The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 607)


Eukaryotic cilia and flagella are motile organelles built on a scaffold of doublet microtubules and powered by dynein ATPase motors. Some thirty years ago, two competing views were presented to explain how the complex machinery of these motile organelles had evolved. Overwhelming evidence now refutes the hypothesis that they are the modified remnants of symbiotic spirochaete-like prokaryotes, and supports the hypothesis that they arose from a simpler cytoplasmic microtubule-based intracellular transport system. However, because intermediate stages in flagellar evolution have not been found in living eukaryotes, a clear understanding of their early evolution has been elusive. Recent progress in understanding phylogenetic relationships among present day eukaryotes and in sequence analysis of flagellar proteins have begun to provide a clearer picture of the origins of doublet and triplet microtubules, flagellar dynein motors, and the 9+2 microtubule architecture common to these organelles. We summarize evidence that the last common ancestor of all eukaryotic organisms possessed a 9+2 flagellum that was used for gliding motility along surfaces, beating motility to generate fluid flow, and localized distribution of sensory receptors, and trace possible earlier stages in the evolution of these characteristics.


Basal Body Central Pair Curr Opin Cell Biol Eukaryotic Membrane Intraflagellar Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McKean PG, Baines A, Vaughan S et al. Gamma-tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum. Curr Biol 2003; 13(7):598–602.PubMedCrossRefGoogle Scholar
  2. 2.
    Smith EF, Yang P. The radial spokes and central apparatus: Mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton 2004; 57:8–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Mitchell DR. Reconstruction of the projection periodicity and surface architecture of the flagellar central pair complex. Cell Motil Cytoskeleton 2003; 55:188–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Beisson J, Wright M. Basal body/centriole assembly and continuity. Curr Opin Cell Biol 2003; 15(l):96–104.PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenbaum J. Intraflagellar transport. Curr Biol 2002; 12(4):R125.PubMedCrossRefGoogle Scholar
  6. 6.
    Scholey JM. Intraflagellar transport. Annu Rev Cell Dev Biol 2003; 19:423–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Simpson AG, Roger AJ. The real ‘kingdoms’ of eukaryotes. Curr Biol 2004; 14(17):R693–R696.PubMedCrossRefGoogle Scholar
  8. 8.
    Baldauf SL. The deep roots of eukaryotes. Science 2003; 300(5626): 1703–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Cavalier-Smith T, Chao EE. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. J Mol Evol 2003; 56(5):540–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Lang BF, O’Kelly C, Nerad T et al. The closest unicellular relatives of animals. Curr Biol 2002; 12(20):1773–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Bapteste E, Gribaldo S. The genome reduction hypothesis and the phylogeny of eukaryotes. Trends Genet 2003; 19(12):696–700.PubMedCrossRefGoogle Scholar
  12. 12.
    Stechmann A, Cavalier-Smith T. Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. J Mol Evol 2003; 57(4):408–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Steenkamp ET, Baldauf SL. Origin and evolution of animals, fungi and their unicellular allies (Opisthokonta). In: Hirt RP, Horner DS, eds. Organelles, Genomes and Eukaryote Phylogeny. Boca Raton: CRC Press, 2004:109–29.Google Scholar
  14. 14.
    Nikolaev SI, Berney C, Fahrni JF et al. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci USA 2004; 101(21):8066–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Cavalier-Smith T, Chao EEY. Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J Mol Evol 2003; 56(4):387–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Pazour GJ, Agrin N, Leszyk J et al. Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005; 170:103–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Berriman M, Ghedin E, Hertz-Fowler C et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309(5733):416–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Avidor-Reiss T, Maer AM, Koundakjian E et al. Decoding cilia function: Defining specialized genes required for compartmentalized cilia biogenesis. Cell 2004; 117(4):527–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Li JB, Gerdes JM, Haycraft CJ et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117(4):54l–52.CrossRefGoogle Scholar
  20. 20.
    Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 2002; 52(Pt 2):297–354.PubMedGoogle Scholar
  21. 21.
    Moestrup O. The flagellate cytoskeleton. In: Leadbeater BCS, Green J, eds. The Flagellates. London: Taylor and Francis, 2000:69–94.Google Scholar
  22. 22.
    McKean PG, Vaughan S, Gull K. The extended tubulin superfamily. J Cell Sci 2001; H4(15):2723–33.Google Scholar
  23. 23.
    Amos LA, van den EF, Lowe J. Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 2004; 16(1):24–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Gitai Z. The new bacterial cell biology: Moving parts and subcellular architecture. Cell 2005; 120(5):577–86.PubMedCrossRefGoogle Scholar
  25. 25.
    Dutcher SK. The tubulin fraternity: Alpha to eta. Curr Opin Cell Biol 2001; 13:49–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Dutcher SK. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic 2003; 4(7):443–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Ruiz F, Krzywicka A, Klotz C et al. The SMI9 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, eta-tubulin. Curr Biol 2000; 10(22): 1451–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Dupuis-Williams P, Fleury-Aubusson A, de Loubresse NG et al. Functional role of epsilon-tubulin in the assembly of the centriolar microtubule scaffold. J Cell Biol 2002; 158(7):1183–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Dutcher SK. Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Curr Opin Microbiol 2003; 6(6):634–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Iyer LM, Leipe DD, Koonin EV et al. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004; 146(1–2):11–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Asai DJ, Koonce MF. The dynein heavy chain: Structure, mechanics and evolution. TICB 2001; 11(5):196–202.Google Scholar
  32. 32.
    Iyer LM, Makarova KS, Koonin EV et al. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: Implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 2004; 32(17):5260–79.PubMedCrossRefGoogle Scholar
  33. 33.
    Gibbons BH, Asai DJ, Tang W-JY et al. Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins. Mol Biol Cell 1994; 5:57–70.PubMedGoogle Scholar
  34. 34.
    Asai DJ, Wilkes DE. The dynein heavy chain family. J Euk Microbiol 2004; 51(l):23–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Porter ME. Axonemal dyneins: Assembly, organization, and regulation. Curr Opin Cell Biol 1996; 8:10–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Porter ME, Sale WS. The 9+2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 2000; 151(5):F37–F42.PubMedCrossRefGoogle Scholar
  37. 37.
    Mitchell DR. Chlamydomonas flagella. J Phycol 2000; 36:261–73.CrossRefGoogle Scholar
  38. 38.
    Miki H, Setou M, Hirokawa N. Kinesin superfamily proteins (KIFs) in the mouse transcriptome. Genome Res 2003; 13(6B):1455–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Bernstein M, Beech PL, Katz SG et al. A new kinesin-like protein (Klpl) localized to a single microtubule of the Chlamydomonas flagellum. J Cell Biol 1994; 125:1313–26.PubMedCrossRefGoogle Scholar
  40. 40.
    Yokoyama R, O’Toole E, Ghosh S et al. Regulation of flagellar dynein by a central pair kinesin. Proc Natl Acad Sci USA 2004; 101:17398–403.PubMedCrossRefGoogle Scholar
  41. 41.
    Kubai DF. The evolution of the mitotic spindle. Int Rev Cytol 1975; 43:167–227.PubMedCrossRefGoogle Scholar
  42. 42.
    Cavalier-Smith T. The evolutionary origin and phylogeny of eukaryote flagella. Symp Soc Exp Biol 1982; 35:465–93.PubMedGoogle Scholar
  43. 43.
    Cavalier-Smith T. The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella. Biosystems 1978; 10(l–2):93–114.PubMedCrossRefGoogle Scholar
  44. 44.
    Mitchell DR. Speculations on the evolution of 9+2 organelles and the role of central pair microtubules. Biol Cell 2004; 96(9):691–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Arndt H, Dietrich D, Auer B et al. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BCS, Green J, eds. The Flagellates. London: Taylor and Francis, 2000:240–68.Google Scholar
  46. 46.
    Sleigh MA. Trophic strategies. In: Leadbeater BCS, Green J, eds. The Flagellates. London: Taylor and Francis, 2000:147–65.Google Scholar
  47. 47.
    Mitchell DR. Regulation of eukaryotic flagellar motility. Am Inst Phys Conf Proc 2005; 555:130–6.Google Scholar
  48. 48.
    Gibbons IR. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Bioch Cyt 1961; 11:179–205.CrossRefGoogle Scholar
  49. 49.
    Sale WS. The axonemal axis and calcium-induced asymmetry of active microtubule sliding in sea urchin sperm tails. J Cell Biol 1986; 102:2042–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Tamm SL, Tamm S. Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol 1981; 89:495–509.PubMedCrossRefGoogle Scholar
  51. 51.
    Melkonian M, Robenek H, and Rassat J. Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis. J Cell Sci 1982; 55:115–35.PubMedGoogle Scholar
  52. 52.
    Omoto CK, Gibbons IR, Kamiya R et al. Rotation of the central pair microtubules in eukaryotic flagella. Mol Biol Cell 1999; 10(1):l–4.Google Scholar
  53. 53.
    Mitchell DR, Nakatsugawa M. Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella. J Cell Biol 2004; 166(5):709–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Omoto CK, Witman GB. Functionally significant central-pair rotation in a primitive eukaryotic flagellum. Nature 1981; 290:708–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Omoto CK, Kung C. Rotation and twist of the central-pair microtubules in the cilia of Paramecium. J Cell Biol 1980; 87(l):33–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Jarosch R, Fuchs B. On the rotation of fibrils in the synura-flagellum (author’s transi). Protoplasma 1975; 85(2–4):285–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Baccetti B. Evolutionary trends in sperm structure. Comp Biochem Physiol A 1986; 85(l):29–36.PubMedCrossRefGoogle Scholar
  58. 58.
    Prensier G, Vivier E, Goldstein S et al. Motile flagellum with a “3 + 0” ultrastructure. Science 1980; 207:1493–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Nonaka S, Tanaka Y, Okada Y et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998; 95(6):829–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Gibbons BH, Gibbons IR, Baccetti B. Structure and motility of the 9 + 0 flagellum of eel spermatozoa. J Submicrosc Cytol 1983; 15:15–20.PubMedGoogle Scholar
  61. 61.
    Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 2004; 71(2):540–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Lardy HA, Phillips PH. The interrelation of oxidative and glycolytic processes as sources of energy for bull spermatozoa. American Journal of Physiology 1941; 133:602–9.Google Scholar
  63. 63.
    Hsu SC, Molday RS. Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J Biol Chem 1991; 266(32):21745–52.PubMedGoogle Scholar
  64. 64.
    Westhoff D, Kamp G. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J Cell Sci 1997; 110(Pt 15):1821–9.PubMedGoogle Scholar
  65. 65.
    Gitlits VM, Toh BH, Loveland KL et al. The glycolytic enzyme enolase is present in sperm tail and displays nucleotide-dependent association with microtubules. Eur J Cell Biol 2000; 79:104–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Mitchell BF, Pedersen LB, Feely M et al. ATP production in Chlamydomonas reinhardii flagella by glycotytic enzymes. Mol Biol Cell 2005; 16:4509–18.PubMedCrossRefGoogle Scholar
  67. 67.
    Tombes RM, Brokaw CJ, Shapiro BM. Creatine kinase-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J 1987; 52(1):75–86.PubMedCrossRefGoogle Scholar
  68. 68.
    Huszar G, Sbracia M, Vigue L et al. Sperm plasma membrane remodeling during spermiogenetic maturation in men: Relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios. Biol Reprod 1997; 56(4):1020–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Wallimann T, Wegmann G, Moser H et al. High content of creatine kinase in chicken retina: Compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci USA 1986; 83(11):38l6–9.CrossRefGoogle Scholar
  70. 70.
    Noguchi M, Sawadas T, Akazawa T. ATP-regenerating system in the cilia of Paramecium caudatum. J Exp Biol 2001; 204(6):1063–71.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations