Post-Genomic View of Aging: Definitions, Theories and Observations

  • José Marín-García
  • Michael J. Goldenthal
  • Gordon W. Moe


Life Span Telomere Length Caloric Restriction Extend Life Span Human Longevity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luciani F, Valensin S, Vescovini R, Sansoni P, Fagnoni F, Franceschi C, Bonafe M, Turchetti G. A stochastic model for CD8(+)T cell dynamics in human immunosenescence: implications for survival and longevity. J Theor Biol 2001;213:587–597PubMedGoogle Scholar
  2. 2.
    De Benedictis G, Tan Q, Jeune B, Christensen K, Ukraintseva SV, Bonafe M, Franceschi C, Vaupel JW, Yashin AI. Recent advances in human gene-longevity association studies. Mech Ageing Dev 2001;122:909–920PubMedGoogle Scholar
  3. 3.
    Vaupel JW, Carey JR, Christensen K, Johnson TE, Yashin AI, Holm NV, Iachine IA, Kannisto V, Khazaeli AA, Liedo P, Longo VD, Zeng Y, Manton KG, Curtsinger JW. Biodemographic trajectories of longevity. Science 1998;280:855–860PubMedGoogle Scholar
  4. 4.
    Perls TT, Bubrick E, Wager CG, Vijg J, Kruglyak L. Siblings of centenarians live longer. Lancet 1998;351:1560PubMedGoogle Scholar
  5. 5.
    Gudmundsson H, Gudbjartsson DF, Frigge M, Gulcher JR, Stefansson K. Inheritance of human longevity in Iceland. Eur J Hum Genet 2000;8:743–749PubMedGoogle Scholar
  6. 6.
    Carmelli, D. Intrapair comparisons of total life span in twins and pairs of sibs. Hum Biol 1982;54:525–537PubMedGoogle Scholar
  7. 7.
    Yashin AI, Iachine IA, Harris JR. Half of the variation in susceptibility to mortality is genetic: findings from Swedish twin survival data. Behav Genet 1999;29:11–19PubMedGoogle Scholar
  8. 8.
    Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunkel L, Puca A. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 2002;99:8442–8447PubMedGoogle Scholar
  9. 9.
    Candore G, Aquino A, Balistreri CR, Bulati M, Di Carlo D, Grimaldi MP, Listi F, Orlando V, Vasto S, Caruso M, Colonna-Romano G, Lio D, Caruso C. Inflammation, longevity, and cardiovascular diseases: role of polymorphisms of TLR4. Ann N Y Acad Sci 2006;1067:282–287PubMedGoogle Scholar
  10. 10.
    Gerdes LU, Jeune B, Ranberg KA, Nybo H, Vaupel JW. Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a “frailty gene,” not a “longevity gene”. Genet Epidemiol 2000;19:202–210PubMedGoogle Scholar
  11. 11.
    Kervinen K, Savolainen MJ, Salokannel J, Hynninen A, Heikkinen J, Ehnholm C, Koistinen MJ, Kesaniemi YA. Apolipoprotein E and B polymorphisms – longevity factors assessed in nonagenarians. Atherosclerosis 1994;105:89–95PubMedGoogle Scholar
  12. 12.
    Louhija J, Miettinen HE, Kontula K, Tikkanen MJ, Miettinen TA, Tilvis RS. Aging and genetic variation of plasma apolipoproteins: Relative loss of the apolipoprotein E4 phenotype in centenarians. Arterioscler Thromb. 1994;14:1084–1089PubMedGoogle Scholar
  13. 13.
    Schachter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D. Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 1994;6:29–32PubMedGoogle Scholar
  14. 14.
    Jian-Gang Z, Yong-Xing M, Chuan-Fu W, Pei-Fang L, Song-Bai Z, Nui-Fan G, Guo-Yin F, Lin H. Apolipoprotein E and longevity among Han Chinese population. Mech Ageing Dev 1998;104:159–167PubMedGoogle Scholar
  15. 15.
