Skip to main content

Post-Genomic View of Aging: Definitions, Theories and Observations

  • Chapter
Aging and the Heart

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luciani F, Valensin S, Vescovini R, Sansoni P, Fagnoni F, Franceschi C, Bonafe M, Turchetti G. A stochastic model for CD8(+)T cell dynamics in human immunosenescence: implications for survival and longevity. J Theor Biol 2001;213:587–597

    PubMed  CAS  Google Scholar 

  2. De Benedictis G, Tan Q, Jeune B, Christensen K, Ukraintseva SV, Bonafe M, Franceschi C, Vaupel JW, Yashin AI. Recent advances in human gene-longevity association studies. Mech Ageing Dev 2001;122:909–920

    PubMed  Google Scholar 

  3. Vaupel JW, Carey JR, Christensen K, Johnson TE, Yashin AI, Holm NV, Iachine IA, Kannisto V, Khazaeli AA, Liedo P, Longo VD, Zeng Y, Manton KG, Curtsinger JW. Biodemographic trajectories of longevity. Science 1998;280:855–860

    PubMed  CAS  Google Scholar 

  4. Perls TT, Bubrick E, Wager CG, Vijg J, Kruglyak L. Siblings of centenarians live longer. Lancet 1998;351:1560

    PubMed  CAS  Google Scholar 

  5. Gudmundsson H, Gudbjartsson DF, Frigge M, Gulcher JR, Stefansson K. Inheritance of human longevity in Iceland. Eur J Hum Genet 2000;8:743–749

    PubMed  CAS  Google Scholar 

  6. Carmelli, D. Intrapair comparisons of total life span in twins and pairs of sibs. Hum Biol 1982;54:525–537

    PubMed  CAS  Google Scholar 

  7. Yashin AI, Iachine IA, Harris JR. Half of the variation in susceptibility to mortality is genetic: findings from Swedish twin survival data. Behav Genet 1999;29:11–19

    PubMed  CAS  Google Scholar 

  8. Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunkel L, Puca A. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 2002;99:8442–8447

    PubMed  CAS  Google Scholar 

  9. Candore G, Aquino A, Balistreri CR, Bulati M, Di Carlo D, Grimaldi MP, Listi F, Orlando V, Vasto S, Caruso M, Colonna-Romano G, Lio D, Caruso C. Inflammation, longevity, and cardiovascular diseases: role of polymorphisms of TLR4. Ann N Y Acad Sci 2006;1067:282–287

    PubMed  CAS  Google Scholar 

  10. Gerdes LU, Jeune B, Ranberg KA, Nybo H, Vaupel JW. Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a “frailty gene,” not a “longevity gene”. Genet Epidemiol 2000;19:202–210

    PubMed  CAS  Google Scholar 

  11. Kervinen K, Savolainen MJ, Salokannel J, Hynninen A, Heikkinen J, Ehnholm C, Koistinen MJ, Kesaniemi YA. Apolipoprotein E and B polymorphisms – longevity factors assessed in nonagenarians. Atherosclerosis 1994;105:89–95

    PubMed  CAS  Google Scholar 

  12. Louhija J, Miettinen HE, Kontula K, Tikkanen MJ, Miettinen TA, Tilvis RS. Aging and genetic variation of plasma apolipoproteins: Relative loss of the apolipoprotein E4 phenotype in centenarians. Arterioscler Thromb. 1994;14:1084–1089

    PubMed  CAS  Google Scholar 

  13. Schachter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D. Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 1994;6:29–32

    PubMed  CAS  Google Scholar 

  14. Jian-Gang Z, Yong-Xing M, Chuan-Fu W, Pei-Fang L, Song-Bai Z, Nui-Fan G, Guo-Yin F, Lin H. Apolipoprotein E and longevity among Han Chinese population. Mech Ageing Dev 1998;104:159–167

    PubMed  CAS  Google Scholar 

  15. De Benedictis G, Falcone E, Rose G, Ruffolo R, Spadafora P, Baggio G, Bertolini S, Mari D, Mattace R, Monti D, Morellini M, Sansoni P, Franceschi C. DNA multiallelic systems reveal gene/longevity associations not detected by diallelic systems. The APOB locus. Hum Genet 1997;99:312–318

    PubMed  Google Scholar 

  16. De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Yashin AI, Bonafe M, Franceschi C. Age-related changes of the 3’APOB-VNTR genotype pool in ageing cohorts. Ann Hum Genet 1998; 62:115–122

    PubMed  Google Scholar 

  17. Faure-Delanef L, Baudin B, Beneteau-Burnat B, Beaudoin JC, Giboudeau J, Cohen D. Plasma concentration, kinetic constants, and gene polymorphism of angiotensin I-converting enzyme in centenarians. Clin Chem 1998;44:2083–2087

    PubMed  CAS  Google Scholar 

  18. Mari D, Mannucci PM, Duca F, Bertolini S, Franceschi C. Mutant factor V (Arg506Gln) in healthy centenarians. Lancet 1996;347:1044

    PubMed  CAS  Google Scholar 

  19. Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K. Mitochondrial genotype associated with longevity. Lancet 1998;351:185–186

    PubMed  CAS  Google Scholar 

  20. Takagi K, Yamada Y, Gong JS, Sone T, Yokota M, Tanaka M. Association of a 5178C→A (Leu237Met) polymorphism in the mitochondrial DNA with a low prevalence of myocardial infarction in Japanese individuals. Atherosclerosis 2004;175:281–286

    PubMed  CAS  Google Scholar 

  21. Matsunaga H, Tanaka Y, Tanaka M, Gong JS, Zhang J, Nomiyama T, Ogawa O, Ogihara T, Yamada Y, Yagi K, Kawamori R. Antiatherogenic mitochondrial genotype in patients with type 2 diabetes. Diabetes Care 2001;24:500–503

    PubMed  CAS  Google Scholar 

  22. De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G, Bonafe M, Monti D, Baggio G, Bertolini S, Mari D, Mattace R, Franceschi C. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 1999;13:1532–1536

    PubMed  Google Scholar 

  23. Rose G, Passarino G, Carrieri G, Altomare K, Greco V, Bertolini S, Bonafe M, Franceschi C, De Benedictis G. Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. Eur J Hum Genet 2001;9:701–707

    PubMed  CAS  Google Scholar 

  24. Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafe M, Olivieri F, Passarino G, De Benedictis G, Franceschi C, Attardi G. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci USA 2003;100:1116–1121

    PubMed  CAS  Google Scholar 

  25. Niemi AK, Moilanen JS, Tanaka M, Hervonen A, Hurme M, Lehtimaki T, Arai Y, Hirose N, Majamaa K. A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects. Eur J Hum Genet 2005;13:166–170

    PubMed  CAS  Google Scholar 

  26. van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RG. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 2005;4:79–85

    PubMed  Google Scholar 

  27. Santoro A, Salvioli S, Raule N, Capri M, Sevini F, Valensin S, Monti D, Bellizzi D, Passarino G, Rose G, De Benedictis G, Franceschi C. Mitochondrial DNA involvement in human longevity. Biochim Biophys Acta 2006;1757:1388–1399

    PubMed  CAS  Google Scholar 

  28. Heijmans BT, Westendorp RG, Knook DL, Kluft C, Slagboom PE. Angiotensin I-converting enzyme and plasminogen activator inhibitor-1 gene variants: risk of mortality and fatal cardiovascular disease in an elderly population-based cohort. J Am Coll Cardiol 1999;34:1176–1183

    PubMed  CAS  Google Scholar 

  29. Juhan-Vague I, Pyke SM, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. Circulation 1996; 94:2057–2063

    PubMed  CAS  Google Scholar 

  30. Hamsten A, Wiman B, de Faire U, Blomback M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985; 313:1557–1563

    PubMed  CAS  Google Scholar 

  31. Hoekstra T, Geleijnse JM, Kluft C, Giltay EJ, Kok FJ, Schouten EG. 4G/4G genotype of PAI-1 gene is associated with reduced risk of stroke in elderly. Stroke 2003;34:2822–2828

    PubMed  CAS  Google Scholar 

  32. Bader G, Zuliani G, Kostner GM, Fellin R. Apolipoprotein E polymorphism is not associated with longevity or disability in a sample of Italian octo- and nonagenarians. Gerontology 1998;44:293–299

    PubMed  CAS  Google Scholar 

  33. Hobbs HH, Leitersdorf E, Leffert CC, Cryer DR, Brown MS, Goldstein JL Evidence for a dominant gene that suppresses hypercholesterolemia in a family with defective low density lipoprotein receptors. J Clin Invest 1989;84:656–664

    PubMed  CAS  Google Scholar 

  34. Bonafe M, Valensin S, Gianni W, Marigliano V, Franceschi C. The unexpected contribution of immunosenescence to the leveling off of cancer incidence and mortality in the oldest old. Crit Rev Oncol Hematol 2001;39:227–233

    PubMed  CAS  Google Scholar 

  35. Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M, Salvioli S, Valensin S, De Benedictis G, Di Iorio A, Caruso C, Paolisso G, Monti D. Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 2005;126:351–361

    PubMed  CAS  Google Scholar 

  36. Jazwinski SM. Aging and longevity. Acta Biochim Pol. 2000;47:269–279

    PubMed  CAS  Google Scholar 

  37. Jamet-Vierny C, Rossignol M, Haedens V, Silar P. What triggers senescence in Podospora anserina? Fungal Genet Biol 1999;27:26–35

    PubMed  CAS  Google Scholar 

  38. Lorin S, Dufour A, Sainsard A. Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim Biophys Acta 2006:1757:604–610

    PubMed  CAS  Google Scholar 

  39. Morrow G, Samson M, Michaud S, Tanguay RM. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 2004;18:598–599

    PubMed  CAS  Google Scholar 

  40. Morrow G, Battistini S, Zhang P, Tanguay RM. Decreased life span in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 2004;279:43382–43385

    PubMed  CAS  Google Scholar 

  41. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls life span and regulates insulin signalling in brain and fat body. Nature 2004;429:562–566

    PubMed  CAS  Google Scholar 

  42. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–464

    Google Scholar 

  43. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls life span and regulates insulin signalling in brain and fat body. Nature 2004;429:562–566

    PubMed  CAS  Google Scholar 

  44. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570–2580

    PubMed  CAS  Google Scholar 

  45. Sinclair D, Guarente L. Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 1997;91:1033–1042

    PubMed  CAS  Google Scholar 

  46. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends life span in C. elegans. Nature 2001;410:227–230

    Google Scholar 

  47. Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006;125:1165–1177

    PubMed  CAS  Google Scholar 

  48. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapauses in Caenorhabditis elegans. Nature 1996;382:536–539

    PubMed  CAS  Google Scholar 

  49. Koutarou D, Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997;277:942–946

    Google Scholar 

  50. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997;389:994–999

    PubMed  CAS  Google Scholar 

  51. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997;278:1319–1322

    PubMed  CAS  Google Scholar 

  52. Viswanathan M, Kim SK, Berdichevsky A, Guarente L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 2005;9:605–615

    PubMed  CAS  Google Scholar 

  53. Haigis MC, Guarente LP. Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006;20:2913–2921

    PubMed  CAS  Google Scholar 

  54. Lemieux ME, Yang X, Jardine K, He X, Jacobsen KX, Staines WA, Harper ME, McBurney MW. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Ageing Dev 2005;126:1097–1105

    PubMed  CAS  Google Scholar 

  55. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002;21:2383–2396

    PubMed  CAS  Google Scholar 

  56. Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004;95:971–980

    PubMed  CAS  Google Scholar 

  57. Guarente L. SIR2 and aging – the exception that proves the rule. Trends Genet 2001;17:391–392

    PubMed  CAS  Google Scholar 

  58. Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006;103:10230–10235

    PubMed  CAS  Google Scholar 

  59. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006;124:315–329

    PubMed  CAS  Google Scholar 

  60. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113–118

    PubMed  CAS  Google Scholar 

  61. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776

    Google Scholar 

  62. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105–117

    PubMed  CAS  Google Scholar 

  63. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4:e31

    PubMed  Google Scholar 

  64. Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004;305:361

    PubMed  CAS  Google Scholar 

  65. Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005;121:115–125

    PubMed  CAS  Google Scholar 

  66. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006;125:987–1001

    Google Scholar 

  67. Weinert BT, Timiras PS. Theories of aging. J Appl Physiol 2003;95:1706–1716

    PubMed  CAS  Google Scholar 

  68. Haldane JBS New paths in genetics. London: Allen & Unwin; 1941

    Google Scholar 

  69. Medawar, PB. An unsolved problem of biology. London: H. K. Lewis; 1952

    Google Scholar 

  70. Clark WR. Reflections on an unsolved problem of biology: the evolution of senescence and death. Adv Gerontol 2004;14:7–20

    PubMed  CAS  Google Scholar 

  71. Charlesworth B. Fisher, Medawar, Hamilton and the evolution of aging. Genetics 2000;156:927–931

    PubMed  CAS  Google Scholar 

  72. Rose MR. The evolutionary biology of aging. Oxford: Oxford University Press; 1991, Chapter 1

    Google Scholar 

  73. Comfort A. The biology of senescence. Edinburgh, UK: Churchill Livingstone; 1979

    Google Scholar 

  74. Gavrilov LA, Gavrilova NS. The biology of life-span: a quantitative approach. Switzerland: Harwood, Chur; 1991

    Google Scholar 

  75. Wachter KW, Finch CE. Between Zeus and the Salmon: the biodemography of longevity. Washington, DC: National Academy Press; 1997

    Google Scholar 

  76. Finch CE. Longevity, senescence, and the genome. Chicago, IL: University of Chicago Press; 1990

    Google Scholar 

  77. Williams, GC. Adaptation and natural selection. Princeton, NJ: Princeton University Press; 1966

    Google Scholar 

  78. Gavrilov LA, Gavrilova NS. Evolutionary theories of aging and longevity. Scientific World Journal 2002;2:339–356

    PubMed  Google Scholar 

  79. Gavrilov LA, Gavrilova NS. The reliability theory of aging and longevity. Journal of Theoretical Biology 2001;213:527–545

    PubMed  CAS  Google Scholar 

  80. Hekimi S. How genetic analysis tests theories of animal aging. Nat Genet 2006;38:985–991

    PubMed  CAS  Google Scholar 

  81. Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 2002;12:712–23

    PubMed  CAS  Google Scholar 

  82. Weindruch R, Kayo T, Lee CK, Prolla TA. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 2001;131:918S–923S

    PubMed  CAS  Google Scholar 

  83. Zou S, Meadows S, Sharp L, Jan LY, Jan YN. Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 2000;97:13726–13731

    PubMed  CAS  Google Scholar 

  84. Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, Stott JM, Yang GS, Holt RA, Jones SJ, Marra MA, Brooks-Wilson AR, Riddle DL. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 2005;15:603–615

    PubMed  CAS  Google Scholar 

  85. Perls T, Kunkel L, Puca A. The genetics of aging. Curr Opin Genet Dev 2002;12:362–369

    PubMed  CAS  Google Scholar 

  86. Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M, Kang S, Joyce E, Nicoli J, Benson E, Kunkel LM, Perls T. A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA 2001;98:10505–10508

    PubMed  CAS  Google Scholar 

  87. Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, Schneider MD. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci USA 2001;98:10308–10313

    PubMed  CAS  Google Scholar 

  88. Young AT, Lakey JR, Murray AG, Mullen JC, Moore RB. In vitro senescence occurring in normal human endothelial cells can be rescued by ectopic telomerase activity. Transplant Proc 2003;35:2483–2485

    PubMed  CAS  Google Scholar 

  89. Steinert S, Shay JW, Wright WE. Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem Biophys Res Commun 2000;273:1095–1098

    PubMed  CAS  Google Scholar 

  90. Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A, Bronstein A, Chiu CP, Herron GS. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999;274:26141–26148

    PubMed  CAS  Google Scholar 

  91. von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 2005;5:197–203

    Google Scholar 

  92. Martin-Ruiz CM, Gussekloo J, van Heemst D, von Zglinicki T, Westendorp RG. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell 2005;4:287–289

    PubMed  CAS  Google Scholar 

  93. Collerton J, Martin-Ruiz C, Kenny A, Barrass K, von Zglinicki T, Kirkwood T, Keavney B. Telomere length is associated with left ventricular function in the oldest old: the Newcastle 85+ study. Eur Heart J 2007;28:172–176

    Google Scholar 

  94. Harman, D. Aging: a theory based on free radical and radiation chemistry. J Gerontal 1956; 11:298–300

    CAS  Google Scholar 

  95. Beckman K, Ames, B. The free radical theory of aging matures. Physiol Rev 1998; 78:548–581

    Google Scholar 

  96. Sohal, R., Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996;273:59–63

    PubMed  CAS  Google Scholar 

  97. Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994;263:1128–1130

    PubMed  CAS  Google Scholar 

  98. Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 1993;90:8905–8909

    PubMed  CAS  Google Scholar 

  99. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000;289:1567–1569

    PubMed  CAS  Google Scholar 

  100. Sohal RS, Ku HH, Agarwal S. Biochemical correlates of longevity in two closely related rodent species. Biochem Biophys Res Commun 1993;196:7–11

    PubMed  CAS  Google Scholar 

  101. Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 2000;55:B5–B9

    PubMed  CAS  Google Scholar 

  102. Mehlhorn RJ. Oxidants and antioxidants in aging. In: Timiras PS, editor. Physiological basis of aging and geriatrics. 3rd ed. Boca Raton, FL: CRC, 2003. p. 61–83

    Google Scholar 

  103. Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol 2000;35:199–212

    PubMed  CAS  Google Scholar 

  104. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909–1911

    PubMed  CAS  Google Scholar 

  105. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–247

    PubMed  CAS  Google Scholar 

  106. Caratero A, Courtade M, Bonnet L, Planel H, Caratero C. Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 1998;44:272–276

    PubMed  CAS  Google Scholar 

  107. Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 2006;103:19908–19912

    PubMed  CAS  Google Scholar 

  108. Merry BJ. Molecular mechanisms linking calorie restriction and longevity. Int J Biochem Cell Biol 2002;34:1340–1354

    PubMed  CAS  Google Scholar 

  109. Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 1999;26:303–308

    PubMed  CAS  Google Scholar 

  110. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007;292:R18–R36

    PubMed  CAS  Google Scholar 

  111. Gompertz B. On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies. Philos. Trans Roy Soc Lond A 1825;115:513–585

    Google Scholar 

  112. Rose MR, Rauser CL, Mueller LD, Benford G. A revolution for aging research. Biogerontology 2006;7:269–277

    PubMed  Google Scholar 

  113. Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005;126:913–922

    PubMed  CAS  Google Scholar 

  114. Duffy PH, Feuers RJ, Hart RW. Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol Int 1990;7:291–303

    PubMed  CAS  Google Scholar 

  115. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 2003;38:947–954

    PubMed  CAS  Google Scholar 

  116. Houthoofd K, Vanfleteren JR. The longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol 2006;41:1026–1031

    PubMed  CAS  Google Scholar 

  117. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Life span extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007;6:95–110

    PubMed  CAS  Google Scholar 

  118. Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 2006;20:174–184

    Google Scholar 

  119. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of life span in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 2004;14:885–890

    PubMed  CAS  Google Scholar 

  120. Masoro EJ. The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol 2007;35:1–17

    PubMed  CAS  Google Scholar 

  121. Proust J, Moulias R, Fumeron F, Bekkhoucha F, Busson M, Schmid M, Hors J. HLA and longevity. Tissue Antigens 1982;19:168–173

    PubMed  CAS  Google Scholar 

  122. Dorak; Ivanova R, Henon N, Lepage V, Charron D, Vicaut E, Schachter F. HLA-DR alleles display sex-dependent effects on survival and discriminate between individual and familial longevity. Hum Mol Genet 1998;7: 187–194

    Google Scholar 

  123. De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Cavalcanti S, Corsonello F, Feraco E, Baggio G, Bertolini S, Mari D, Mattace R, Yashin AI, Bonafe M, Franceschi C. Gene/longevity association studies at four autosomal loci (REN, THO, PARP, SOD2). Eur J Hum Genet 1998;6:534–541

    PubMed  Google Scholar 

  124. Franceschi C, Motta L, Valensin S, Rapisarda R, Franzone A, Berardelli M, Motta M, Monti D, Bonafe M, Ferrucci L, Deiana L, Pes GM, Carru C, Desole MS, Barbi C, Sartoni G, Gemelli C, Lescai F, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Gueresi P, Cossarizza A, Troiano L, Pini G, Sansoni P, Passeri G, Lisa R, Spazzafumo L, Amadio L, Giunta S, Stecconi R, Morresi R, Viticchi C, Mattace R, De Benedictis G, Baggio G. Do men and women follow different trajectories to reach extreme longevity? Italian Multicenter Study on Centenarians (IMUSCE). Aging (Milano) 2000;12:77–84

    CAS  Google Scholar 

  125. Gruber CJ, Gruber DM, Gruber IM, Wieser F, Huber JC. Anatomy of the estrogen response element. Trends Endocrinol Metab 2004;15:73–78

    PubMed  CAS  Google Scholar 

  126. Simoncini T, Mannella P, Fornari L, Caruso A, Varone G, Genazzani AR. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids 2004;69:537–542

    PubMed  CAS  Google Scholar 

  127. Vina J, Sastre J, Pallardo FV, Gambini J, Borras C. Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radic Res 2006;40:1359–1365

    PubMed  CAS  Google Scholar 

  128. Baba T, Shimizu T, Suzuki Y, Ogawara M, Isono K, Koseki H, Kurosawa H, Shirasawa T. Estrogen, insulin, and dietary signals cooperatively regulate longevity signals to enhance resistance to oxidative stress in mice. J Biol Chem 2005;280:16417–16426

    PubMed  CAS  Google Scholar 

  129. Slagboom PE, Heijmans BT, Beekman M, Westendorp RG, Meulenbelt I. Genetics of human aging. The search for genes contributing to human longevity and diseases of the old. Ann N Y Acad Sci 2000;908:50–63

    PubMed  CAS  Google Scholar 

  130. Vijg J, Suh Y. Genetics of longevity and aging. Annu Rev Med 2005;56:193–212

    PubMed  CAS  Google Scholar 

  131. Vijg J, Suh Y. Functional genomics of ageing. Mech Ageing Dev 2003;124:3–8

    PubMed  Google Scholar 

  132. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004;27:417–423

    Google Scholar 

  133. Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, Spelbrink JN. Twinkle and POLγ defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 2004;32:3053–3064

    Google Scholar 

  134. Lansdorp PM. Repair of telomeric DNA prior to replicative senescence. Mech Ageing Dev 2000;118:23–34

    PubMed  CAS  Google Scholar 

  135. Stewart SA, Weinberg RA. Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 2006;22:531–557

    PubMed  CAS  Google Scholar 

  136. Iliescu ML, Zanoschi G. Population aging and public health. The active aging concep Rev Med Chir Soc Med Nat Iasi 2005;109:120–123

    Google Scholar 

  137. Weil, DN. The economics of population aging. In: Rosenzweig MR, Stark O, editors. Handbook of population and family economics. New York: Elsevier; 1997, p. 967–1014

    Google Scholar 

  138. Le Bourg E. Delaying aging: could the study of hormesis be more helpful than that of the genetic pathway used to survive starvation? Biogerontology 2003;4:319–324

    Google Scholar 

  139. Marin-Garcia J, Goldenthal MJ, Pi Y. Mitochondrial and nuclear gene expression in the senescent heart. Unpublished data.

    Google Scholar 

  140. Craig EE, Hood DA. Influence of aging on protein import into cardiac mitochondria. Am J Physiol 1997;272:H2983–H2988

    PubMed  CAS  Google Scholar 

  141. Le Bourg E, Valenti P, Lucchetta P, Payre F. Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology 2001;2:155–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J., Goldenthal, M.J., Moe, G.W. (2008). Post-Genomic View of Aging: Definitions, Theories and Observations. In: Aging and the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74072-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74072-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74071-3

  • Online ISBN: 978-0-387-74072-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics