p53, BRCA1 and Breast Cancer Chemoresistance

  • Kimberly A. Scata
  • Wafik S. El-Deiry
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 608)


The tumor suppressor genes p53 and BRCA1 are involved in hereditary as well as sporadic breast cancer development and therapeutic responses. While p53 mutations contribute to resistance to chemo- and radiotherapy, BRCA1 dysfunction leads to enhanced sensitivity to DNA damaging therapeutic agents. The biochemical pathways used by p53 and BRCA1 for signaling tumor suppression involve some cross-talk including repression of BRCA1 transcription by p53 and altered selectivity of p53-dependent gene activation by BRCA1. In this chapter we review clinical and preclinical data implicating p53 and BRCA1 in breast cancer chemosensitivity. We discuss the known signaling pathways downstream of p53 or BRCA1 that contribute to their modulation of therapeutic responses, and we discuss the implications of p53 or BRCA1 mutation in therapeutic design.


Breast Cancer BRCA1 Mutation Contralateral Breast Cancer BRCA1 Mutation Carrier Familial Breast Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hedenfalk I, Duggan D, Chen Y et al. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001; 344(8):539–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Knudson AG. Cancer genetics. Am J Med Genet 2002; 111(1):96–102.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3(6):415–28.PubMedGoogle Scholar
  4. 4.
    Lane DP, Lain S. Therapeutic exploitation of the p53 pathway. Trends Mol Med 2002; 8(4 Suppl):S38–42.CrossRefGoogle Scholar
  5. 5.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88(3):323–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4(10):793–805.PubMedCrossRefGoogle Scholar
  7. 7.
    El-Deiry WS. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003; 22(47):7486–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Kleihues P, Schauble B, zur Hausen A et al. Tumors associated with p53 germline mutations: A synopsis of 91 families. Am J Pathol 1997; 150(1):1–13.PubMedGoogle Scholar
  9. 9.
    Gasco M, Yulug IG, Crook T. TP53 mutations in familial breast cancer: Functional aspects. Hum Mutat 2003; 21(3):301–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Hall JM, Lee MK, Newman B et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990; 250(4988):1684–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266(5182):66–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med 2003; 348(23):2339–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Ford D, Easton DF, Stratton M et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 1998; 62(3):676–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Futreal PA, Liu Q, Shattuck-Eidens D et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 1994; 266(5182):120–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Easton D, Ford D, Peto J. Inherited susceptibility to breast cancer. Cancer Surv 1993; 18:95–113.PubMedGoogle Scholar
  16. 16.
    Ganesan S, Silver DP Greenberg RA et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 2002; 111(3):393–405.PubMedCrossRefGoogle Scholar
  17. 17.
    Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 2003; 22(37):5784–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Deng CX, Wang RH. Roles of BRCA1 in DNA damage repair: A link between development and cancer. Hum Mol Genet 2003; 12(Suppl 1):R113–23.PubMedCrossRefGoogle Scholar
  19. 19.
    D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cance 2003; 3(1):23–34.CrossRefGoogle Scholar
  20. 20.
    Kerr P, Ashworth A. New complexities for BRCA1 and BRCA2. Curr Biol 2001; 11(16):R668–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Nister M, Tang M Zhang XQ et al. p53 must be competent for transcriptional regulation to suppress tumor formation. Oncogene 2005; 24(22):3563–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Oren M. Decision making by p53: Life, death and cancer. Cell Death Differ 2003; 10(4):431–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Prives C, Hall PA. The p53 pathway. J Pathol 1999; 187(1):112–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Anderson CW, Appella E, Sakaguchi K. Posttranslational modifications involved in the DNA damage response. J Protein Chem 1998; 17(6):527.PubMedGoogle Scholar
  25. 25.
    Xu Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ 2003; 10(4):400–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Chuikov S, Kurash JK Wilson JR et al. Regulation of p53 activity through lysine methylation. Nature 2004; 432(7015):353–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Krummel KA, Lee CJ, Toledo F et al. The C-terminal lysines fine-tune p53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 2005; 102(29):10188–93.PubMedCrossRefGoogle Scholar
  28. 28.
    El-Deiry WS, Harper JW, O’Connor PM et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54(5):1169–74.PubMedGoogle Scholar
  29. 29.
