Savitha S, Anusuya Devi M, Panneerselvam C. L-carnitine and DL-alpha-lipoic acid reverse the age-related deficit in glutathione redox state in skeletal muscle and heart tissues. Mech Ageing Dev 2004;125:507–512PubMedCrossRefGoogle Scholar
  117. 117.
    Ames BN, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine. Ann NY Acad Sci 2004;1033:108–116PubMedCrossRefGoogle Scholar
  118. 118.
    Tanaka Y, Sasaki R, Fukui F, Waki H, Kawabata T, Okazaki M, Hasegawa K, Ando S. Acetyl-L-carnitine supplementation restores decreased tissue carnitine levels and impaired lipid metabolism in aged rats. J Lipid Res 2004;45:729–735PubMedCrossRefGoogle Scholar
  119. 119.
    Rosenfeldt FL, Pepe S, Linnane A, Nagley P, Rowland M, Ou R, Marasco S, Lyon W, Esmore D. Coenzyme Q10 protects the aging heart against stress: studies in rats, human tissues, and patients. Ann NY Acad Sci 2002;959:355–359PubMedCrossRefGoogle Scholar
  120. 120.
    Sohal RS, Kamzalov S, Sumien N, Ferguson M, Rebrin I, Heinrich KR, Forster MJ. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radic Biol Med 2006;40:480–487PubMedCrossRefGoogle Scholar
  121. 121.
    Aronson D. Pharmacological prevention of cardiovascular aging – targeting the Maillard reaction. Br J Pharmacol 2004;142:1055–1058PubMedCrossRefGoogle Scholar
  122. 122.
    Li YM, Steffes M, Donnelly T, Liu C, Fuh H, Basgen J, Bucala R, Vlassara H. Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc Natl Acad Sci USA 1996;93:3902–3907PubMedCrossRefGoogle Scholar
  123. 123.
    Corman B, Duriez M, Poitevin P, Heudes D, Bruneval P, Tedgui A, Levy BI. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc Natl Acad Sci USA 1998;95:1301–1306PubMedCrossRefGoogle Scholar
  124. 124.
    Moreau R, Nguyen BT, Doneanu CE, Hagen TM. Reversal by aminoguanidine of the age-related increase in glycoxidation and lipoxidation in the cardiovascular system of Fischer 344 rats. Biochem Pharmacol 2005;69:29–40PubMedCrossRefGoogle Scholar
  125. 125.
    Chang KC, Hsu KL, Chou TF, Lo HM, Tseng YZ. Aminoguanidine prevents age-related deterioration in left ventricular-arterial coupling in Fisher 344 rats. Br J Pharmacol 2004;142:1099–1104PubMedCrossRefGoogle Scholar
  126. 126.
    Chang KC, Hsu KL, Peng YI, Lee FC, Tseng YZ. Aminoguanidine prevents age-related aortic stiffening in Fisher 344 rats: aortic impedance analysis. Br J Pharmacol 2003;140:107–114PubMedCrossRefGoogle Scholar
  127. 127.
    Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci USA 2000;97:2809–2813PubMedCrossRefGoogle Scholar
  128. 128.
    Ventura-Clapier R, Mettauer B, Bigard X. Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure. Cardiovasc Res 2007;73:10–18PubMedCrossRefGoogle Scholar
  129. 129.
    Lu L, Mei DF, Gu AG, Wang S, Lentzner B, Gutstein DE, Zwas D, Homma S, Yi GH, Wang J. Exercise training normalizes altered calcium-handling proteins during development of heart failure. J Appl Physiol 2002;92:1524–1530PubMedGoogle Scholar
  130. 130.
    Orenstein TL, Parker TG, Butany JW, Goodman JM, Dawood F, Wen WH, Wee L, Martino T, McLaughlin PR, Liu PP. Favorable left ventricular remodeling following large myocardial infarction by exercise training. Effect on ventricular morphology and gene expression. J Clin Invest 1995;96:858–866Google Scholar
  131. 131.
