Cardiac Dysrhythmias and Channelopathies in Aging

  • José Marín-García
  • Michael J. Goldenthal
  • Gordon W. Moe


Catheter Ablation Biventricular Pace Adenine Nucleotide Translocase Cardiac Dysrhythmia Aging Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montage O, Le Corvoisier P, Guenoun T, Laplace M, Crozatier B. Impaired alpha1-adrenergic responses in aged rat hearts. Fundam Clin Pharmacol 2005;19:331–339Google Scholar
  2. 2.
    Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol 2000;35:S1–S7PubMedGoogle Scholar
  3. 3.
    Kaye D, Esler M. Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovasc Res 2005;66:256–264PubMedGoogle Scholar
  4. 4.
    Anyukhovsky EP, Sosunov EA, Plotnikov A, Gainullin RZ, Jhang JS, Marboe CC, Rosen MR. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res 2002;54:462–469PubMedGoogle Scholar
  5. 5.
    Hayashi H, Wang C, Miyauchi Y, Omichi C, Pak HN, Zhou S, Ohara T, Mandel WJ, Lin SF, Fishbein MC, Chen PS, Karagueuzian HS. Aging-related increase to inducible atrial fibrillation in the rat model. J Cardiovasc Electrophysiol 2002;13:801–808PubMedGoogle Scholar
  6. 6.
    Gottwald M, Gottwald E, Dhein S. Age-related electrophysiological and histological changes in rabbit hearts: age-related changes in electrophysiology. Int J Cardiol 1997;62:97–106PubMedGoogle Scholar
  7. 7.
    Dhein S, Hammerath SB. Aspects of the intercellular communication in aged hearts: effects of the gap junction uncoupler palmitoleic acid. Naunyn Schmiedebergs Arch Pharmacol 2001;364:397–408PubMedGoogle Scholar
  8. 8.
    Wongcharoen W, Chen YC, Chen YJ, Lin CI, Chen SA. Effects of aging and ouabain on left atrial arrhythmogenicity. J Cardiovasc Electrophysiol 2007 Mar 6Google Scholar
  9. 9.
    Jiang M, Zhang M, Tang DG, Clemo HF, Liu J, Holwitt D, Kasirajan V, Pond AL, Wettwer E, Tseng GN. KCNE2 protein is expressed in ventricles of different species, and changes in its expression contribute to electrical remodeling in diseased hearts. Circulation 2004;109:1783–1788PubMedGoogle Scholar
  10. 10.
    Baba S, Dun W, Hirose M, Boyden PA. Sodium current function in adult and aged canine atrial cells. Am J Physiol Heart Circ Physiol 2006;291:H756–H761PubMedGoogle Scholar
  11. 11.
    Jones SA, Boyett MR, Lancaster MK. Declining into failure: the age-dependent loss of the L-type calcium channel within the sinoatrial node. Circulation 2007;115:1183–1190PubMedGoogle Scholar
  12. 12.
    Schmidlin O, Bharati S, Lev M, Schwartz JB. Effects of physiological aging on cardiac electrophysiology in perfused Fischer 344 rat hearts. Am J Physiol 1992;262:H97–H105PubMedGoogle Scholar
  13. 13.
    Hardouin S, Bourgeois F, Toraasson M, Oubenaissa A, Elalouf JM, Fellmann D, Dakhli T, Swynghedauw B, Moalic JM. Beta-adrenergic and muscarinic receptor mRNA accumulation in the sinoatrial node area of adult and senescent rat hearts. Mech Ageing Dev 1998;100:277–297PubMedGoogle Scholar
  14. 14.
    Montamat SC, Olson RD, Mudumbi RV, Vestal RE. Age-related characterization of atrial adenosine A1 receptor activation: direct effects on chronotropic and inotropic function in the Fischer 344 rat. J Gerontol A Biol Sci Med Sci 1996;51:B239–B246PubMedGoogle Scholar
  15. 15.
    Hinschen AK, Rosemeyer RB, Headrick JP. Age-related changes in A1-adenosine receptor mediated bradycardia. Am J Physiol 2000;278:H789–H795Google Scholar
  16. 16.
    Shiraishi I, Takamatsu T, Minamikawa T, Onouchi Z, Fujita S. Quantitative histological analysis of the human sinoatrial node during growth and aging. Circulation 1992;85:2176–2184PubMedGoogle Scholar
  17. 17.
    Davies MJ, Pomerance A. Quantitative study of ageing changes in the human sinoatrial node and internodal tracts. Br Heart J 1972;34:150–152PubMedGoogle Scholar
  18. 18.
    Kistler PM, Sanders P, Fynn SP, Stevenson IH, Spence SJ, Vohra JK, Sparks PB, Kalman JM. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol 2004;44:109–116PubMedGoogle Scholar
  19. 19.
    Lamas GA, Lee K, Sweeney M, Leon A, Yee R, Ellenbogen K, Greer S, Wilber D, Silverman R, Marinchak R, Bernstein R, Mittleman RS, Lieberman EH, Sullivan C, Zorn L, Flaker G, Schron E, Orav EJ, Goldman L. The mode selection trial (MOST) in sinus node dysfunction:design, rationale, and baseline characteristics of the first 1000 patients. Am Heart J 2000;140:541–551PubMedGoogle Scholar
  20. 20.
    Hadian D, Zipes DP, Olgin JE, Miller JM. Short-term rapid atrial pacing produces electrical remodeling of sinus node function in humans. J Cardiovasc Electrophysiol 2002;13:584–586PubMedGoogle Scholar
  21. 21.
    Haqqani HM, Kalman JM. Aging and sinoatrial node dysfunction: musings on the not-so-funny side. Circulation 2007;115:1178–1179PubMedGoogle Scholar
  22. 22.
    Hocini M, Sanders P, Deisenhofer I, Jais P, Hsu LF, Scavee C, Weerasoriya R, Raybaud F, Macle L, Shah DC, Garrigue S, Le Metayer P, Clementy J, Haissaguerre M. Reverse remodeling of sinus node function after catheter ablation of atrial fibrillation in patients with prolonged sinus pauses. Circulation 2003;108:1172–1175PubMedGoogle Scholar
  23. 23.