    De Benedictis G, Falcone E, Rose G, Ruffolo R, Spadafora P, Baggio G, Bertolini S, Mari D, Mattace R, Monti D, Morellini M, Sansoni P, Franceschi C. DNA multiallelic systems reveal gene/longevity associations not detected by diallelic systems. The APOB locus. Hum Genet 1997;99:312–318PubMedGoogle Scholar
  16. 16.
    De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Yashin AI, Bonafe M, Franceschi C. Age-related changes of the 3’APOB-VNTR genotype pool in ageing cohorts. Ann Hum Genet 1998; 62:115–122PubMedGoogle Scholar
  17. 17.
    Faure-Delanef L, Baudin B, Beneteau-Burnat B, Beaudoin JC, Giboudeau J, Cohen D. Plasma concentration, kinetic constants, and gene polymorphism of angiotensin I-converting enzyme in centenarians. Clin Chem 1998;44:2083–2087PubMedGoogle Scholar
  18. 18.
    Mari D, Mannucci PM, Duca F, Bertolini S, Franceschi C. Mutant factor V (Arg506Gln) in healthy centenarians. Lancet 1996;347:1044PubMedGoogle Scholar
  19. 19.
    Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K. Mitochondrial genotype associated with longevity. Lancet 1998;351:185–186PubMedGoogle Scholar
  20. 20.
    Takagi K, Yamada Y, Gong JS, Sone T, Yokota M, Tanaka M. Association of a 5178C→A (Leu237Met) polymorphism in the mitochondrial DNA with a low prevalence of myocardial infarction in Japanese individuals. Atherosclerosis 2004;175:281–286PubMedGoogle Scholar
  21. 21.
    Matsunaga H, Tanaka Y, Tanaka M, Gong JS, Zhang J, Nomiyama T, Ogawa O, Ogihara T, Yamada Y, Yagi K, Kawamori R. Antiatherogenic mitochondrial genotype in patients with type 2 diabetes. Diabetes Care 2001;24:500–503PubMedGoogle Scholar
  22. 22.
    De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G, Bonafe M, Monti D, Baggio G, Bertolini S, Mari D, Mattace R, Franceschi C. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 1999;13:1532–1536PubMedGoogle Scholar
  23. 23.
    Rose G, Passarino G, Carrieri G, Altomare K, Greco V, Bertolini S, Bonafe M, Franceschi C, De Benedictis G. Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. Eur J Hum Genet 2001;9:701–707PubMedGoogle Scholar
  24. 24.
    Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafe M, Olivieri F, Passarino G, De Benedictis G, Franceschi C, Attardi G. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci USA 2003;100:1116–1121PubMedGoogle Scholar
  25. 25.
    Niemi AK, Moilanen JS, Tanaka M, Hervonen A, Hurme M, Lehtimaki T, Arai Y, Hirose N, Majamaa K. A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects. Eur J Hum Genet 2005;13:166–170PubMedGoogle Scholar
  26. 26.
    van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RG. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 2005;4:79–85PubMedGoogle Scholar
  27. 27.
    Santoro A, Salvioli S, Raule N, Capri M, Sevini F, Valensin S, Monti D, Bellizzi D, Passarino G, Rose G, De Benedictis G, Franceschi C. Mitochondrial DNA involvement in human longevity. Biochim Biophys Acta 2006;1757:1388–1399PubMedGoogle Scholar
  28. 28.
    Heijmans BT, Westendorp RG, Knook DL, Kluft C, Slagboom PE. Angiotensin I-converting enzyme and plasminogen activator inhibitor-1 gene variants: risk of mortality and fatal cardiovascular disease in an elderly population-based cohort. J Am Coll Cardiol 1999;34:1176–1183PubMedGoogle Scholar
  29. 29.
    Juhan-Vague I, Pyke SM, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. Circulation 1996; 94:2057–2063PubMedGoogle Scholar
  30. 30.
    Hamsten A, Wiman B, de Faire U, Blomback M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985; 313:1557–1563PubMedGoogle Scholar
  31. 31.
    Hoekstra T, Geleijnse JM, Kluft C, Giltay EJ, Kok FJ, Schouten EG. 4G/4G genotype of PAI-1 gene is associated with reduced risk of stroke in elderly. Stroke 2003;34:2822–2828PubMedGoogle Scholar
  32. 32.
    Bader G, Zuliani G, Kostner GM, Fellin R. Apolipoprotein E polymorphism is not associated with longevity or disability in a sample of Italian octo- and nonagenarians. Gerontology 1998;44:293–299PubMedGoogle Scholar
  33. 33.
    Hobbs HH, Leitersdorf E, Leffert CC, Cryer DR, Brown MS, Goldstein JL Evidence for a dominant gene that suppresses hypercholesterolemia in a family with defective low density lipoprotein receptors. J Clin Invest 1989;84:656–664PubMedGoogle Scholar
  34. 34.
    Bonafe M, Valensin S, Gianni W, Marigliano V, Franceschi C. The unexpected contribution of immunosenescence to the leveling off of cancer incidence and mortality in the oldest old. Crit Rev Oncol Hematol 2001;39:227–233PubMedGoogle Scholar
  35. 35.
    Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M, Salvioli S, Valensin S, De Benedictis G, Di Iorio A, Caruso C, Paolisso G, Monti D. Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 2005;126:351–361PubMedGoogle Scholar
  36. 36.
    Jazwinski SM. Aging and longevity. Acta Biochim Pol. 2000;47:269–279PubMedGoogle Scholar
  37. 37.
    Jamet-Vierny C, Rossignol M, Haedens V, Silar P. What triggers senescence in Podospora anserina? Fungal Genet Biol 1999;27:26–35PubMedGoogle Scholar
  38. 38.
    Lorin S, Dufour A, Sainsard A. Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim Biophys Acta 2006:1757:604–610PubMedGoogle Scholar
  39. 39.
    Morrow G, Samson M, Michaud S, Tanguay RM. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 2004;18:598–599PubMedGoogle Scholar
  40. 40.
    Morrow G, Battistini S, Zhang P, Tanguay RM. Decreased life span in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 2004;279:43382–43385PubMedGoogle Scholar
  41. 41.
    Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls life span and regulates insulin signalling in brain and fat body. Nature 2004;429:562–566PubMedGoogle Scholar
  42. 42.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–464Google Scholar
  43. 43.
    Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls life span and regulates insulin signalling in brain and fat body. Nature 2004;429:562–566PubMedGoogle Scholar
  44. 44.
    Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570–2580PubMedGoogle Scholar
  45. 45.
    Sinclair D, Guarente L. Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 1997;91:1033–1042PubMedGoogle Scholar
  46. 46.
    Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends life span in C. elegans. Nature 2001;410:227–230Google Scholar
  47. 47.
    Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006;125:1165–1177PubMedGoogle Scholar
  48. 48.
    Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapauses in Caenorhabditis elegans. Nature 1996;382:536–539PubMedGoogle Scholar
  49. 49.
    Koutarou D, Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997;277:942–946Google Scholar
  50. 50.
    Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997;389:994–999PubMedGoogle Scholar
  51. 51.
    Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997;278:1319–1322PubMedGoogle Scholar
  52. 52.
    Viswanathan M, Kim SK, Berdichevsky A, Guarente L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 2005;9:605–615PubMedGoogle Scholar
  53. 53.
    Haigis MC, Guarente LP. Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006;20:2913–2921PubMedGoogle Scholar
  54. 54.
    Lemieux ME, Yang X, Jardine K, He X, Jacobsen KX, Staines WA, Harper ME, McBurney MW. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Ageing Dev 2005;126:1097–1105PubMedGoogle Scholar
  55. 55.
    Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002;21:2383–2396PubMedGoogle Scholar
  56. 56.
    Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004;95:971–980PubMedGoogle Scholar
  57. 57.
    Guarente L. SIR2 and aging – the exception that proves the rule. Trends Genet 2001;17:391–392PubMedGoogle Scholar
  58. 58.
    Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006;103:10230–10235PubMedGoogle Scholar
  59. 59.
    Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006;124:315–329PubMedGoogle Scholar
  60. 60.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113–118PubMedGoogle Scholar
  61. 61.
    Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776Google Scholar
  62. 62.
    Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105–117PubMedGoogle Scholar
  63. 63.
    Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4:e31PubMedGoogle Scholar
  64. 64.
    Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004;305:361PubMedGoogle Scholar
  65. 65.
    Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005;121:115–125PubMedGoogle Scholar
  66. 66.
    Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006;125:987–1001Google Scholar
  67. 67.
    Weinert BT, Timiras PS. Theories of aging. J Appl Physiol 2003;95:1706–1716PubMedGoogle Scholar
  68. 68.
    Haldane JBS New paths in genetics. London: Allen & Unwin; 1941Google Scholar
  69. 69.
    Medawar, PB. An unsolved problem of biology. London: H. K. Lewis; 1952Google Scholar
  70. 70.
    Clark WR. Reflections on an unsolved problem of biology: the evolution of senescence and death. Adv Gerontol 2004;14:7–20PubMedGoogle Scholar
  71. 71.
    Charlesworth B. Fisher, Medawar, Hamilton and the evolution of aging. Genetics 2000;156:927–931PubMedGoogle Scholar
  72. 72.
    Rose MR. The evolutionary biology of aging. Oxford: Oxford University Press; 1991, Chapter 1Google Scholar
  73. 73.
    Comfort A. The biology of senescence. Edinburgh, UK: Churchill Livingstone; 1979Google Scholar
  74. 74.
    Gavrilov LA, Gavrilova NS. The biology of life-span: a quantitative approach. Switzerland: Harwood, Chur; 1991Google Scholar
  75. 75.
    Wachter KW, Finch CE. Between Zeus and the Salmon: the biodemography of longevity. Washington, DC: National Academy Press; 1997Google Scholar
  76. 76.
    Finch CE. Longevity, senescence, and the genome. Chicago, IL: University of Chicago Press; 1990Google Scholar
  77. 77.
    Williams, GC. Adaptation and natural selection. Princeton, NJ: Princeton University Press; 1966Google Scholar
  78. 78.
    Gavrilov LA, Gavrilova NS. Evolutionary theories of aging and longevity. Scientific World Journal 2002;2:339–356PubMedGoogle Scholar
  79. 79.
    Gavrilov LA, Gavrilova NS. The reliability theory of aging and longevity. Journal of Theoretical Biology 2001;213:527–545PubMedGoogle Scholar
  80. 80.
    Hekimi S. How genetic analysis tests theories of animal aging. Nat Genet 2006;38:985–991PubMedGoogle Scholar
  81. 81.
    Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 2002;12:712–23PubMedGoogle Scholar
  82. 82.
    Weindruch R, Kayo T, Lee CK, Prolla TA. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 2001;131:918S–923SPubMedGoogle Scholar
  83. 83.
    Zou S, Meadows S, Sharp L, Jan LY, Jan YN. Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 2000;97:13726–13731PubMedGoogle Scholar
  84. 84.
    Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, Stott JM, Yang GS, Holt RA, Jones SJ, Marra MA, Brooks-Wilson AR, Riddle DL. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 2005;15:603–615PubMedGoogle Scholar
  85. 85.
    Perls T, Kunkel L, Puca A. The genetics of aging. Curr Opin Genet Dev 2002;12:362–369PubMedGoogle Scholar
  86. 86.
    Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M, Kang S, Joyce E, Nicoli J, Benson E, Kunkel LM, Perls T. A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA 2001;98:10505–10508PubMedGoogle Scholar
  87. 87.
    Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, Schneider MD. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci USA 2001;98:10308–10313PubMedGoogle Scholar
  88. 88.
    Young AT, Lakey JR, Murray AG, Mullen JC, Moore RB. In vitro senescence occurring in normal human endothelial cells can be rescued by ectopic telomerase activity. Transplant Proc 2003;35:2483–2485PubMedGoogle Scholar
  89. 89.
    Steinert S, Shay JW, Wright WE. Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem Biophys Res Commun 2000;273:1095–1098PubMedGoogle Scholar
  90. 90.
    Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A, Bronstein A, Chiu CP, Herron GS. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999;274:26141–26148PubMedGoogle Scholar
  91. 91.
    von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 2005;5:197–203Google Scholar
  92. 92.
    Martin-Ruiz CM, Gussekloo J, van Heemst D, von Zglinicki T, Westendorp RG. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell 2005;4:287–289PubMedGoogle Scholar
  93. 93.
    Collerton J, Martin-Ruiz C, Kenny A, Barrass K, von Zglinicki T, Kirkwood T, Keavney B. Telomere length is associated with left ventricular function in the oldest old: the Newcastle 85+ study. Eur Heart J 2007;28:172–176Google Scholar
  94. 94.
    Harman, D. Aging: a theory based on free radical and radiation chemistry. J Gerontal 1956; 11:298–300Google Scholar
  95. 95.
    Beckman K, Ames, B. The free radical theory of aging matures. Physiol Rev 1998; 78:548–581Google Scholar
  96. 96.
    Sohal, R., Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996;273:59–63PubMedGoogle Scholar
  97. 97.
    Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994;263:1128–1130PubMedGoogle Scholar
  98. 98.
    Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 1993;90:8905–8909PubMedGoogle Scholar
  99. 99.
    Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000;289:1567–1569PubMedGoogle Scholar
  100. 100.
    Sohal RS, Ku HH, Agarwal S. Biochemical correlates of longevity in two closely related rodent species. Biochem Biophys Res Commun 1993;196:7–11PubMedGoogle Scholar
  101. 101.
    Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 2000;55:B5–B9PubMedGoogle Scholar
  102. 102.
    Mehlhorn RJ. Oxidants and antioxidants in aging. In: Timiras PS, editor. Physiological basis of aging and geriatrics. 3rd ed. Boca Raton, FL: CRC, 2003. p. 61–83Google Scholar
  103. 103.
    Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol 2000;35:199–212PubMedGoogle Scholar
  104. 104.
    Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909–1911PubMedGoogle Scholar
  105. 105.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–247PubMedGoogle Scholar
  106. 106.
    Caratero A, Courtade M, Bonnet L, Planel H, Caratero C. Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 1998;44:272–276PubMedGoogle Scholar
  107. 107.
    Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 2006;103:19908–19912PubMedGoogle Scholar
  108. 108.
    Merry BJ. Molecular mechanisms linking calorie restriction and longevity. Int J Biochem Cell Biol 2002;34:1340–1354PubMedGoogle Scholar
  109. 109.
    Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 1999;26:303–308PubMedGoogle Scholar
  110. 110.
    Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007;292:R18–R36PubMedGoogle Scholar
  111. 111.
    Gompertz B. On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies. Philos. Trans Roy Soc Lond A 1825;115:513–585Google Scholar
  112. 112.
    Rose MR, Rauser CL, Mueller LD, Benford G. A revolution for aging research. Biogerontology 2006;7:269–277PubMedGoogle Scholar
  113. 113.
    Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005;126:913–922PubMedGoogle Scholar
  114. 114.
    Duffy PH, Feuers RJ, Hart RW. Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol Int 1990;7:291–303PubMedGoogle Scholar
  115. 115.
    Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 2003;38:947–954PubMedGoogle Scholar
  116. 116.
    Houthoofd K, Vanfleteren JR. The longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol 2006;41:1026–1031PubMedGoogle Scholar
  117. 117.
    Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Life span extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007;6:95–110PubMedGoogle Scholar
  118. 118.
    Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 2006;20:174–184Google Scholar
  119. 119.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of life span in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 2004;14:885–890PubMedGoogle Scholar
  120. 120.
    Masoro EJ. The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol 2007;35:1–17PubMedGoogle Scholar
  121. 121.
    Proust J, Moulias R, Fumeron F, Bekkhoucha F, Busson M, Schmid M, Hors J. HLA and longevity. Tissue Antigens 1982;19:168–173PubMedGoogle Scholar
  122. 122.
    Dorak; Ivanova R, Henon N, Lepage V, Charron D, Vicaut E, Schachter F. HLA-DR alleles display sex-dependent effects on survival and discriminate between individual and familial longevity. Hum Mol Genet 1998;7: 187–194Google Scholar
  123. 123.
    De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Cavalcanti S, Corsonello F, Feraco E, Baggio G, Bertolini S, Mari D, Mattace R, Yashin AI, Bonafe M, Franceschi C. Gene/longevity association studies at four autosomal loci (REN, THO, PARP, SOD2). Eur J Hum Genet 1998;6:534–541PubMedGoogle Scholar
  124. 124.
    Franceschi C, Motta L, Valensin S, Rapisarda R, Franzone A, Berardelli M, Motta M, Monti D, Bonafe M, Ferrucci L, Deiana L, Pes GM, Carru C, Desole MS, Barbi C, Sartoni G, Gemelli C, Lescai F, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Gueresi P, Cossarizza A, Troiano L, Pini G, Sansoni P, Passeri G, Lisa R, Spazzafumo L, Amadio L, Giunta S, Stecconi R, Morresi R, Viticchi C, Mattace R, De Benedictis G, Baggio G. Do men and women follow different trajectories to reach extreme longevity? Italian Multicenter Study on Centenarians (IMUSCE). Aging (Milano) 2000;12:77–84Google Scholar
  125. 125.
    Gruber CJ, Gruber DM, Gruber IM, Wieser F, Huber JC. Anatomy of the estrogen response element. Trends Endocrinol Metab 2004;15:73–78PubMedGoogle Scholar
  126. 126.
    Simoncini T, Mannella P, Fornari L, Caruso A, Varone G, Genazzani AR. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids 2004;69:537–542PubMedGoogle Scholar
  127. 127.
    Vina J, Sastre J, Pallardo FV, Gambini J, Borras C. Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radic Res 2006;40:1359–1365PubMedGoogle Scholar
  128. 128.
    Baba T, Shimizu T, Suzuki Y, Ogawara M, Isono K, Koseki H, Kurosawa H, Shirasawa T. Estrogen, insulin, and dietary signals cooperatively regulate longevity signals to enhance resistance to oxidative stress in mice. J Biol Chem 2005;280:16417–16426PubMedGoogle Scholar
  129. 129.
    Slagboom PE, Heijmans BT, Beekman M, Westendorp RG, Meulenbelt I. Genetics of human aging. The search for genes contributing to human longevity and diseases of the old. Ann N Y Acad Sci 2000;908:50–63PubMedGoogle Scholar
  130. 130.
    Vijg J, Suh Y. Genetics of longevity and aging. Annu Rev Med 2005;56:193–212PubMedGoogle Scholar
  131. 131.
    Vijg J, Suh Y. Functional genomics of ageing. Mech Ageing Dev 2003;124:3–8PubMedGoogle Scholar
  132. 132.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004;27:417–423Google Scholar
  133. 133.
    Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, Spelbrink JN. Twinkle and POLγ defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 2004;32:3053–3064Google Scholar
  134. 134.
    Lansdorp PM. Repair of telomeric DNA prior to replicative senescence. Mech Ageing Dev 2000;118:23–34PubMedGoogle Scholar
  135. 135.
    Stewart SA, Weinberg RA. Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 2006;22:531–557PubMedGoogle Scholar
  136. 136.
    Iliescu ML, Zanoschi G. Population aging and public health. The active aging concep Rev Med Chir Soc Med Nat Iasi 2005;109:120–123Google Scholar
  137. 137.
    Weil, DN. The economics of population aging. In: Rosenzweig MR, Stark O, editors. Handbook of population and family economics. New York: Elsevier; 1997, p. 967–1014Google Scholar
  138. 138.
    Le Bourg E. Delaying aging: could the study of hormesis be more helpful than that of the genetic pathway used to survive starvation? Biogerontology 2003;4:319–324Google Scholar
  139. 139.
    Marin-Garcia J, Goldenthal MJ, Pi Y. Mitochondrial and nuclear gene expression in the senescent heart. Unpublished data.Google Scholar
  140. 140.
    Craig EE, Hood DA. Influence of aging on protein import into cardiac mitochondria. Am J Physiol 1997;272:H2983–H2988PubMedGoogle Scholar
  141. 141.
    Le Bourg E, Valenti P, Lucchetta P, Payre F. Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology 2001;2:155–164Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Marín-García
    • 1
  • Michael J. Goldenthal
    • 2
  • Gordon W. Moe
    • 3
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  2. 2.The Molecular Cardiology and Neuromuscular InstituteHighland Park
  3. 3.University of TorontoTorontoCanada

Personalised recommendations