    Lee YI, Cho JY, Kim MH, Kim KB, Lee DJ, Lee KS. Effects of exercise training on pathological cardiac hypertrophy related gene expression and apoptosis. Eur J Appl Physiol 2006;97:216–224PubMedCrossRefGoogle Scholar
  132. 132.
    Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauchi T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol 2006;291:H1290–H1298PubMedCrossRefGoogle Scholar
  133. 133.
    Bronikowski AM, Carter PA, Morgan TJ, Garland T Jr, Ung N, Pugh TD, Weindruch R, Prolla TA. Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart. Physiol Genomics 2003;12:129–138PubMedGoogle Scholar
  134. 134.
    Suzuki J. L-arginine supplementation causes additional effects on exercise-induced angiogenesis and VEGF expression in the heart and hind-leg muscles of middle-aged rats. J Physiol Sci 2006;56:39–44PubMedCrossRefGoogle Scholar
  135. 135.
    Short KR, Vittone JL, Bigelow ML, Proctor DN, Coenen-Schimke JM, Rys P, Nair KS. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J Appl Physiol 2005;99:95–102PubMedCrossRefGoogle Scholar
  136. 136.
    Gustafsson T, Bodin K, Sylven C, Gordon A, Tyni-Lenne R, Jansson E. Increased expression of VEGF following exercise training in patients with heart failure. Eur J Clin Invest 2001;31:362–366PubMedCrossRefGoogle Scholar
  137. 137.
    Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, LeJemtel TH. Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 2001;38:194–198PubMedCrossRefGoogle Scholar
  138. 138.
    Jozsi AC, Dupont-Versteegden EE, Taylor-Jones JM, Evans WJ, Trappe TA, Campbell WW, Peterson CA. Aged human muscle demonstrates an altered gene expression profile consistent with an impaired response to exercise. Mech Ageing Dev 2000;120:45–56PubMedCrossRefGoogle Scholar
  139. 139.
    Quindry J, French J, Hamilton K, Lee Y, Mehta JL, Powers S. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Exp Gerontol 2005;40:416–425PubMedCrossRefGoogle Scholar
  140. 140.
    French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK, Powers SK. Ischemia-reperfusion induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol 2006;290:H128–H136PubMedCrossRefGoogle Scholar
  141. 141.
    Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J 2006;20:791–793PubMedGoogle Scholar
  142. 142.
    Gielen S, Adams V, Niebauer J, Schuler G, Hambrecht R. Aging and heart failure – similar syndromes of exercise intolerance? Implications for exercise-based interventions. Heart Fail Monit 2005;4:130–136PubMedGoogle Scholar
  143. 143.
    Musch TI, Eklund KE, Hageman KS, Poole DC. Altered regional blood flow responses to submaximal exercise in older rats. J Appl Physiol 2004;96:81–88PubMedCrossRefGoogle Scholar
  144. 144.
    Eklund KE, Hageman KS, Poole DC, Musch TI. Impact of aging on muscle blood flow in chronic heart failure. J Appl Physiol 2005;99:505–514PubMedCrossRefGoogle Scholar
  145. 145.
    Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 2005;289:R1564–R1572PubMedGoogle Scholar
  146. 146.
    Navarro A, Gomez C, Lopez-Cepero JM, Boveris M. Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 2004;286:R505–R511PubMedGoogle Scholar
  147. 147.
    Korzick DH, Holiman DA, Boluyt MO, Laughlin MH, Lakatta EG. Diminished alpha1-adrenergic-mediated contraction and translocation of PKC in senescent rat heart. Am J Physiol Heart Circ Physiol 2001;281:H581–H589PubMedGoogle Scholar
  148. 148.