    Sparks PB, Jayaprakash S, Vohra JK, Kalman JM. Electrical remodeling of the atria associated with paroxysmal and chronic atrial flutter. Circulation 2000;102:1807–1813PubMedGoogle Scholar
  24. 24.
    Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16: 521–555PubMedGoogle Scholar
  25. 25.
    Jones SA, Lancaster MK, Boyett MR. Ageing-related changes of connexins and conduction within the sinoatrial node. J Physiol 2004;560:429–437PubMedGoogle Scholar
  26. 26.
    Alings AM, Abbas RF, Bouman LN. Age-related changes in structure and relative collagen content of the human and feline sinoatrial node: a comparative study. Eur Heart J 1995;16:1655–1667PubMedGoogle Scholar
  27. 27.
    Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at the microscopic level in human cardiac muscle: evidence for uncoupling of side-to-side fiber connections with increasing age. Circ Res 1986;58:356–371PubMedGoogle Scholar
  28. 28.
    Dun W, Yagi T, Rosen MR, Boyden PA. Calcium and potassium currents in cells from adult and aged canine right atria. Cardiovasc Res 2003;58:526–534PubMedGoogle Scholar
  29. 29.
    Kalusche D, Ott P, Arentz T, Stockinger J, Betz P, Roskamm H. AV nodal re-entry tachycardia in elderly patients: clinical presentation and results of radiofrequency catheter ablation therapy. Coron Artery Dis 1998;9:359–363PubMedGoogle Scholar
  30. 30.
    Haghjoo M, Arya A, Heidari A, Fazelifar AF, Sadr-Ameli MA. Electrophysiologic characteristics and results of radiofrequency catheter ablation in elderly patients with atrioventricular nodal reentrant tachycardia. J Electrocardiol 2007;40:208–213PubMedGoogle Scholar
  31. 31.
    Meiltz A, Zimmermann M. Atrioventricular nodal reentrant tachycardia in the elderly: efficacy and safety of radiofrequency catheter ablation. Pacing Clin Electrophysiol 2007;30:S103–S107Google Scholar
  32. 32.
    Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, Stijnen T, Lip GY, Witteman JC. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 2006;27:949–593PubMedGoogle Scholar
  33. 33.
    Aronow WS. Heart disease and aging. Med Clin North Am 2006;90:849–862PubMedGoogle Scholar
  34. 34.
    Aronow WS. Management of the older person with atrial fibrillation. J Gerontol A Biol Sci Med Sci 2002;57:M352–M363PubMedGoogle Scholar
  35. 35.
    Allessie MA, Boyden PA, Camm AJ, Kleber AG, Lab MJ, Legato MJ, Rosen MR, Schwartz PJ, Spooner PM, Van Wagoner DR, Waldo AL. Pathophysiology and prevention of atrial fibrillation. Circulation 2001;103:769–777PubMedGoogle Scholar
  36. 36.
    Spach MS, Heidlage JF, Dolber PC, Barr RC. Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study. Heart Rhythm 2007;4:175–185PubMedGoogle Scholar
  37. 37.
    Spach MS, Heidlage JF. The stochastic nature of cardiac propagation at a microscopic level Electrical description of myocardial architecture and its application to conduction. Circ Res 1995;76:366–380PubMedGoogle Scholar
  38. 38.
    Pandit SV, Jalife J. Aging and atrial fibrillation research: where we are and where we should go. Heart Rhythm 2007;4:186–187PubMedGoogle Scholar
  39. 39.
    Bhat PK, Watanabe K, Rao DB, Luisada AA. Conduction defects in the aging heart. J Am Geriatr Soc 1974;22:517–520PubMedGoogle Scholar
  40. 40.
    Maguire CT, Bevilacqua LM, Wakimoto H, Gehrmann J, Berul CI. Maturational atrioventricular nodal physiology in the mouse. J Cardiovasc Electrophysiol 2000;11:557–564PubMedGoogle Scholar
  41. 41.
    Kusumoto FM, Lurie KG, Dutton J, Capipili H, Schwartz JB. Effects of aging on AV nodal and ventricular β-adrenergic receptors in the Fischer 344 rat. Am J Physiol 1994;266:H1408–H1415PubMedGoogle Scholar
  42. 42.
    Craft N, Schwartz JB. Effects of age on intrinsic heart rate, heart rate variability, and AV conduction in healthy humans. Am J Physiol 1995;268:H1441–H1452PubMedGoogle Scholar
  43. 43.
    Mymin D, Mathewson FA, Tate RB, Manfreda J. The natural history of first-degree atrioventricular block. N Engl J Med 1986;315:1183–1186PubMedGoogle Scholar
  44. 44.
    Fleg JL, Das DN, Wright J, Lakatta EG. Age-associated changes in the components of atrioventricular conduction in apparently healthy volunteers. J Gerontol 1990;45:M95–M100PubMedGoogle Scholar
  45. 45.
    Kusumoto FM, Phillips R MD, Goldschlager N. Pacing therapy in the elderly. Am J Geriatr Cardiol 2002;11:305–316PubMedGoogle Scholar
  46. 46.
    James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation 1994;90:556–573PubMedGoogle Scholar
  47. 47.
    Titus JL, Edwards JE. Pathology of the aging heart. In: Chesler E, editors. Clinical cardiology in the elderly. 2nd ed. Armonk, NY: Futura Publishing Company, Inc; 1999Google Scholar
  48. 48.
    Lev M. The pathology of complete atrioventricular block. Prog Cardiovasc Dis 1964;6:317–326PubMedGoogle Scholar
  49. 49.
    Lenegre J. Etiology and pathology of bilateral bundle branch block in relation to complete heart block. Prog Cardiovasc Dis 1964;6:409–444PubMedGoogle Scholar
  50. 50.
    Gregoratos G, Abrams J, Epstein AE, Freedman RA, Hayes DL, Hlatky MA, Kerber RE, Naccarelli GV, Schoenfeld MH, Silka MJ, Winters SL. ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice guidelines (ACC/AHA/NASPE committee to update the 1998 pacemaker guidelines). Circulation 2002;106:2145–2161PubMedGoogle Scholar
  51. 51.
    de Bruyne MC, Hoes AW, Kors JA, Hofman A, van Bemmel JH, Grobbee DE. Prolonged QT interval predicts cardiac and all-cause mortality in the elderly. The Rotterdam study. Eur Heart J 1999;20:278–284PubMedGoogle Scholar
  52. 52.
    Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A, Heeringa J, Deckers JW, Kingma JH, Sturkenboom MC, Stricker BH, Witteman JC. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol 2006;47:362–367PubMedGoogle Scholar
  53. 53.
    Tran H, White CM, Chow MS, Kluger J. An evaluation of the impact of gender and age on QT dispersion in healthy subjects. Ann Noninvasive Electrocardiol 2001;6:129–133PubMedGoogle Scholar
  54. 54.
    Zareba W, Moss AJ, Locati EH, Lehmann MH, Peterson DR, Hall WJ, Schwartz PJ, Vincent GM, Priori SG, Benhorin J, Towbin JA, Robinson JL, Andrews ML, Napolitano C, Timothy K, Zhang L, Medina A. International long QT syndrome registry. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol 2003;42:103–109PubMedGoogle Scholar
  55. 55.
    Sauer AJ, Moss AJ, McNitt S, Peterson DR, Zareba W, Robinson JL, Qi M, Goldenberg I, Hobbs JB, Ackerman MJ, Benhorin J, Hall WJ, Kaufman ES, Locati EH, Napolitano C, Priori SG, Schwartz PJ, Towbin JA, Vincent GM, Zhang L. Long QT syndrome in adults. J Am Coll Cardiol 2007;49:329–337PubMedGoogle Scholar
  56. 56.
    Ozawa T, Ito M, Tamaki S, Yao T, Ashihara T, Kita Y, Okamura T, Ueshima H, Horie M. Gender and age effects on ventricular repolarization abnormality in Japanese general carriers of a G643S common single nucleotide polymorphism for the KCNQ1 gene. Circ J 2006;70:645–650PubMedGoogle Scholar
  57. 57.
    Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, Wilde AA, Escande D, Mannens MM, Le Marec H. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet 1999;23:20–21PubMedGoogle Scholar
  58. 58.
    Lenegre J, Moreau PH. Le bloc auriculo-ventriculaire chronique. Etude anatomique, clinique et histologique. Arch Mal Coeur 1963;56:867–888PubMedGoogle Scholar
  59. 59.
    Brink PA, Ferreira A, Moolman JC, Weymar HW, van der Merwe PL, Corfield VA. Gene for progressive familial heart block type I maps to chromosome 19q13. Circulation 1995;91:1633–1640PubMedGoogle Scholar
  60. 60.
    Probst V, Kyndt F, Potet F, Trochu JN, Mialet G, Demolombe S, Schott JJ, Baro I, Escande D, Le Marec H. Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenegre disease. J Am Coll Cardiol 2003;41:643–652PubMedGoogle Scholar
  61. 61.
    Timoteo AT, Oliveira MM, Antunes E, Vieira AP, Feliciano J, Fiarresga AJ, Silva S, Coito S, Quininha J. Tilt test in elderly patients with syncope of unknown etiology: experience with pharmacological stimulation with nitroglycerin. Rev Port Cardiol 2005;24:945–953PubMedGoogle Scholar
  62. 62.
    Han Y, Li XX, Jiang WL, Wang ZD, Chen TZ. Serious response during tilt-table test in elderly and its prophylactic management. J Zhejiang Univ Sci B 2005;6:304–306PubMedGoogle Scholar
  63. 63.
    de Castro RR, de Nobrega AC. Elderly patients with unexplained syncope: what should be considered a positive tilt test response? Auton Neurosci 2006;126–7:169–173Google Scholar
  64. 64.
    Wenger NK, Helmy T, Patel AD, Hanna IR. Approaching cardiac arrhythmias in the elderly patient. MedGenMed 2005;7:24PubMedGoogle Scholar
  65. 65.
    Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, Garrigue S, Kappenberger L, Haywood GA, Santini M, Bailleul C, Daubert JC. Multisite stimulation in cardiomyopathies (MUSTIC) study investigators. Effects of multisite biventri0cular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001;344:873–880PubMedGoogle Scholar
  66. 66.
    Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J. MIRACLE study group. Multicenter InSync randomized clinical evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845–1853PubMedGoogle Scholar
  67. 67.
    Achilli A, Sassara M, Ficili S, Pontillo D, Achilli P, Alessi C, De Spirito S, Guerra R, Patruno N, Serra F. Long-term effectiveness of cardiac resynchronization therapy in patients with refractory heart failure and “narrow” QRS. J Am Coll Cardiol 2003;4 2:2117–2124Google Scholar
  68. 68.
    Auricchio A, Stellbrink C, Butter C, Sack S, Vogt J, Misier AR, Bocker D, Block M, Kirkels JH, Kramer A, Huvelle E. Pacing therapies in congestive heart failure II study group; Guidant heart failure research group. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol 2003;42:2109–2116PubMedGoogle Scholar
  69. 69.
    Leclercq C, Cazeau S, Le Breton H, Ritter P, Mabo P, Gras D, Pavin D, Lazarus A, Daubert JC. Acute hemodynamic effects of biventriucular DDD pacing in patients with end-stage heart failure. J Am Coll Card 1998;32:1825–1831Google Scholar
  70. 70.
    Auricchio A, Stellbrink C, Sack S, Block M, Vogt J, Bakker P, Mortensen P, Klein H. The pacing therapies for congestive heart failure (PATH-CHF) study: rationale, design, and endpoints of a prospective randomized multicenter study. Am J Cardiol 1999;83:130D–135DPubMedGoogle Scholar
  71. 71.
    Saxon LA, Boehmer JP, Hummel J, Kacet S, De Marco T, Naccarelli G, Daoud E. Biventricular pacing in patients with congestive heart failure: two prospective randomized trials. The VIGOR CHF and VENTAK CHF investigators. Am J Cardio 1999;83:120D–123DGoogle Scholar
  72. 72.
    Riviera DA, Bristow MR. Cardiac resynchronization – a heart failure perspective. Ann Noninvasive Electrocardiol 2005;10:16–23Google Scholar
  73. 73.
    Fitzpatrick AP, Kourouyan HD, Siu A, Lee RJ, Lesh MD, Epstein LM, Griffin JC, Scheinman MM. Quality of life scores and outcomes after radiofrequency. His bundle catheter ablation and permanent pacemaker implantation. Am Heart J 1996;131:499–507PubMedGoogle Scholar
  74. 74.
    Wood MA, Brown-Mahoney C, Kay GN, Ellenbogen KA. Clinical outcomes after ablation and pacing therapy for atrial fibrillation. A meta-analysis. Circulation 2000;101:1138–1144PubMedGoogle Scholar
  75. 75.
    Delfaut P, Saksena S, Prakash A, Krol RB. Long-term outcome of patients with drug-refractory atrial flutter and fibrillation after single- and dual-site atrial pacing for arrhythmia prevention. J Am Coll Card 1998;32: 1900–1908Google Scholar
  76. 76.
    Pigozzi F, Alabiso A, Parisi A, Di Salvo V, Di Luigi L, Iellamo F. Vigorous exercise training is not associated with prevalence of ventricular arrhythmias in elderly athletes. J Sports Med Phys Fitness 2004;44:92–97PubMedGoogle Scholar
  77. 77.
    Mercando AD, Aronow WS, Epstein S, Fishbach M. Signal-averaged electrocardiography and ventricular tachycardia as predictors of mortality after acute myocardial infarction in elderly patients. Am J Cardiol 1995;76: 436–440PubMedGoogle Scholar
  78. 78.
    Aronow WS, Ahn C, Mercando AD, Epstein S, Kronzon I. Prevalence and association of ventricular tachycardia and complex ventricular arrhythmias with new coronary events in older men and women with and without cardiovascular disease. J Gerontol A Biol Sci Med Sci 2002;57:M178–M180PubMedGoogle Scholar
  79. 79.
    Lampert R, McPherson CA, Clancy JF, Caulin-Glaser TL, Rosenfeld LE, Batsford WP. Gender differences in ventricular arrhythmia recurrence in patients with coronary artery disease and implantable cardioverter-defibrillators. J Am Coll Cardiol 2004;43:2293–2299PubMedGoogle Scholar
  80. 80.
    Raitt MH, Klein RC, Wyse DG, Wilkoff BL, Beckman K, Epstein AE, Coromilas J, Friedman PL, Martins J, Ledingham RB, Greene HL. Antiarrhythmics versus implantable defibrillators investigators. Comparison of arrhythmia recurrence in patients presenting with ventricular fibrillation versus ventricular tachycardia in the antiarrhythmics versus implantable defibrillators (AVID) trial. Am J Cardiol 2003;91:812–816PubMedGoogle Scholar
  81. 81.
    Daubert JP, Zareba W, Hall WJ, Schuger C, Corsello A, Leon AR, Andrews ML, McNitt S, Huang DT, Moss AJ. MADIT II study investigators. Predictive value of ventricular arrhythmia inducibility for subsequent ventricular tachycardia or ventricular fibrillation in multicenter automatic defibrillator implantation trial (MADIT) II patients. J Am Coll Cardiol 2006;47:98–107PubMedGoogle Scholar
  82. 82.
    Garcia-Quintana A, Ortega-Trujillo JR, Medina Fernandez-Aceytuno A. Arrhythmogenic right ventricular dysplasia in the elderly. Rev Esp Cardiol 2007;60:87–89PubMedGoogle Scholar
  83. 83.
    Elshove-Bolk J, Guttermsen AB, Austlid I. In-hospital resuscitation of the elderly; characterics and outcome. Resuscitation 2007;74:372–376PubMedGoogle Scholar
  84. 84.
    Liu SJ, Wyeth RP, Melchert RB, Kennedy RH. Aging-associated changes in whole cell K+ and L-type Ca2 +currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2000;279:H889–H900PubMedGoogle Scholar
  85. 85.
    Zhou YY, Lakatta EG, Xiao RP. Age-associated alterations in calcium current and its modulation in cardiac myocytes. Drugs Aging 1998;13:159–171PubMedGoogle Scholar
  86. 86.
    Jovanovic S, Jovanovic A. Sarcolemmal K(ATP) channels in ageing. Ageing Res Rev 2004;3:199–214PubMedGoogle Scholar
  87. 87.
    Alekseev AE, Hodgson DM, Karger AB, Park S, Zingman LV, Terzic A. ATP-sensitive K+ channel/enzyme multimer: metabolic gating in the heart. J Mol Cell Cardiol 2005;38:895–905PubMedGoogle Scholar
  88. 88.
    Jovanovic A. Ageing, gender and cardiac sarcolemmal K(ATP) channels. J Pharm Pharmacol 2006;58:1585–1589PubMedGoogle Scholar
  89. 89.
    Ranki HJ, Crawford RM, Budas GR, Jovanovic A. Ageing is associated with a decrease in the number of sarcolemmal ATP-sensitive K+ channels in a gender-dependent manner. Mech Ageing Dev 2002;123:695–705PubMedGoogle Scholar
  90. 90.
    Senti M, Fernandez-Fernandez JM, Tomas M, Vazquez E, Elosua R, Marrugat J, Valverde MA. Protective effect of the KCNMB1 E65K genetic polymorphism against diastolic hypertension in aging women and its relevance to cardiovascular risk. Circ Res 2005;97:1360–1365PubMedGoogle Scholar
  91. 91.
    Josephson IR, Guia A, Stern MD, Lakatta EG. Alterations in properties of L-type Ca2 + channels in aging rat heart. J Mol Cell Cardiol 2002;34:297–308PubMedGoogle Scholar
  92. 92.
    Ocorr K, Akasaka T, Bodmer R. Age-related cardiac disease model of Drosophila. Mech Ageing Dev 2007;128:112–116PubMedGoogle Scholar
  93. 93.
    Ocorr K, Reeves NL, Wessells RJ, Fink M, Chen HS, Akasaka T, Yasuda S, Metzger JM, Giles W, Posakony JW, Bodmer R. KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci USA 2007;104:3943–3948PubMedGoogle Scholar
  94. 94.
    Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 2005;66:222–232PubMedGoogle Scholar
  95. 95.
    Lee TM, Su SF, Chou TF, Lee YT, Tsai CH. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 2002;105: 334–340PubMedGoogle Scholar
  96. 96.
    Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A. Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev 2001;122:1073–1086PubMedGoogle Scholar
  97. 97.
    Pepe S. Mitochondrial function in ischaemia and reperfusion of the ageing heart. Clin Exp Pharmacol Physiol 2000;27:745–750PubMedGoogle Scholar
  98. 98.
    Schulman D, Latchman DS, Yellon DM. Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol 2001;281: H1630–H1636Google Scholar
  99. 99.
    Wang Y, Haider HK, Ahmad N, Ashraf M. Mechanisms by which K(ATP) channel openers produce acute and delayed cardioprotection. Vascul Pharmacol 2005;42:253–264PubMedGoogle Scholar
  100. 100.
    O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology 2005;20:303–315PubMedGoogle Scholar
  101. 101.
    Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 1999;79:1127–1155PubMedGoogle Scholar
  102. 102.
    Carafoli E. Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci 2003;28:175–181PubMedGoogle Scholar
  103. 103.
    Saris N-EL, Carafoli E. A historical review of cellular calcium handling, with emphasisi on mitochondria. Biochem (Mosc) 2005;70:231–239Google Scholar
  104. 104.
    Panfili E, Sandri G, Sottocasa GL, Lunazzi G, Liut G, Graziosi G. Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+-binding glycoprotein. Nature 1976;264:185–186PubMedGoogle Scholar
  105. 105.
    Mironova GD, Sirota TV, Pronevich LA, Trofimenko NV, Mironov GP, Grigorjev PA, Kondrashova MN. Isolation and properties of Ca2 +-transporting glycoprotein and peptide from beef heart mitochondria. J Bioenerg Biomembr 1982;14:213–225PubMedGoogle Scholar
  106. 106.
    Zazueta C, Zafra G, Vera G, Sanchez C, Chavez E. Advances in the purification of the mitochondrial Ca2 + uniporter using the labeled inhibitor103Ru360. J Bioenerg Biomembr 1998;30:489–498PubMedGoogle Scholar
  107. 107.
    Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004;427:360–364PubMedGoogle Scholar
  108. 108.
    Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 2000;28:285–296PubMedGoogle Scholar
  109. 109.
    Trollinger DR, Cascio WE, Lemasters JJ. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca2 +-indicating fluorophores. Biophys J 2000;79:39–50PubMedGoogle Scholar
  110. 110.
    Chacon E, Ohata H, Harper IS, Trollinger DR, Herman B, Lemasters JJ. Mitochondrial free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Lett 1996;382:31–36PubMedGoogle Scholar
  111. 111.
    Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T. In vivo monitoring of Ca2 + uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 2004;166:527–536PubMedGoogle Scholar
  112. 112.
    Hansford RG, Zorov D. Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 1998;184:359–369PubMedGoogle Scholar
  113. 113.
    Das AM, Harris DA. Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovasc Res 1990;24:411–417PubMedGoogle Scholar
  114. 114.
    Shannon TR, Bers DM. Integrated Ca management in cardiac myocytes. Ann NY Acad Sci 2004;1025:28–38Google Scholar
  115. 115.
    Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG. Measurement of mitochondrial free Ca2 + concentration in living single rat cardiac myocytes. Am J Physiol 1991;261:H1123–3H1124PubMedGoogle Scholar
  116. 116.
    Isenberg G, Han S, Schiefer A, Wendt-Gallitelli MF. Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res 1993;27:1800–1809PubMedGoogle Scholar
  117. 117.
    Wang GJ, Thayer SA. NMDA-induced calcium loads recycle across the mitochondrial inner membrane of hippocampal neurons in culture. J Neurophysiol 2002;87:740–749PubMedGoogle Scholar
  118. 118.
    Cheranov SY, Jaggar JH. Mitochondrial modulation of Ca2 + sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 2004;556:755–771PubMedGoogle Scholar
  119. 119.
    Satrustegui J, Villalba M, Pereira R, Bogonez E, Martinez-Serrano A. Cytosolic and mitochondrial calcium in synaptosomes during aging. Life Sci 1996;59:429–434PubMedGoogle Scholar
  120. 120.
    Xiong J, Verkhratsky A, Toescu EC. Changes in mitochondrial status associated with altered Ca2 + homeostasis in aged cerebellar granule neurons in brain slices. J Neurosci 2002;22:10761–10771PubMedGoogle Scholar
  121. 121.
    Murchison D, Zawieja DC, Griffith WH. Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium 2004;36:61–67PubMedGoogle Scholar
  122. 122.
    Vitorica J, Satrustegui J. Involvement of mitochondria in the age-dependent decrease in calcium uptake of rat brain synaptosomes. Brain Res 1986;378:36–48PubMedGoogle Scholar
  123. 123.
    Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell 2004;3:35–40PubMedGoogle Scholar
  124. 124.
    Sugrue MM, Wang Y, Rideout HJ, Chalmers-Redman RM, Tatton WG. Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem Biophys Res Commun 1999;261:123–130PubMedGoogle Scholar
  125. 125.
    Mather MW, Rottenberg H. The inhibition of calcium signaling in T lymphocytes from old mice results from enhanced activation of the mitochondrial permeability transition pore. Mech Ageing Dev 2002;123:707–724PubMedGoogle Scholar
  126. 126.
    Kamo N, Muratsugu M, Hongoh R, Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 1979;49:105–121PubMedGoogle Scholar
  127. 127.
    Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/–) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 2001;98:2278–2283PubMedGoogle Scholar
  128. 128.
    Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA 1997;94:3064–3069PubMedGoogle Scholar
  129. 129.
    Goodell S, Cortopassi G. Analysis of oxygen consumption and mitochondrial permeability with age in mice. Mech Ageing Dev 1998;101:245–256PubMedGoogle Scholar
  130. 130.
    Rottenberg H, Wu S. Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition. Biochem Biophys Res Commun 1997;240:68–74PubMedGoogle Scholar
  131. 131.
    Mather M, Rottenberg H. Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun 2000;273:603–608PubMedGoogle Scholar
  132. 132.
    Canzoniero LM, Rossi A, Taglialatela M, Amoroso S, Annunziato L, Di Renzo G. The Na+-Ca2 + exchanger activity in cerebrocortical nerve endings is reduc in old compared to young and mature rats when it operates as a Ca2 + influx or efflux pathway. Biochim Biophysi Acta 1992;1107:175–178Google Scholar
  133. 133.
    Martinez-Serrano A, Blanco P, Satrustegui J. Calcium binding to the cytosol and calcium extrusion mechanisms in intact synaptosomes and their alterations with aging. J Biol Chem 1992;267:4672–4679PubMedGoogle Scholar
  134. 134.
    Koban MU, Moorman AF, Holtz J, Yacoub MH, Boheler KR. Expressional analysis of the cardiac Na-Ca exchanger in rat development and senescence. Cardiovasc Res 1998;37:405–423PubMedGoogle Scholar
  135. 135.
    Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol 2003;284:R474–R480Google Scholar
  136. 136.
    Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005;102:5618–5623PubMedGoogle Scholar
  137. 137.
    Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994;19:10771–10778Google Scholar
  138. 138.
    Drew B, Leeuwenburgh C. Method for measuring ATP production in isolated mitochondria: ATP production in brain and liver mitochondria of Fischer-344 rats with age and caloric restriction. Am J Physiol Regul Integr Comp Physiol 2003;285:R1259–R1267PubMedGoogle Scholar
  139. 139.
    Kwong LK, Sohal RS. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 2000;373:16–22PubMedGoogle Scholar
  140. 140.
    Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 2005;57:695–703PubMedGoogle Scholar
  141. 141.
    Moreau R, Heath SH, Doneanu CE, Harris RA, Hagen TM. Age-related compensatory activation of pyruvate dehydrogenase complex in rat heart. Biochem Biophys Res Commun 2004;325:48–58PubMedGoogle Scholar
  142. 142.
    Piec I, Listrat A, Alliot J, Chambon C, Taylor RG, Bechet D. Differential proteome analysis of aging in rat skeletal muscle. FASEB J 2005;19:1143–1145PubMedGoogle Scholar
  143. 143.
    Kumaran S, Subathra M, Balu M, Panneerselvam C. Supplementation of L-carnitine improves mitochondrial enzymes in heart and skeletal muscle of aged rats. Exp Aging Res 2005;31:55–67PubMedGoogle Scholar
  144. 144.
    Lai JC, Leung TK, Lim L. Activities of the mitochondrial NAD-linked isocitric dehydrogenase in different regions of the rat brain: changes in ageing and the effect of chronic manganese chloride administration. Gerontology 1982;28:81–85PubMedGoogle Scholar
  145. 145.
    Vitorica J, Cano J, Satrustegui J, Machado A. Comparison between develop-mental and senescent changes in enzyme activities linked to energy metabolism in rat heart. Mech Ageing Dev 1981;16:105–116PubMedGoogle Scholar
  146. 146.
    Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 1991;352:244–247PubMedGoogle Scholar
  147. 147.
    Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD. Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 1992;267:26062–26069PubMedGoogle Scholar
  148. 148.
    Zhang DX, Chen YF, Campbell WB, Zou AP, Gross GJ, Li PL. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP- sensitive potassium channels. Circ Res 2001;89:1177–1183PubMedGoogle Scholar
  149. 149.
    Mironova GD, Negoda AE, Marinov BS, Paucek P, Costa AD, Grigoriev SM, Skarga YY, Garlid KD. Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J Biol Chem 2004;279:32562–32568PubMedGoogle Scholar
  150. 150.
    Ardehali H, O’Rourke B. Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol 2005;39:7–16PubMedGoogle Scholar
  151. 151.
    Yarov-Yarovoy V, Paucek P, Jaburek M, Garlid KD. The nucleotide regulatory sites on the mitochondrial KATP channel face the cytosol. Biochim Biophys Acta 1997;1321:128–136PubMedGoogle Scholar
  152. 152.
    Debska G, Kicinska A, Skalska J, Szewczyk A. Intracellular potassium and chloride channels: an update. Acta Biochim Pol 2001;48:137–144PubMedGoogle Scholar
  153. 153.
    Singh H, Hudman D, Lawrence CL, Rainbow RD, Lodwick D, Norman RI. Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol 2003;35:445–459PubMedGoogle Scholar
  154. 154.
    Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW. Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res 2003;994:27–36PubMedGoogle Scholar
  155. 155.
    Garg V, Hu K. Protein kinase c isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Physiol Heart Circ Physiol 2006;293:H322–H332Google Scholar
  156. 156.
    Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection. Biochim Biophys Acta 2003;1606:1–21PubMedGoogle Scholar
  157. 157.
    Otani H. Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal 2004;6:449–469PubMedGoogle Scholar
  158. 158.
    Garlid KD, Paucek P. Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta 2003;1606: 23–41PubMedGoogle Scholar
  159. 159.
    Oldenburg O, Cohen MV, Yellon DM, Downey JM. Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 2002;55:429–437PubMedGoogle Scholar
  160. 160.
    Wang Y, Haider HK, Ahmad N, Ashraf M. Mechanisms by which K(ATP) channel openers produce acute and delayed cardioprotection. Vascul Pharmacol 2005;42:253–264PubMedGoogle Scholar
  161. 161.