    El-Deiry WS, Tokino T, Velculescu VE et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75(4):817–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Harper JW, Adami GR, Wei N et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75(4):805–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Haupt S, Berger M, Goldberg Z. et al. Apoptosis — the p53 network. J Cell Sci 2003; 116(Pt 20):4077–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Sax JK, El-Deiry WS. p53 downstream targets and chemosensitivity. Cell Death Differ 2003; 10(4):413–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Burns TF, Bernhard EJ, El-Deiry WS. Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 2001; 20(34):4601–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Fei P, El-Deiry WS. p53 and radiation responses. Oncogene 2003; 22(37):5774–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Fei P, Bernhard EJ, El-Deiry WS. Tissue-specific induction of p53 targets in vivo. Cancer Res 2002; 62(24):7316–27.PubMedGoogle Scholar
  36. 36.
    Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003; 22(56):9030–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Pharoah PD, Day NE, Caldas C. Somatic mutations in the p53 gene and prognosis in breast cancer: A meta-analysis. Br J Cancer 1999; 80(12):1968–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Geisler S, Lonning PE, Aas T et al. Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 2001; 61(6):2505–12.PubMedGoogle Scholar
  39. 39.
    Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 2001; 1(3):233–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Lozano G, Liu G. Mouse models dissect the role of p53 in cancer and development. Semin Cancer Biol 1998; 8(5):337–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Geisler S, Borresen-Dale AL, Johnsen H et al. TP53 gene mutations predict the response to neoadjuvant treatment with 5-fluorouracil and mitomycin in locally advanced breast cancer. Clin Cancer Res 2003; 9(15):5582–8.PubMedGoogle Scholar
  42. 42.
    Aas T, Geisler S, Eide GE et al. Predictive value of tumour cell proliferation in locally advanced breast cancer treated with neoadjuvant chemotherapy. Eur J Cancer 2003; 39(4):438–46.PubMedCrossRefGoogle Scholar
  43. 43.
    Aas T, Borresen AL, Geisler S et al. Specific p53 mutations are associated with de novo resistance todoxorubicin in breast cancer patients. Nat Med 1996; 2(7):811–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Berns EM, Foekens JA, Vossen R et al. Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res 2000; 60(8):2155–62.PubMedGoogle Scholar
  45. 45.
    Bertheau P, Plassa F, Espie M et al. Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 2002; 360(9336):852–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Langerod A, Bukholm IR, Bregard A et al. The TP52 codon 72 polymorphism may affect the function of TP53 mutations in breast carcinomas but not in colorectal carcinomas. Cancer Epidemiol Biomarkers Press 2002; 11(12):1684–8.Google Scholar
  47. 47.
    Bergamaschi D, Gasco M, Hiller L et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 2003; 3(4):387–402.PubMedCrossRefGoogle Scholar
  48. 48.
    Sullivan A, Syed N, Gasco M et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 2004; 23(19):3328–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu Y, Yao L, Ouyang T et al. p53 Codon 72 polymorphism predicts the pathologic response to neoadjuvant chemotherapy in patients with breast cancer. Clin Cancer Res 2005; 11(20):7328–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Wong KB, DeDecker BS, Freund SM et al. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci USA 1999; 96(15):8438–42.PubMedCrossRefGoogle Scholar
  51. 51.
    Bullock AN, Henckel J, Fersht AR. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: Defintion of mutant states for rescue in cancer therapy. Oncogene 2000; 19(10):1245–56.PubMedCrossRefGoogle Scholar
  52. 52.
    Blandino G, Levine AJ, Oren M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 1999; 18(2):477–85.PubMedCrossRefGoogle Scholar
  53. 53.
    Campomenosi P, Monti P, Aprile A et al. p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elemenets. Oncogene 2001; 20(27):3573–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Monti P, Campomenosi P, Ciribilli Y et al. Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene 2002; 21(11):1641–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Weisz L, Zalcenstein A, Stambolsky P et al. Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 2004; 64(22):8318–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Strano S, Blandino G. p73-mediated chemosensitivity: A preferential target of oncogenic mutant p53. Cell Cycle 2003; 2(4):348–9.PubMedGoogle Scholar
  57. 57.