    Korzick DH, Hunter JC, McDowell MK, Delp MD, Tickerhoof MM, Carson LD. Chronic exercise improves myocardial inotropic reserve capacity through alpha1-adrenergic and protein kinase C-dependent effects in senescent rats. J Gerontol A Biol Sci Med Sci 2004;59:1089–1098PubMedGoogle Scholar
  149. 149.
    Roth DA, White CD, Podolin DA, Mazzeo RS. Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. J Appl Physiol 1998;84:177–184PubMedGoogle Scholar
  150. 150.
    Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, Sakai S, Ohmori H, Matsuda M, Yamaguchi I. Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol 2002;283:H1750–H1760PubMedGoogle Scholar
  151. 151.
    Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, Cameron-Smith D. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2002;283:E66–E72PubMedGoogle Scholar
  152. 152.
    Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm GL, Yan Z, Newgard CB, Muoio DM. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 2005;280:33588–33598PubMedCrossRefGoogle Scholar
  153. 153.
    Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Matsuda M, Yamaguchi I. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am J Physiol Heart Circ Physiol 2004;286:H1696–H1705PubMedCrossRefGoogle Scholar
  154. 154.
    Tang F. Effect of sex and age on serum aldosterone and thyroid hormones in the laboratory rat. Horm Metab Res 1985;17:507–509PubMedGoogle Scholar
  155. 155.
    Powers SK, Quindry J, Hamilton K. Aging, exercise, and cardioprotection. Ann NY Acad Sci 2004;1019:462–470PubMedCrossRefGoogle Scholar
  156. 156.
    Lennon SL, Quindry JC, Hamilton KL, French JP, Hughes J, Mehta JL, Powers SK. Elevated MnSOD is not required for exercise-induced cardioprotection against myocardial stunning. Am J Physiol Heart Circ Physiol 2004;287:H975–H980PubMedCrossRefGoogle Scholar
  157. 157.
    Starnes JW, Choilawala AM, Taylor RP, Nelson MJ, Delp MD. Myocardial heat shock protein 70 expression in young and old rats after identical exercise programs. J Gerontol A Biol Sci Med Sci 2005;60:963–969PubMedGoogle Scholar
  158. 158.
    Maeda S, Tanabe T, Miyauchi T, Otsuki T, Sugawara J, Iemitsu M, Kuno S, Ajisaka R, Yamaguchi I, Matsuda M. Aerobic exercise training reduce plasma endothelin-1 concentration in older women. J Appl Physiol 2003;95:336–341PubMedGoogle Scholar
  159. 159.
    Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, Kuno S, Ajisaka R, Matsuda M. Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res 2004;27:947–953PubMedCrossRefGoogle Scholar
  160. 160.
    DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 2000;102:1351–1357PubMedGoogle Scholar
  161. 161.
    Smith DT, Hoetzer GL, Greiner JJ, Stauffer BL, DeSouza CA. Effects of ageing and regular aerobic exercise on endothelial fibrinolytic capacity in humans. J Physiol 2003;546:289–298PubMedCrossRefGoogle Scholar
  162. 162.
    DeSouza CA, Van Guilder GP, Greiner JJ, Smith DT, Hoetzer GL, Stauffer BL. Basal endothelial nitric oxide release is preserved in overweight and obese adults. Obes Res 2005;13:1303–1306PubMedCrossRefGoogle Scholar
  163. 163.
    Gielen S, Adams V, Niebauer J, Schuler G, Hambrecht R. Aging and heart failure – similar syndromes of exercise intolerance? Implications for exercise-based interventions. Heart Fail Monit 2005;4:130–136PubMedGoogle Scholar
  164. 164.
    Ji LL. Exercise at old age: does it increase or alleviate oxidative stress? Ann NY Acad Sci 2001;928:236–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Marín-García
    • 1
  • Michael J. Goldenthal
    • 2
  • Gordon W. Moe
    • 3
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  2. 2.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  3. 3.University of TorontoTorontoCanada

Personalised recommendations