Skip to main content

Origin and Evolution of Self-Consumption: Autophagy

  • Chapter
Eukaryotic Membranes and Cytoskeleton

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 607))

Abstract

While misfolded and short-lived proteins are degraded in proteasomes located in the nucleus and cytoplasm, the degradation of organelles and long-lived proteins in the lysosome occurs by the process of autophagy. Central and necessary to the autophagic process are two conserved ubiquitin-like conjugation machineries. These conjugation machineries appear to be specific for autophagy and can together with genetic and morphological data be used to trace the natural history of autophagy. Here we discuss the origin and evolution of autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cuervo AM. Autophagy: In sickness and in health. Trends Cell Biol 2004; 14(2):70–77.

    Article  PubMed  CAS  Google Scholar 

  2. Levine B, Klionsky DJ. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6(4):463–477.

    Article  PubMed  CAS  Google Scholar 

  3. Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 2005; 436(7054): 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  4. Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005; 6(5):361–375.

    Article  PubMed  CAS  Google Scholar 

  5. Pickart CM, Cohen RE. Proteasomes and their kin: Proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5(3):177–187.

    Article  PubMed  CAS  Google Scholar 

  6. Ohsumi Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001; 2(3):211–216.

    Article  PubMed  CAS  Google Scholar 

  7. Klionsky DJ. Autophagy. Georgetown, Texas, USA: Landes Bioscience, 2004.

    Google Scholar 

  8. Luiken JJ, van den Berg M, Heikoop JC et al. Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett 1992; 304(l):93–97.

    Article  PubMed  CAS  Google Scholar 

  9. Klionsky DJ, Cregg JM, Dunn Jr WA et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5(4):539–545.

    Article  PubMed  CAS  Google Scholar 

  10. Kuma A, Hatano M, Matsui M et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432(7020): 1032–1036.

    Article  PubMed  CAS  Google Scholar 

  11. Noda T, Suzuki K, Ohsumi Y. Yeast autophagosomes: De novo formation of a membrane structure. Trends Cell Biol 2002; 12(5):231–235.

    Article  PubMed  CAS  Google Scholar 

  12. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290(5497):1717–1721.

    Article  PubMed  CAS  Google Scholar 

  13. Mizushima N, Noda T, Yoshimori T et al. A protein conjugation system essential for autophagy. Nature 1998; 395(6700):395–398.

    Article  PubMed  CAS  Google Scholar 

  14. Mukaiyama H, Baba M, Osumi M et al. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell 2004; 15(l):58–70.

    PubMed  CAS  Google Scholar 

  15. Strθmhaug PE, Bevan A, Dunn Jr WA. GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris. J Biol Chem 2001; 276(45):42422–42435.

    Article  Google Scholar 

  16. Scott RC, Schuldiner O, Neufeld TP. Starvation-induced autophagy is suppressed by TOR signaling independently of S6K and ameliorates the effects of loss of TOR function. Dev Cell 2004; 7(2):167–178.

    Article  PubMed  CAS  Google Scholar 

  17. Rusten TE, Lindmo K, Juhâ;asz G et al. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 2004; 7(2): 179–192.

    Article  PubMed  CAS  Google Scholar 

  18. Bera A, Singh S, Nagaraj R et al. Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 2003; 127(l):23–35.

    Article  PubMed  CAS  Google Scholar 

  19. Christensen ST, Chemnitz J, Straarup EM et al. Staurosporine-induced cell death in Tetrahymena thermophila has mixed characteristics of both apoptotic and autophagic degeneration. Cell Biol Int 1998; 22(7–8):591–598.

    Article  PubMed  CAS  Google Scholar 

  20. Bernai A, Ear U, Kyrpides N. Genomes Online Database (GOLD): A monitor of genome projects world-wide. Nucleic Acids Res 2001; 29(1):126–127.

    Article  Google Scholar 

  21. El-Sayed NM, Myler PJ, Bartholomeu DC et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309(5733):409–415.

    Article  PubMed  CAS  Google Scholar 

  22. Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419(6906):498–511.

    Article  PubMed  CAS  Google Scholar 

  23. Lanfredi-Rangel A, Attias M, de Carvalho TM et al. The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol 1998; 123(3):225–235.

    Article  PubMed  CAS  Google Scholar 

  24. Katinka MD, Duprat S, Cornillot E et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001; 414(6862):450–453.

    Article  PubMed  CAS  Google Scholar 

  25. Jekely G. Small GTPases and the evolution of the eukaryotic cell. Bioessays 2003; 25(11): 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  26. Gordon PB, Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun 1988; 151(l):40–47.

    Article  PubMed  CAS  Google Scholar 

  27. Pulipparacharuvil S, Akbar MA, Ray S et al. Drosophila Vpsl6A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 2005; 118(Pt):3663–3673.

    Article  PubMed  CAS  Google Scholar 

  28. Pattingre S, Tassa A, Qu X et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122(6):927–939.

    Article  PubMed  CAS  Google Scholar 

  29. Ravikumar B, Vacher C, Berger Z et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6):585–595.

    Article  PubMed  CAS  Google Scholar 

  30. Nakagawa I, Amano A, Mizushima N et al. Autophagy defends cells against invading group A Streptococcus. Science 2004; 306(5698): 1037–1040.

    Article  PubMed  CAS  Google Scholar 

  31. Ogawa M, Yoshimori T, Suzuki T et al. Escape of intracellular Shigella from autophagy. Science 2005; 307(5710):727–731.

    Article  PubMed  CAS  Google Scholar 

  32. Raiborg C, Rusten TE, Stenmark H. Protein sorting into multivesicular endosomes. Curr Opin Cell Biol 2003; 15(4):446–455.

    Article  PubMed  CAS  Google Scholar 

  33. Hochstrasser M. Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2000; 2(8):E153–157.

    Article  PubMed  CAS  Google Scholar 

  34. Hertz-Fowler C, Peacock CS, Wood V et al. GeneDB: A resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res 2004; 32:D339–343 (Database issue).

    Article  PubMed  CAS  Google Scholar 

  35. Altschul SF, Madden TL, Schèaffer AA et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997; 25(17):3389–3402.

    Article  PubMed  CAS  Google Scholar 

  36. Ivens AC, Peacock CS, Worthey EA et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309(5733):436–442.

    Article  PubMed  Google Scholar 

  37. Abrahamsen MS, Templeton TJ, Enomoto S et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004; 304(5669):441–445.

    Article  PubMed  CAS  Google Scholar 

  38. Armbrust EV, Berges JA, Bowler C et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004; 306(5693):79–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tor Erik Rusten .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hughes, T., Rusten, T.E. (2007). Origin and Evolution of Self-Consumption: Autophagy. In: Eukaryotic Membranes and Cytoskeleton. Advances in Experimental Medicine and Biology, vol 607. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74021-8_9

Download citation

Publish with us

Policies and ethics