    Wei CL, Wu Q, Vega VB et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 2006; 124(1):207–19.PubMedCrossRefGoogle Scholar
  58. 58.
    Monteiro AN. BRCA1: The enigma of tissue-specific tumor development. Trends Genet 2003; 19(6):312–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Elledge SJ, Amon A. The BRCA1 suppressor hypothesis: An explanation for the tissue-specific tumor developmenet in BRCA1 patients. Cancer Cell 2002; 1(2):129–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Mallery DL, Vandenberg CJ, Hiom K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. Embo J 2002; 21(24):6755–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Chen A, Kleiman FE, Manley JL et al. Autoubiquitination of the BRCA!*BARD1 RING ubiquitin ligase. J Biol Chem 2002; 277(24):22085–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Baer R, Ludwig T. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr Opin Genet Dev 2002; 12(1):86–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Lorick KL, Jensen JP, Fang S et la. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96(20):11364–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Pickart CM, Fushman D, Polyubiquitin chains: Polymeric protein signals. Curr Opin Chem Biol 2004; 8(6):610–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Wu-Baer F, Lagrazon K, Yuan W et al. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 2003; 278(37):34743–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Starita LM, Horwitz AA, Keogh MC et al. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J Biol Chem 2005.Google Scholar
  67. 67.
    Starita LM, Machida Y, Sankaran S et al. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell 2004; 24(19):8457–66.CrossRefGoogle Scholar
  68. 68.
    Lou Z, Minter-Dykhouse K, Chen J. BRCA1 participates in DNA decatenation. Nat Struct Mol Biol 2005; 12(7):589–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Dong Y, Hakimi MA, Chen X et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 2003; 12(5):1087–99.PubMedCrossRefGoogle Scholar
  70. 70.
    Kleiman FE, Wu-Baer F, Fonseca D et al. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev 2005; 19(10):1227–37.PubMedCrossRefGoogle Scholar
  71. 71.
    Sato K, Hayami R, Wu W et al. Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem 2004; 279(30):30919–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Huyton T, Bates PA, Zhang X et al. The BRCA1 C-terminal domain: Structure and function. Mutat Res 2000: 460(3–4):319–32.PubMedGoogle Scholar
  73. 73.
    Lou Z, Chen J. BRCA proteins and DNA damage checkpoints. Front Biosci 2003; 8:s718–21.CrossRefGoogle Scholar
  74. 74.
    Lane TF. BRCA1 and transcription. Cancer Biol Ther 2004; 3(6):528–33.PubMedGoogle Scholar
  75. 75.
    Hohenstein P, Giles RH. BRCA1: A scaffold for p53 response? Trends Genet 2003; 19(9):489–94.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang Q, Zhang H, Fishel R et al. BRCA1 and cell signaling. Oncogene 2000; 19(53):6152–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Monteiro AN, August A, Hanafusa H. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci USA 1996; 93(24):13595–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang H, Somasundaram K, Peng Y et al. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene 1998; 16(13):1713–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Somasundaram K, MacLachlan TK, Burns TF et al. BRCA1 signals ARF-dependent stabilization and coactivation of p53. Oncogene 1999; 18(47):6605–14.PubMedCrossRefGoogle Scholar
  80. 80.
    Li S, Chen PL, Subramanian T et al. Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 1999; 274(16):11334–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Deming PB, Cistulli CA, Zhao H et al. The human decatenation checkpoint. Proc Natl Acad Sci USA 2001; 98(21):12044–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Hanby AM, Kelsell DP, Potts HW et al. Association between loss of heterozygosity of BRCA1 and BRCA2 and morphological attributes of sporadic breast cancer. Int J Cancer 2000; 88(2):204–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Garcia-Patino E, Gomendio B, Lleonart M et al. Loss of heterozygosity in the region including the BRCA1 gene on 17q in colon cancer. Cancer Genet Cytogenet 1998; 104(2):119–23.PubMedCrossRefGoogle Scholar
  84. 84.
    Signori E, Bagni C, Papa S et al. A somatic mutation in the 5’UTR of BRCA1 gene in sporadic breast cancer causes downmodulation of translation efficiency. Oncogene 2001; 20(33):4596–600.PubMedCrossRefGoogle Scholar
  85. 85.
    Thompson ME, Jensen RA, Obermiller PS et al. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 1995; 9(4):444–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Wilson CA, Ramos L, Villasenor MR et al. Localization of human BRCA1 and its loss in high-grade, noninherited breast carcinomas. Nat Genet 1999; 21(2):236–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Staff S, Isola J, Tanner M. Haplo-insufficiency of BRCA1 in sporadic breast cancer. Cancer Res 2003; 63(16):4978–83.PubMedGoogle Scholar
  88. 88.
    Chen CM, Chen HL, Hsiau TH et al. Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol 2003; 163(1):37–45.PubMedGoogle Scholar
  89. 89.
    Osin P, Lu YJ, Stone J et al. Distinct genetic and epigenetic changes in medullary breast cancer. Int J Surg Pathol 2003; 11(3):153–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Yoshikawa K, Ogawa T, Baer R et al. Abnormal expression of BRCA1 and BRCA1-interactive DNA-repair proteins in breast carcinomas. Int J Cancer 2000; 88(1):28–36.PubMedCrossRefGoogle Scholar
  91. 91.
    Moynahan ME. The cancer connection: BRCA1 and BRCA2 tumor suppression in mice and humans. Oncogene 2002; 21(58):8994–9007.PubMedCrossRefGoogle Scholar
  92. 92.
    Xu X, Wanger KU, Larson D et al. Conditional mutation of Brcal in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 1999; 22(1):37–43.PubMedCrossRefGoogle Scholar
  93. 93.
    Brodie SG, Xu X, Qiao W et al. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 2001; 20(51):7514–23.PubMedCrossRefGoogle Scholar
  94. 94.
    Kennedy RD, Quinn JE, Mullan PB et al. The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 2004; 96(22):1659–68.PubMedGoogle Scholar
  95. 95.
    Scully R, Chen J, Ochs RL et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997; 90(3):425–35.PubMedCrossRefGoogle Scholar
  96. 96.
    Quinn JE, Kennedy RD, Mullan PB et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 2003; 63(19):6221–8.PubMedGoogle Scholar
  97. 96a.
    Lafarge S, Sylvain V, Ferrara M, Bignon YJ. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 2001; 20(45):6597–606.PubMedCrossRefGoogle Scholar
  98. 96b.
    Thangaraju M, Kaufmann SH, Couch FJ. BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem 2000; 275(43):33487–96.PubMedCrossRefGoogle Scholar
  99. 97.
    Tomlinson GE, Chen TT, Stastny VA et al. Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res 1998; 58(15):3237–42.PubMedGoogle Scholar
  100. 98.
    Tassone P, Tagliaferri P, Perricelli A et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 2003; 88(8):1285–91.PubMedCrossRefGoogle Scholar
  101. 99.
    Mullan PB, Quinn JE, Gilmore PM et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 2001; 20(43):6123–31.PubMedCrossRefGoogle Scholar
  102. 100.
    Chappuis PO, Goffin J, Wong N et al. A significant response to neoadjuvant chemotherapy in BRCA1/2 related breast cancer. J Med Genet 2002; 39(8):608–10.PubMedCrossRefGoogle Scholar
  103. 101.
    El-Tamer M, Russo D, Troxel A et al. Survival and recurrence after breast cancer in BRCA1/2 mutation carriers. Ann Surg Oncol 2004; 11(2):157–64.PubMedCrossRefGoogle Scholar
  104. 102.
    Fan S, Wang J, Yuan R et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 1999; 284(5418):1354–6.PubMedCrossRefGoogle Scholar
  105. 103.
    Jones LP, Li M, Halama ED et al. Promotion of mammary cancer development by tamoxifen in a mouse model of Brca1-mutation-related breast cancer. Oncogene 2005; 24(22):3554–62.PubMedCrossRefGoogle Scholar
  106. 104.
    King TA, Gemignani ML, Li W et al. Increased progesterone receptor expression in benign epithelium of BRCA1-related breast cancers. Cancer Res 2004; 64(15):5051–3.PubMedCrossRefGoogle Scholar
  107. 105.
    Chodankar R, Kwang S, Sangiorgi F et al. Cell-nonautonomous induction of ovarian and uterine serous cystadenomas in mice lacking a functional Brca1 in ovarian granulosa cells. Curr Biol 2005; 15(6):561–5.PubMedCrossRefGoogle Scholar
  108. 106.