    Rousou AJ, Ericsson M, Federman M, Levitsky S, McCully JD. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol 2004;287:H1967–H1976Google Scholar
  162. 162.
    Costa AD, Quinlan CL, Andrukhiv A, West IC, Jaburek M, Garlid KD. The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol 2006;290:H406–H415Google Scholar
  163. 163.
    Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD. Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Am J Physiol 2001;280:H649–H657Google Scholar
  164. 164.
    Liu Y, Sato T, Seharaseyon J, Szewczyk A, O’Rourke B, Marban E. Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann NY Acad Sci 1999;874:27–37PubMedGoogle Scholar
  165. 165.
    Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent Ca2 + overload in rat cardiac mitochondria. J Physiol 1999;519:347–360PubMedGoogle Scholar
  166. 166.
    Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 1998;275:H1567–H1576PubMedGoogle Scholar
  167. 167.
    Szewczyk A, Wojcik G, Nalecz MJ. Potassium channel opener, RP 66471, induces membrane depolarization of rat liver mitochondria. Biochem Biophys Res Commun 1995;207:126–132PubMedGoogle Scholar
  168. 168.
    Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD. Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 2002;283:H284–H295PubMedGoogle Scholar
  169. 169.
    Fenton RA, Dickson EW, Meyer TE, Dobson JG Jr. Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J Mol Cell Cardiol 2000;32:1371–1375PubMedGoogle Scholar
  170. 170.
    Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD. Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med 1994;124:843–851PubMedGoogle Scholar
  171. 171.
    Przyklenk K, Li G, Simkhovich BZ, Kloner RA. Mechanisms of myocardial ischemic preconditioning are age related: PKC-epsilon does not play a requisite role in old rabbits. J Appl Physiol 2003;95:2563–2569PubMedGoogle Scholar
  172. 172.
    Riess ML, Camara AK, Rhodes SS, McCormick J, Jiang MT, Stowe DF. Increasing heart size and age attenuate anesthetic preconditioning in guinea pig isolated hearts. Anesth Analg 2005;101:1572–1576PubMedGoogle Scholar
  173. 173.
    Sniecinski R, Liu H. Reduced efficacy of volatile anesthetic preconditioning with advanced age in isolated rat myocardium. Anesthesiology 2004;100:589–597PubMedGoogle Scholar
  174. 174.
    Tani M, Honma Y, Hasegawa H, Tamaki K. Direct activation of mitochondrial K(ATP) channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovasc Res 2001;49: 56–68PubMedGoogle Scholar
  175. 175.
    Schulman D, Latchman DS, Yellon DM. Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol 2001;281:H1630–H1636Google Scholar
  176. 176.
    Lee TM, Su SF, Chou TF, Lee YT, Tsai CH. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 2002;105: 334–340PubMedGoogle Scholar
  177. 177.
    Longobardi G, Abete P, Ferrara N, Papa A, Rosiello R, Furgi G, Calabrese C, Cacciatore F, Rengo F. “Warm-up” phenomenon in adult and elderly patients with coronary artery disease: further evidence of the loss of “ischemic preconditioning” in the aging heart. J Gerontol A Biol Sci Med Sci 2000;55:M124–M129PubMedGoogle Scholar
  178. 178.
    Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C, Cacciatore F, Longobardi G, Rengo F. Preconditioning does not prevent postischemic dysfunction in aging heart. J Am Coll Cardiol 1996;27:1777–1786PubMedGoogle Scholar
  179. 179.
    McCully JD, Levitsky S. The mitochondrial K(ATP) channel and cardioprotection. Ann Thorac Surg 2003;75:S667–S673PubMedGoogle Scholar
  180. 180.
    McCully JD, Toyoda Y, Wakiyama H, Rousou AJ, Parker RA, Levitsky S. Age- and gender-related differences in ischemia/reperfusion injury and cardioprotection: effects of diazoxide. Ann Thorac Surg 2006;82:117–123PubMedGoogle Scholar
  181. 181.
    Tricarico D, Camerino DC. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties. Mol Pharmacol 1994;46:754–761PubMedGoogle Scholar
  182. 182.
    Krenz M, Oldenburg O, Wimpee H, Cohen MV, Garlid KD, Critz SD, Downey JM, Benoit JN. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 2002;97:365–373PubMedGoogle Scholar
  183. 183.
    Oldenburg O, Yang XM, Krieg T, Garlid KD, Cohen MV, Grover GJ, Downey JM. P1075 opens mitochondrial KATP channels and generates reactive oxygen species resulting in cardioprotection of rabbit hearts. J Mol Cell Cardiol 2003;35:1035–1042PubMedGoogle Scholar
  184. 184.
    Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 2000;87: 460–466PubMedGoogle Scholar
  185. 185.
    Carroll R, Gant VA, Yellon DM. Mitochondrial K-ATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 2001;51:691–700PubMedGoogle Scholar
  186. 186.
    McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006;8:1775–1789PubMedGoogle Scholar
  187. 187.
    McCubrey JA, Franklin RA. Reactive oxygen intermediates and signaling through kinase pathways. Antioxid Redox Signal 2006:1745–1748Google Scholar
  188. 188.
    Lahair MM, Howe CJ, Rodriguez-Mora O, McCubrey JA, Franklin RA. Molecular pathways leading to oxidative stress-induced phosphorylation of Akt. Antioxid Redox Signal 2006;8:1749–1756PubMedGoogle Scholar
  189. 189.
    Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341: 233–249PubMedGoogle Scholar
  190. 190.
    Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003;93:292–301PubMedGoogle Scholar
  191. 191.
    Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion – a target for cardioprotection. Cardiovasc Res 2004;61:372–385PubMedGoogle Scholar
  192. 192.
    Ichas F, Jouaville LS, Sidash SS, Mazat JP, Holmuhamedov EL. Mitochondrial calcium spiking: a transduction mechanism based on calcium-induced permeability transition involved in cell calcium signaling. FEBS Lett 1994;348:211–215PubMedGoogle Scholar
  193. 193.
    Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J 2006;20:791–793PubMedGoogle Scholar
  194. 194.
    Dirks A, Leeuwenburgh C. Apoptosis in skeletal muscle with aging. Am J Physiol 2002;282:R519–R527Google Scholar
  195. 195.
    Lucas DT, Szweda LI. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA 1998;95:510–514PubMedGoogle Scholar
  196. 196.
    Sohal RS, Arnold LA, Sohal BH. Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special referenceto parameters in two insect species. Free Radic Biol Med 1990;9:495–500PubMedGoogle Scholar
  197. 197.
    Yan LJ, Sohal RS. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 1998;95:12896–12901PubMedGoogle Scholar
  198. 198.
    Nohl H, Kramer R. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech Ageing Dev 1980;4:137–144Google Scholar
  199. 199.
    Hashimoto M, Majima E, Goto S, Shinohara Y, Terada H. Fluctuation of the first loop facing the matrix of the mitochondrial ADP/ATP carrier deduced from intermolecular cross linking of Cys56 residues by bifunctional dimaleimides. Biochemistry 1999;38:1050–1056PubMedGoogle Scholar
  200. 200.
    Yokozawa T, Satoh A, Cho EJ. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 2004;56:107–113PubMedGoogle Scholar
  201. 201.
    Zhu Y, Carvey PM, Ling Z. Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res 2006;1090:35–44PubMedGoogle Scholar
  202. 202.
    Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 2005;19:419–421PubMedGoogle Scholar
  203. 203.
    Suh JH, Heath SH, Hagen TM. Two subpopulations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radic Biol Med 2003;35:1064–1072PubMedGoogle Scholar
  204. 204.
    Mo JQ, Hom DG, Andersen JK. Decreases in protective enzymes correlates with increased oxidative damage in the aging mouse brain. Mech Ageing Dev 1995;81:73–82PubMedGoogle Scholar
  205. 205.
    Chen JJ, Bertrand H, Yu BP. Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic Biol Med 1995;19:583–590PubMedGoogle Scholar
  206. 206.
    Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Exper Gerontol 2005;40:751–758Google Scholar
  207. 207.
    Kristal BS, Park BK, Yu BP. 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem 1996;271:6033–6038PubMedGoogle Scholar
  208. 208.
    Hansford RG, Castro F. Effect of senescence on Ca-ion transport by heart mitochondria. Mech Ageing Dev 1982;19:5–13PubMedGoogle Scholar
  209. 209.
    Shoshan-Barmatz V, Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 2003;39:279–292PubMedGoogle Scholar
  210. 210.
    Vyssokikh M, Brdiczka D. The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Bochimica Polonica 2003;50:389–404Google Scholar
  211. 211.
    Hajnoczky G, Csordas G, Yi M. Old players in a new role: mitochondria- associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 2002;32:363–377PubMedGoogle Scholar
  212. 212.
    Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS. The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 2006;12:2249–2270PubMedGoogle Scholar
  213. 213.
    Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 2005;12:751–760PubMedGoogle Scholar
  214. 214.
    Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 2003;301:513–517PubMedGoogle Scholar
  215. 215.
    Beckman JS, Koppenol WH. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 1996;9:836–844PubMedGoogle Scholar
  216. 216.
    Kanski J, Behring A, Pelling J, Schoneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol 2005;288:H371–H381Google Scholar
  217. 217.
    Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 2003;278:33972–33977PubMedGoogle Scholar
  218. 218.
    Madesh M, Hajnoczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 2001;155:1003–1015PubMedGoogle Scholar
  219. 219.
    Kanski J, Schoneich C. Protein nitration in biological aging: proteomic and tandem mass spectrometric characterization of nitrated sites. Methods Enzymol 2005;396:160–171PubMedGoogle Scholar
  220. 220.
    Pastoris O, Boschi F, Verri M, Baiardi P, Felzani G, Vecchiet J, Dossena M, Catapano M. The effects of aging on enzyme activities and metabolite concentrations in skeletal muscle from sedentary male and female subjects. Exp Gerontol 2000;35:95–104PubMedGoogle Scholar
  221. 221.
    Nehal M, Azam M, Baquer NZ. Changes in the levels of catecholamines, hexokinase and glucose 6-phosphate dehydrogenase in red cell aging. Biochem Int 1990;22:517–522PubMedGoogle Scholar
  222. 222.
    Moorthy K, Yadav UC, Siddiqui MR, Sharma D, Basir SF, Baquer NZ. Effect of estradiol and progesterone treatment on carbohydrate metabolizing enzymes in tissues of aging female rats. Biogerontology 2004;5:249–259PubMedGoogle Scholar
  223. 223.
    Nohl H, Kramer R. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech Ageing Dev 1980;4:137–144Google Scholar
  224. 224.
    Roepke TK, Abbott GW. Pharmacogenetics and cardiac ion channels. Vascul Pharmacol 2006;44:90–106PubMedGoogle Scholar
  225. 225.
    Simard C, Drolet B, Yang P, Kim RB, Roden DM. Polymorphism screening in the cardiac K+ channel gene KCNA5. Clin Pharmacol Ther 2005;77:138–144PubMedGoogle Scholar
  226. 226.
    Brendel J, Peukert S. Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Curr Med Chem Cardiovasc Hematol Agents 2003;1:273–287PubMedGoogle Scholar
  227. 227.
    Johnson JA, Cavallari LH. Cardiovascular pharmacogenomics. Exp Physiol 2005;90:283–289PubMedGoogle Scholar
  228. 228.
    Johnson JA. Drug target pharmacogenomics: an overview. Am J Pharmacogenomics 2001;1:271–281PubMedGoogle Scholar
  229. 229.
    Mahlknecht U, Voelter-Mahlknecht S. Pharmacogenomics: questions and concerns. Curr Med Res Opin 2005;21:1041–1047PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Marín-García
    • 1
  • Michael J. Goldenthal
    • 2
  • Gordon W. Moe
    • 3
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  2. 2.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  3. 3.University of TorontoTorontoCanada

Personalised recommendations