Skip to main content

EGF Receptor in Breast Cancer Chemoresistance

  • Chapter
  • 1454 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 608))

Abstract

Acquisition of resistance of breast cancer to chemotherapy is commonly associated with progression of the disease to increased metastatic spread. Although early studies on this problem examined the possible roles of chemotherapy drug metabolism and efflux by resistant breast cancer cells, more recent work has implicated aberrant growth factor receptor and signal transduction pathways in the process for such commonly used drugs as the anthracyclines. Cell mutability, DNA repair defects, and loss of DNA damage checkpoint controls certainly must play key roles in the ability of cancer cells to evolve such resistance mechanisms.1,2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dickson RB, Lippman ME. Drug and Hormonal Resistance in Breast Cancer: Cellular and Molecular Mechanisms. New York: Ellis Horwood, 1995:1–440.

    Google Scholar 

  2. Dickson RB, Pestell RG, Lippman ME. Molecular biology of breast cancer. In: DeVita V, Hellman S, Rosenberg S, eds. Cancer: Principles and Practice of Oncology. 7th ed. Philadelphia: JB Lippincott, 2005:1399–1414.

    Google Scholar 

  3. Siegel PM, Muller WJ. Tyrosine kinase and signal transduction in mouse mammary tumorigenesis. In: Dickson RB, Solomon DS, eds. Hormones and Growth Factors in Development and Neoplasia. New York: Wily Liss, 1999:397–419.

    Google Scholar 

  4. Nicholson S, Halcrow P, Sainsbury JR et al. Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer. Br J Cancer 1988; 58:810–814.

    PubMed  CAS  Google Scholar 

  5. Nicholson S, Sainsbury JR, Halcrow P et al. Expression of epidermal growth factor receptors associated with lack of response to endocrine therapy in recurrent breast cancer. Lancet 1989; 28:182–185.

    Article  Google Scholar 

  6. Nicholson S, Richard J, Sainsbury C et al. Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer 1991; 63:146–150.

    PubMed  CAS  Google Scholar 

  7. Pegram MD, Slamon DJ. Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: Evidence for receptor-enhanced chemosensitivity. Semin Oncol 1999; 26:89–95.

    PubMed  CAS  Google Scholar 

  8. Hayes DF. Prognostic and predictive factors for breast cancer: Translating technology to oncology. J Clin Oncol 2005; 23:1596–1599.

    Article  PubMed  Google Scholar 

  9. Pegram MD, Pietras R, Bajamonde A et al. Targeted therapy: Wave of the future. J Clin Oncol 2005; 23:1776–1781.

    Article  PubMed  CAS  Google Scholar 

  10. Mitsuuchi Y, Johnson SW, Selvakumaran M et al. The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel. Cancer Res 2002; 60:5390–5394.

    Google Scholar 

  11. Kim D, Dan HC, Park S et al. AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci 2005; 10:975–987.

    Article  PubMed  CAS  Google Scholar 

  12. Yu D. Mechanisms of ErbB2-mediated pactitaxel resistance and trastuzumab-mediated paclitaxel sensitization in ErbB2-overexpressing breast cancers. Semin Oncol 2001; 28:12–17.

    Article  PubMed  CAS  Google Scholar 

  13. Jin W, Wu L, Liang K et al. Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells. Br J Cancer 2003; 89:185–191.

    Article  PubMed  CAS  Google Scholar 

  14. Knuefermann C, Lu Y, Liu B et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 2003; 22:3205–3212.

    Article  PubMed  CAS  Google Scholar 

  15. Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 1998; 396:584–587.

    Article  PubMed  CAS  Google Scholar 

  16. Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts. Genes Dev 1999; 13:2905–2927.

    Article  PubMed  CAS  Google Scholar 

  17. Datta K, Bellacosa A, Chan TO et al. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem 1996; 271:30835–30839.

    Article  PubMed  CAS  Google Scholar 

  18. Filippa N, Sable CL, Filloux C et al. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 1999; 19:4989–5000.

    PubMed  CAS  Google Scholar 

  19. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296:1655–1657.

    Article  PubMed  CAS  Google Scholar 

  20. Ahmed NN, Grimes HL, Bellacosa A et al. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci USA 1997; 94:3627–3632.

    Article  PubMed  CAS  Google Scholar 

  21. Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 1995; 267:2003–2006.

    Article  PubMed  CAS  Google Scholar 

  22. Valius M, Kazlauskas A. Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 1993; 73:321–334.

    Article  PubMed  CAS  Google Scholar 

  23. Auger KR, Serunian LA, Soltoff SP et al. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 1989; 57:167–175.

    Article  PubMed  CAS  Google Scholar 

  24. Kimura K, Hattori S, Kabuyama Y et al. Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J Biol Chem 1994; 269:18961–18967.

    PubMed  CAS  Google Scholar 

  25. Kaliman P, Vinals F, Testar X et al. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. J Biol Chem 1996; 271:19146–19151.

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez-Viciana P, Warne PH, Khwaja A et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89:457–467.

    Article  PubMed  CAS  Google Scholar 

  27. Kamohara S, Hayashi H, Todaka M et al. Platelet-derived growth factor triggers translocation of the insulin-regulatable glucose transporter (type 4) predominantly through phosphatidylinositol 3-kinase binding sites on the receptor. Proc Natl Acad Sci USA 1995; 92:1077–1081.

    Article  PubMed  CAS  Google Scholar 

  28. Clarke JF, Young PW, Yonezawa K et al. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J 1994; 300:631–635.

    PubMed  CAS  Google Scholar 

  29. Wennstrom S, Siegbahn A, Yokote K et al. Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3′ kinase. Oncogene 1994; 9:651–660.

    PubMed  CAS  Google Scholar 

  30. James SR, Downes CP, Gigg R et al. Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 1996; 315:709–713.

    PubMed  CAS  Google Scholar 

  31. Frech M, Andjelkovic M, Ingley E et al. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 1997; 272:8474–8481.

    Article  PubMed  CAS  Google Scholar 

  32. Franke TF, Yang SI, Chan TO et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81:727–736.

    Article  PubMed  CAS  Google Scholar 

  33. Alessi DR, Andjelkovic M, Caudwell B et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15:6541–6551.

    PubMed  CAS  Google Scholar 

  34. Egea J, Espinet C, Soler RM et al. Neuronal survival induced by neurotrophins requires calmodulin. J Cell Biol 2001; 154:585–597.

    Article  PubMed  CAS  Google Scholar 

  35. Cheng A, Wang S, Yang D et al. Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J Biol Chem 2003; 278:7591–7599.

    Article  PubMed  CAS  Google Scholar 

  36. Yang C, Watson RT, Elmendorf JS et al. Calmodulin antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by preventing the formation of phosphatidylinositol 3,4,5-trisphosphate in 3T3L1 adipocytes. Mol Endocrinol 2000; 14:317–326.

    Article  PubMed  CAS  Google Scholar 

  37. Fischer R, Julsgart J, Berchtold MW. High affinity calmodulin target sequence in the signalling molecule PI 3-kinase. FEBS Lett 1998; 425:175–177.

    Article  PubMed  CAS  Google Scholar 

  38. Ichikawa J, Furuya K, Miyata S et al. EGF enhances Ca(2+) mobilization and capacitative Ca(2+) entry in mouse mammary epithelial cells. Cell Biochem Funct 2000; 18:215–225.

    Article  PubMed  CAS  Google Scholar 

  39. Ichikawa J, Kiyohara T. Suppression of EGF-induced cell proliferation by the blockade of Ca2+ mobilization and capacitative Ca2+ entry in mouse mammary epithelial cells. Cell Biochem Funct 2001; 19:213–219.

    Article  PubMed  CAS  Google Scholar 

  40. Ramljak D, Coticchia CM, Nishanian TG et al. Epidermal growth factor inhibition of c-Myc-mediated apoptosis through Akt and Erk involves Bcl-xL upregulation in mammary epithelial cells. Exp Cell Res 2003; 287:397–410.

    Article  PubMed  CAS  Google Scholar 

  41. Deb TB, Coticchia CM, Dickson RB. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells. J Biol Chem 2004; 279:38903–38911.

    Article  PubMed  CAS  Google Scholar 

  42. Kau TR, Schroeder F, Ramaswamy S et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 2003; 463–476.

    Google Scholar 

  43. Shen X, Valencia CA, Szostak J et al. Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci USA 2005; 102:5969–5974.

    Article  PubMed  CAS  Google Scholar 

  44. Schmidt M, Lichtner RB. EGF receptor targeting in therapy-resistant human tumors. Drug Resist Updat 2002; 5:11–18.

    Article  PubMed  CAS  Google Scholar 

  45. Harris TK. PDK1 and PKB/Akt: Ideal targets for development of new strategies to structure based drug design. IUBMB Life 2003; 55:117–1126.

    Article  PubMed  CAS  Google Scholar 

  46. Ennis BW, Valverius E, Bates SE et al. Anti-EGF receptor antibodies inhibit the autocrine stimulated growth of MDA-MB-468 human breast cancer cells. Molec Endocrinol 1989; 3:1830–1838.

    Article  CAS  Google Scholar 

  47. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 2005; 23:2445–2459.

    Article  PubMed  CAS  Google Scholar 

  48. Spector NL, Xia W, Burris IIIrd H et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol 2005; 23:2502–2512.

    Article  PubMed  CAS  Google Scholar 

  49. Agus DB, Gordon MS, Taylor C et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 2005; 23:2534–2543.

    Article  PubMed  CAS  Google Scholar 

  50. Blumenthal RD. Chemosensitivity Volume 1: In Vitro Assays. Totowa: Human Press, 2005: 1–231.

    Google Scholar 

  51. Blumenthal RD. Chemosensitivity Volume 2: In Vitro Models, Imaging, and Molecular Regulators. Totowa: Human Press, 2005:1–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Dickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Dickson, R.B., Deb, T.B. (2007). EGF Receptor in Breast Cancer Chemoresistance. In: Yu, D., Hung, MC. (eds) Breast Cancer Chemosensitivity. Advances in Experimental Medicine and Biology, vol 608. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74039-3_8

Download citation

Publish with us

Policies and ethics