    Macaluso M, Cinti C, Russo G et al. pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/ p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene 2003; 22(23):3511–7.PubMedCrossRefGoogle Scholar
  109. 107.
    Leu YW, Yan PS, Fan M et al. Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 2004; 64(22):8184–92.PubMedCrossRefGoogle Scholar
  110. 108.
    King MC, Wieand S, Hale K et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. Jama 2001; 286(18):2251–6.PubMedCrossRefGoogle Scholar
  111. 108a.
    Gronwald J, Tung N, Foulkes WD et al. Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: An update. Int J Cancer 2006; 118(9):2281–4.PubMedCrossRefGoogle Scholar
  112. 109.
    Weber JD, Zambetti GP. Renewing the debate over the p53 apoptotic response. Cell Death Differ 2003; 10(4):409–12.PubMedCrossRefGoogle Scholar
  113. 110.
    MacLachlan TK, Somasundaram K, Sgagias M et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 2000; 275(4):2777–85.PubMedCrossRefGoogle Scholar
  114. 111.
    MacLachlan TK, Takimoto R, El-Deiry WS. BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol 2002; 22(12):4280–92.PubMedCrossRefGoogle Scholar
  115. 112.
    Ongusaha PP, Ouchi T, Kim KT et al. BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest. Oncogene 2003; 22(24):3749–58.PubMedCrossRefGoogle Scholar
  116. 113.
    Brooks CL, Gu W. p53 Ubiquitination: Mdm2 and beyond. Mol Cell 2006; 21(3):307–15.PubMedCrossRefGoogle Scholar
  117. 114.
    MacLachlan TK, Dash BC, Dicker DT, El-Deiry WS. Repression of BRCA1 through a feedback loop involving p53. J Biol Chem 2000; 275(41):31869–75.PubMedCrossRefGoogle Scholar
  118. 115.
    Arizti P, Fang L, Park I et al. Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol 2000; 20(20):7450–9.PubMedCrossRefGoogle Scholar
  119. 116.
    Fedier A, Steiner RA, Schwarz VA et al. The effect of loss of Brca1 on the sensitivity to anticancer agents in p53-deficient cells. Int J Oncol 2003; 22(5):1169–73.PubMedGoogle Scholar
  120. 117.
    Crook T, Crossland S, Crompton MR et al. p53 mutations in BRCA1-associated familial breast cancer. Lancet 1997; 350(9078):638–9.PubMedCrossRefGoogle Scholar
  121. 118.
    Crook T, Brooks LA, Crossland S et al. p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1-and BRCA2-associated breast tumours. Oncogene 1998; 17(13):1681–9.PubMedCrossRefGoogle Scholar
  122. 119.
    Smith PD, Crossland S, Parker G et al. Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions. Oncogene 1999; 18(15):2451–9.PubMedCrossRefGoogle Scholar
  123. 120.
    Billack B, Monteiro AN. Methods to classify BRCA1 variants of uncertain clinical significance: The more the merrier. Cancer Biol Ther 2004; 3(5):458–9.PubMedGoogle Scholar
  124. 121.
    Furuta S, Jiang X, Gu B et al. Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci USA 2005.Google Scholar
  125. 122.
    Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035):913–7.CrossRefGoogle Scholar
  126. 123.
    Bryant HE, Schultz N, Thomas HD et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035):913–7.PubMedCrossRefGoogle Scholar
  127. 124.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411(6835):366–74.PubMedCrossRefGoogle Scholar
  128. 125.
    Gallmeier E, Kern SE. Absence of specific cell killing of the BRCA2-deficient human cancer cell line CAPAN1 by Poly(ADP-ribose) polymerase inhibition. Cancer Biol Ther 2005; 4(7):703–6.PubMedGoogle Scholar
  129. 126.
    McCabe N, Lord CJ, Tutt AN et al. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of poly (ADP-Ribose) polymerase: An issue of potency. Cancer Biol Ther 2005; 4(9):934–6.PubMedCrossRefGoogle Scholar
  130. 127.
    Ludwig T, Chapman DL, Papaioannou VE et al. Targeted mutations of breast cancer susceptibility gene homologs in mice: Lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 1997; 11(10):1226–41.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations