Advertisement

The Titans

Part of the Springer Praxis Books book series (PRAXIS)

Abstract

After five Saturnian satellites had been discovered, a scheme was introduced in which they were referred to numerically in accordance with their distance from the planet. This was satisfactory until William Herschel discovered two additional satellites orbiting closer in. In 1847, John Herschel, who had just returned from South Africa where he had made a thorough study of the southern sky to extend his father’s study in the north, decided to rectify the situation by naming Saturn’s moons.

Keywords

Solar Nebula Large Crater Infrared Space Observatory Dark Material Tidal Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    ‘Surface compositions of the satellites of Saturn from infrared photometry’, D. Morrison, D.P. Cruikshank, C.B. Pilcher and G.H. Rieke. Ap. J., vol. 207, L.213, 1976.CrossRefGoogle Scholar
  2. 2.
    ‘Infrared spectra of the satellites of Saturn: identification of water ice on Iapetus, Rhea, Dione and Tethys’, U. Fink, H.P. Larson, T.N. Gautier and R.R. Treffers. Ap. J., vol. 207, L.63, 1976.CrossRefGoogle Scholar
  3. 3.
    ‘Evidence for frost on Rhea’s surface’, T.V. Johnson, G.J. Veeder and D.L. Matson. Icarus, vol. 24, p. 428, 1975.CrossRefGoogle Scholar
  4. 4.
    Satellites of the Solar System, W. Sandner. The Scientific Book Club, 1965.Google Scholar
  5. 5.
    Atlas of the Solar System, P. Moore and G.E. Hunt. Mitchell Beazley in association with the Royal Astronomical Society, 1990.Google Scholar
  6. 6.
    ‘Satellites of Saturn: geological perspective’, D. Morrison, T.V. Johnson, E.M. Shoemaker, L.A. Soderblom, P. Thomas, J. Veverka and B.A. Smith. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 609, 1984.Google Scholar
  7. 7.
    ‘Radii, albedos and 20-micron brightness temperatures of Iapetus and Rhea’, R.E. Murphy, D.P. Cruikshank and D. Morrison. Ap. J., vol. 177, L.93, 1972.CrossRefGoogle Scholar
  8. 8.
    ‘Albedos and densities of the inner satellites of Saturn’, D. Morrison. Icarus, vol. 22, p. 51, 1974.CrossRefGoogle Scholar
  9. 9.
    ‘Lunar occultation of Saturn: the diameters of Tethys, Dione, Rhea, Titan and Iapetus’, J.L. Elliot, J. Veverka and J. Goguen. Icarus, vol. 26, p. 389, 1975.CrossRefGoogle Scholar
  10. 10.
    ‘The surfaces and interiors of Saturn’s satellites’, D.P. Cruikshank. Rev. Geophys. Space Phys., vol. 17, p. 165, 1979.Google Scholar
  11. 11.
    ‘Sizes and densities of Saturn’s satellites: a pre-Voyager analysis’, D. Morrison. Bull. Amer. Astron. Soc., vol. 12, p. 727, 1980.Google Scholar
  12. 12.
    ‘Gravity field of the Saturnian system from Pioneer and Voyager tracking data’, J.K. Campbell and J.D. Anderson. Bull. Amer. Astron. Soc., vol. 17, p. 697, 1985.Google Scholar
  13. 13.
    ‘Encounter with Saturn: Voyager 1 imaging science results’, B.A. Smith, L.A. Soderblom, R. Beebe, J. Boyce, G. Briggs, A. Bunker, S.A. Collins, C.J. Hansen, T.V. Johnson, J.L. Mitchell, R.J. Terrile, M.H. Carr, A.F. Cook, J.N. Cuzzi, J.B. Pollack, G.E. Danielson, A.P. Ingersoll, M.E. Davies, G.E. Hunt, H. Masursky, E.M. Shoemaker and D. Morrison. Science, vol. 212, p. 163, 1981.CrossRefGoogle Scholar
  14. 14.
    ‘A new look at the Saturn system: the Voyager 2 images’, B.A. Smith, L.A. Soderblom, R. Batson, P. Bridges, J. Inge, H. Masursky, E.M. Shoemaker, R. Beebe, J. Boyce, G. Briggs, A. Bunker, S.A. Collins, C.J. Hansen, T.V. Johnson, J.L. Mitchell, R.J. Terrile, A.F. Cook, J.N. Cuzzi, J.B. Pollack, G.E. Danielson, A.P. Ingersoll, M.E. Davies and G.E. Hunt. Science, vol. 215, p. 504, 1982.CrossRefGoogle Scholar
  15. 15.
    Saturn, T. Gehreis and M.S. Matthews (Eds.). University of Arizona Press, 1984.Google Scholar
  16. 16.
    Satellites, J.A. Burns and M.S. Matthews (Eds.). University of Arizona Press, 1986.Google Scholar
  17. 17.
    ‘Encounter with Saturn: Voyager 1 imaging science results’, B.A. Smith et al. Science, vol. 212, p. 163, 1981.CrossRefGoogle Scholar
  18. 18.
    ‘A new look at the Saturn system: the Voyager 2 images’, B.A. Smith et al. Science, vol. 215, p. 504, 1982.CrossRefGoogle Scholar
  19. 19.
    ‘Orbital resonances among Saturn’s satellites’, R. Greenberg. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 593, 1984.Google Scholar
  20. 20.
    ‘Evolution of satellite resonances by tidal dissipation’, R. Greenberg. Astron. J., vol. 78, p. 338, 1973.CrossRefGoogle Scholar
  21. 21.
    ‘Satellites of the outer planets: their physical and chemical nature’, J.S. Lewis. Icarus, vol. 15, p. 174, 1971.CrossRefGoogle Scholar
  22. 22.
    ‘A new look at the Saturn system: the Voyager 2 images’, B.A. Smith, L.A. Soderblom, R. Batson, P. Bridges, J. Inge, H. Masursky, E.M. Shoemaker, R. Beebe, J. Boyce, G. Briggs, A. Bunker, S.A. Collins, C.J. Hansen, T.V. Johnson, J.L. Mitchell, R.J. Terrile, A.F. Cook, J.N. Cuzzi, J.B. Pollack, G.E. Danielson, A.P. Ingersoll, M.E. Davies and G.E. Hunt. Science, vol. 215, p. 504, 1982.CrossRefGoogle Scholar
  23. 24.
    ‘Collisional history of the Saturn system’, E.M. Shoemaker. Saturn Conf., Tucson, Arizona, May 1982.Google Scholar
  24. 25.
    ‘Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion’, J.B. Plescia and J.M. Boyce. Nature, vol. 301, p. 666, 1983.CrossRefGoogle Scholar
  25. 26.
    ‘Viscosity of the lithosphere of Enceladus’, Q.R. Passey. Icarus, vol. 53, p. 105, 1983.CrossRefGoogle Scholar
  26. 27.
    ‘Volcanic and igneous processes in small icy satellites’, D.J. Stevenson. Nature, vol. 298, p. 142, 1982.CrossRefGoogle Scholar
  27. 28.
    ‘The evolution of Enceladus’, S.W. Squyres, R.T. Reynolds, P.M. Cassen and S.J. Peale. Icarus, vol. 53, p. 319, 1983.CrossRefGoogle Scholar
  28. 29.
    ‘Tidal friction and Enceladus’s anomalous surface’, C.F. Yoder. AGU EOS Trans., vol. 62, p. 939, 1981.Google Scholar
  29. 30.
    ‘Ring torques on Janus and the melting of Enceladus’, J.J. Lissauer, S.J. Peale and J.N. Cuzzi. Icarus, vol. 58, p. 159, 1984.CrossRefGoogle Scholar
  30. 31.
    ‘Saturn’s small satellites: Voyager imaging results’, P. Thomas, J. Veverka, D. Morrison, M. Davies and T.V. Johnson. J. Geophys. Res., vol. 88, p. 8743, 1983.Google Scholar
  31. 32.
    ‘Orbital resonances among Saturn’s satellites’, R. Greenberg. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 593, 1984.Google Scholar
  32. 33.
    ‘Theory of Enceladus and Dione’, W.H. Jefferys and L.M. Ries. Astron. J., vol. 80, p. 876, 1975.CrossRefGoogle Scholar
  33. 34.
    ‘Saturn’s E-ring. I: CCD observations of March 1980’, W.A. Baum et al. Icarus, vol. 47, p. 84, 1981.Google Scholar
  34. 35.
    ‘Saturn’s E-ring and satellite Enceladus’, K.D. Pang, C.C. Voge, J.W. Rhoads and J.M. Ajello. Proc. Lunar Planet. Sci. Conf., p. 592, 1983.Google Scholar
  35. 36.
    ‘Evidence for an arc near Enceladus’s orbit: a possible key to the origin of the‘E’ ring’, C. Roddier and F. Roddier. International Symposium ‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  36. 37.
    ‘Tectonics and geological history of Tethys’, J.M. Moore and J.L. Ahern. Lunar Planet. Sci. Conf., p. 538, 1982.Google Scholar
  37. 38.
    ‘Rheology of ices: a key to the tectonics of the ice moons of Jupiter and Saturn’, J.P. Poirier. Nature, vol. 299, p. 683, 1982.CrossRefGoogle Scholar
  38. 39.
    ‘The geology of Tethys’, J.M. Moore and J.L. Ahern. J. Geophys. Res., vol. 88, p. 577, 1983.Google Scholar
  39. 40.
    ‘The moons of Saturn’, L.A. Soderblom and T.V. Johnson. In The planets, B.C. Murray. (Ed.) W.H. Freeman, p. 95, 1983.Google Scholar
  40. 41.
    ‘Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion’, J.B. Plescia and J.M. Boyce. Nature, vol. 301, p. 666, 1983.CrossRefGoogle Scholar
  41. 42.
    ‘A new look at the Saturn system: the Voyager 2 images’, B.A. Smith et al. Science, vol. 215, p. 504, 1982.CrossRefGoogle Scholar
  42. 43.
    ‘Six-colour photometry of Iapetus, Titan, Rhea, Dione and Tethys’, M. Noland, J. Veverka, D. Morrison, D.P. Cruikshank, A.R. Lazarewicz, N.D. Morrison, J.E. Elliot, J. Goguen and J.A. Burns. Icarus, vol. 23, p. 334, 1974.CrossRefGoogle Scholar
  43. 44.
    ‘Voyager photometry of Saturn’s satellites’, B.J. Buratti, J. Veverka and P. Thomas. NASA TM-85127, p. 41, 1982.Google Scholar
  44. 45.
    ‘Voyager photometry of Rhea, Dione, Tethys, Enceladus and Mimas’, B.J. Buratti and J. Veverka. Icarus, vol. 58, p. 254, 1983.CrossRefGoogle Scholar
  45. 46.
    ‘The geology of Dione’, J.B. Plescia. Icarus, vol. 56, p. 255, 1983.CrossRefGoogle Scholar
  46. 47.
    ‘The tectonic and volcanic history of Dione’, J.M. Moore. Icarus, vol. 59, p. 205, 1984.CrossRefGoogle Scholar
  47. 48.
    ‘The plains and lineaments of Dione’, J.M. Moore. Proc. Lunar Planet. Sci. Conf., p. 511, 1983.Google Scholar
  48. 49.
    ‘Volcanic and igneous processes in small icy satellites’, D.J. Stevenson. Nature, vol. 298, p. 142, 1982.CrossRefGoogle Scholar
  49. 50.
    ‘Interactions of planetary magnetospheres with icy satellite surfaces’, A.F. Cheng, P.K. Haff, R.E. Johnson and L.J. Lanzerotti. In Satellites, J.A. Burns and M.S. Matthews (Eds.). University of Arizona Press, p. 403, 1986.Google Scholar
  50. 51.
    ‘Six-colour photometry of Iapetus, Titan, Rhea, Dione and Tethys’, M. Noland, J. Veverka, D. Morrison, D.P. Cruikshank, A.R. Lazarewicz, N.D. Morrison, J.L. Elliot, J. Goguen and J.A. Burns. Icarus, vol. 23, p. 334, 1974.CrossRefGoogle Scholar
  51. 52.
    ‘Implications of Voyager data for energetic ion erosion of icy satellites of Saturn’, L.J. Lanzerotti, C.G. Maclennan, W.L. Brown, R.E. Johnson, L.A. Barton, C.T. Reimann, J.W. Garrett and J.W. Boring. J. Geophys. Res., vol. 88, p. 8765, 1983.CrossRefGoogle Scholar
  52. 53.
    ‘Geomorphology of Rhea: implications for geologic history and surface processes’, J.M. Moore, V.M. Horner and R. Greeley. J. Geophys. Res., vol. 90, p. 785, 1985.Google Scholar
  53. 54.
    Planetary landscapes, R. Greeley. Alen & Unwin p. 235, 1987; Greeley cites a personal communication by R. Pike and P.D. Spudis, but (according to Spudis) this observation was never formally published.Google Scholar
  54. 55.
    ‘The geomorphologic features on Rhea’, J.M. Moore and V.M. Horner. Lunar Planet. Sci. Conf., p. 560, 1984.Google Scholar
  55. 56.
    ‘Crater densities and geological histories of Rhea, Dione, Mimas and Tethys’, J.B. Plescia and J.M. Boyce. Nature, vol. 295, p. 285, 1982.CrossRefGoogle Scholar
  56. 57.
    ‘Titan’, T.C. Owen. In The planets, B.C. Murray (Ed.). W.H. Freeman, p. 84, 1983.Google Scholar
  57. 58.
    ‘On the origin of Titan’s atmosphere’, T.C. Owen. Planet. Space Sci., vol. 48, p. 747, 2000.CrossRefGoogle Scholar
  58. 59.
    ‘The tides in the sea of Titan’, CE. Sagan and S.F. Dermott. Nature, vol. 300, p. 731, 1982.Google Scholar
  59. 60.
    ‘Oceans on Titan’, F.M. Flasar. Science, vol. 221, p. 55, 1983.CrossRefGoogle Scholar
  60. 61.
    ‘Post-accretional evolution of Titan’s surface and atmosphere’, J.I. Lunine and D.J. Stevenson. Ap. J., vol. 238, p. 357, 1982.Google Scholar
  61. 62.
    ‘Titan’s atmosphere from ISO observations: temperature, composition and detection of water vapour’, A. Coustenis, A. Salama, E. Lellouch, Th. Encrenaz, Th. de Graauw, G.L. Bjoraker, R.E. Samuelson, D. Gautier, H. Feuchtgruber, M.F. Kessler and G.S. Orton. American Astronomical Society, Division of Planetary Sciences Meeting, Madison, October 1998.Google Scholar
  62. 63.
    ‘Evidence for a strong 15N/14N enrichment in Titan’s atmosphere from millimetre observations’, T. Hidayat and A. Marten. Ann. Geophys., vol. 16, p. C988, 1998.Google Scholar
  63. 64.
    ‘On the volatile inventory of Titan from isotopic abundances in nitrogen and methane’, J.I. Lunine, Y.L. Yung and R.D. Lorenz. Planet. Space Sci., vol. 47, p. 1291, 1999.CrossRefGoogle Scholar
  64. 65.
    ‘Nitrogen isotope fractionation and its consequences for Titan’s atmospheric evolution’, H. Lammer, W. Stumptner, G.J. Molina-Cuberos, S.J. Bauer and T.C. Owen. European Geophysics Society XXV General Assembly, Nice, France, April 2000.Google Scholar
  65. 66.
    ‘Impact erosion history of Titan’, A.-L. Tsai and W.-H. Ip. European Geophysics Society XXV General Assembly, Nice, France, April 2000.Google Scholar
  66. 68.
    ‘Stable methane hydrate above 2 GPa and the source of Titan’s atmospheric methane’, J.S. Loveday, R.J. Nelmes, M. Guthrie, S.A. Belmonte, D.R. Allan, D.D. Klug, J.S. Tse and Y.P. Handa. Letters to Nature, 5 April 2001.Google Scholar
  67. 69.
    ‘Analytic stability of Titan’s climate: sensitivity to volatile inventory’, R.D. Lorenz, C.P. McKay and J.I. Lunine. Planet. Space Sci., vol. 47, p. 1503, 1999.CrossRefGoogle Scholar
  68. 70.
    P.H. Smith, M.T. Lemmon, R.D. Lorenz, J.J. Caldwell, L.A. Sromovsky and M.D. Allison. See STScI-PR94-55, December 1994.Google Scholar
  69. 71.
    ‘Titan’s surface, revealed by HST imaging’, P.H. Smith, M.T. Lemmon, R.D. Lorenz, L.A. Sromovsky, J.J. Caldwell and M.D. Allison. Icarus, vol. 119, p. 336, 1996.CrossRefGoogle Scholar
  70. 72.
    ‘Titan: a world seen but darkly’, J.I. Lunine. In Our world: the magnetism and thrill of planetary exploration, S.A. Stern (Ed.). Cambridge University Press, p. 135, 1999.Google Scholar
  71. 73.
    ‘Spatially resolved images of Titan by means of adaptive optics’, M. Combes, L. Vapillon, E. Gendron, A. Coustenis, O. Lai, R. Wittemberg and R. Sirdey. Icarus, vol. 129, p. 482, 1997.CrossRefGoogle Scholar
  72. 74.
    ‘Titan’s surface from spectra and images’, A. Coustenis, E. Gendron, O. Lai, B. Schmitt, M. Combes, J.-P. Veran, E. Lellouch, L. Vapillon, P. Rannou, M. Cabane, C. McKay, J.-P. Maillard, Th. Fusco. European Geophysics Society XXV General Assembly, Nice, France, p. 1888, April 2000.Google Scholar
  73. 75.
    ‘Adaptive optics images of Titan at 1.3 and 1.6 microns at the CFHT’, A. Coustenis, E. Gendron, O. Lai, J.-P. Veran, M. Combes, J. Woillez, Th. Fusca and L. Mugnier. Icarus, vol. 154, p. 501, 2002.CrossRefGoogle Scholar
  74. 76.
    ‘Expected surface of Titan compared with observed surfaces of the Galileans’, R.D. Lorenz. International Symposium‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  75. 77.
    ‘Admissible heights of the local roughness on Titan’s landscape’, V.I. Dimitrov and A. Bar-Nun. International Symposium‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  76. 78.
    ‘The life, death and afterlife of a raindrop on Titan’, R.D. Lorenz. Planet. Space Sci., vol. 41, p. 647, 1993.CrossRefGoogle Scholar
  77. 79.
    ‘Transient clouds in Titan’s lower atmosphere’, C.A. Griffith, T.C. Owen, G.A. Miller and T.R. Geballe. Nature, vol. 395, p. 575, 1998.CrossRefGoogle Scholar
  78. 80.
    ‘Titan’s clouds’, C.A. Griffiths, T.R. Geballe, J.L. Hall and T.C. Owen. European Geophysics Society XXV General Assembly, Nice, France, April 2000.Google Scholar
  79. 81.
    ‘Titan: High-Resolution Speckle Images from the Keck Telescope’, S.G._Gibbard, B. Macintosh, D. Gavel, C.E. Max, I. de Pater, A.M. Ghez, E.F. Young and C.P. McKay. Icarus, vol. 139, p. 189, 1999.CrossRefGoogle Scholar
  80. 82.
    ‘Optical constants of solid ethane from 0.4 to 2.5 microns’, B.N. Khare, W.R. Thompson, C.E. Sagan, E.T. Arakawa and J.J. Lawn. Bull. Am. Astron. Soc., vol. 22, p. 1033, 1990.Google Scholar
  81. 83.
    ‘Titan’s surface model: water ice covered with tholin deposits?’, P. Rannou, A. Coustenis, B. Schmitt, E. Lellouch, C.P. McKay and M. Cabane. International Symposium‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  82. 84.
    ‘Impacts and cratering on Titan: a pre-Cassini view’, R.D. Lorenz. Planet. Space Sci., vol. 45, p. 1009, 1997.CrossRefGoogle Scholar
  83. 85.
    ‘The dark side of Iapetus and the atmosphere and surface of Titan’, T.C. Owen, D.P. Cruikshank, C. Dalle Ore, T.R. Roush, R. Meier, T. Geballe, C.A. Griffiths, C. de Bergh, N. Biver, A. Marten, B.A. Smith, R.J. Terrile, H.E. Matthews and Y. Yung. European Geophysics Society XXV General Assembly, Nice, France, April 2000.Google Scholar
  84. 86.
    ‘Tidal effects of disconnected hydrocarbon seas on Titan’, S.F. Dermott and C.E. Sagan. Nature, vol. 374, p. 238, 1995.CrossRefGoogle Scholar
  85. 87.
    ‘The interior of Titan’, D.J. Steavenson. Symposium on Titan, Toulouse, France, September 1991; ESA SP-338, p. 29, 1992.Google Scholar
  86. 88.
    ‘Hiding Titan’s ocean: densification and hydrocarbon storage in an icy regolith’, K.J. Kossacki and R.D. Lorenz. Planet. Space Sci., vol. 44, p. 1029, 1996.CrossRefGoogle Scholar
  87. 89.
    ‘Evidence for water vapor in Titan’s atmosphere from ISO/SWS data’, A. Coustenis, E. Lellouch, Th. Encrenaz and A. Salama. Astron. & Astrophys., vol. 336, L.85, 1998.Google Scholar
  88. 90.
    ‘ISO observations and tentative detection of water on Titan’, A. Coustenis, Th. Encrenaz, A. Salama, E. Lellouch, D. Gautier, M.F. Kessler, Th. de Graauw, R.E. Samuelson, G.L. Bjoraker, G. Orton and R. Wittemberg. International Symposium‘The Jovian System after Galileo The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  89. 91.
    ‘Molecular synthesis in simulated reducing planetary atmospheres’, C.E. Sagan and S.L. Miller. Astron. J., vol. 65, p. 499, 1960.CrossRefGoogle Scholar
  90. 92.
    ‘Prebiotic ribose synthesis: a critical analysis’, R. Shapiro. Orig. Life Evol. Biosph., vol. 18, p. 71, 1988.CrossRefGoogle Scholar
  91. 93.
    ‘Cyanoacetylene in prebiotic synthesis’, R.A. Sanchez, J.P. Ferris and L.E. Orgel. Science, vol. 154, p. 784, 1966.CrossRefGoogle Scholar
  92. 94.
    ‘Molecular analysis of tholins produced under simulated Titan conditions’, B.N. Khare, C.E. Sagan, S. Shrader and E.T. Arakawa. Bull. Amer. Astron. Soc., vol. 14, p. 714, 1982.Google Scholar
  93. 95.
    ‘Destination Titan’, S. Mirsky. Astronomy, p. 42, November 1997.Google Scholar
  94. 96.
    ‘Organic chemistry on Titan surface interactions’, W.R. Thompson and C.E. Sagan. In Proceedings of the Symposium on Titan, ESA Special Publication 338, p. 167, 1992.Google Scholar
  95. 97.
    ‘Titan under a red giant Sun: a new kind of “habitable’ world’, R.D. Lorenz, J.I. Lunine and C.P. McKay. Geophys. Res. Lett., vol. 24, p. 2905, 1997.CrossRefGoogle Scholar
  96. 98.
    ‘Asteroid collisions: effective body strength and efficiency of catastrophic disruption’, D.R. Davis, C.R. Chapman, R. Greenberg and S.J. Weidenschilling. Proc. Lunar Planet. Sci. Conf., p. 146, 1983.Google Scholar
  97. 99.
    ‘Hyperion: collisional disruption of a resonant satellite’, P. Farinella, A. Miloni, A.M. Nobili, P. Paolicchi and V. Zappala. Icarus, vol. 54, p. 353, 1983.CrossRefGoogle Scholar
  98. 100.
    ‘The radius and albedo of Hyperion’, D.P. Cruikshank. Icarus, vol. 37, p. 307, 1979.CrossRefGoogle Scholar
  99. 101.
    ‘The surface composition and radius of Hyperion’, D.P. Cruikshank and R.H. Brown. Icarus, vol. 50, p. 82, 1982.CrossRefGoogle Scholar
  100. 102.
    ‘Voyager photometry of Hyperion: rotation rate’, P. Thomas, J. Veverka, D. Wenkert, G.E. Danielson and M.E. Davies. Planetary Sciences Conference, Ithaca, New York, July 1983.Google Scholar
  101. 103.
    ‘Hyperion: 13-day rotation from Voyager data’, P. Thomas, J. Veverka, D. Wenkert, G.E. Danielson and M.E. Davies. Nature, vol. 307, p. 717, 1984.CrossRefGoogle Scholar
  102. 104.
    ‘Hyperion: analysis of Voyager observations’, P. Thomas and J. Veverka. Icarus, vol. 64, p. 414, 1985.CrossRefGoogle Scholar
  103. 105.
    ‘The chaotic rotation of Hyperion’, J. Wisdom, S.J. Peale and F. Mignard. Icarus, vol. 58, p. 137, 1984.CrossRefGoogle Scholar
  104. 106.
    ‘The rotational light curve of Hyperion during 1983’, J. Goguen, H. Hammel, D.P. Cruikshank and W.K. Hartmann. Bull. Amer. Astron. Soc., vol. 15, p. 854, 1983.Google Scholar
  105. 108.
    ‘UVB photometry of Iapetus’, R.L. Millis. Icarus, vol. 18, p. 247, 1973.CrossRefGoogle Scholar
  106. 109.
    ‘UVB photometry of Iapetus: results from five apparitions’, R.L. Millis. Icarus, vol. 31, p. 81, 1977.CrossRefGoogle Scholar
  107. 110.
    ‘The two faces of Iapetus’, D. Morrison, T.J. Jones, D.P. Cruikshank and R.E. Murphy. Icarus, vol. 24, p. 157, 1975.CrossRefGoogle Scholar
  108. 112.
    ‘The albedo asymmetry of Iapetus’, S.W. Squyres and C.E. Sagan. Bull. Amer. Astron. Soc., vol. 14, p. 739, 1982.Google Scholar
  109. 113.
    ‘Albedo asymmetry of Iapetus’, S.W. Squyres and C.E Sagan. Nature, vol. 303, p. 782, 1983.CrossRefGoogle Scholar
  110. 114.
    ‘Variation of the photometric function over the surface of Iapetus’, J. Goguen, D. Morrison and M. Tripicco. Proc. Planet. Satellites Conf., Ithaca, New York, July 1983.Google Scholar
  111. 115.
    ‘The dark side of Iapetus’, D.P. Cruikshank, J.F. Bell, M.J. Gaffrey, R.H. Brown, R. Howell, C. Beerman and M. Rognstad. Icarus, vol. 53, p. 90, 1983.CrossRefGoogle Scholar
  112. 116.
    ‘Eight-colour photometry of Hyperion, Iapetus and Phoebe’, D.J. Tholen and B. Zellner. Icarus, vol. 53, p. 341, 1982.CrossRefGoogle Scholar
  113. 117.
    ‘Near-infrared colorimetry of J6 Himalia and S9 Phoebe: a summary of 0.3 to 2.2 micron reflectances’, J. Degewij, D.P. Cruikshank and W.K. Hartmann. Icarus, vol. 44, p. 541, 1980.CrossRefGoogle Scholar
  114. 118.
    See Planetary landscapes, R. Greeley. Allen & Unwin, p. 243, 1987; Greeley attributes the Phoebe hypothesis to Steve Soter of Cornell University who presented it at a conference in 1974.Google Scholar
  115. 119.
    ‘Small bodies and their origins’, W.K. Hartmann. In The new Solar System, J.K. Beatty and A. Chaikin (Eds.). Cambridge University Press (Third Edition), p. 251, 1990.Google Scholar
  116. 120.
    ‘The composition and origin of the Iapetus dark material’, J.F. Bell, D.P. Cruikshank and M.J. Gaffey. Icarus, vol. 61, p. 192, 1985.CrossRefGoogle Scholar
  117. 121.
    ‘Physics and chemistry of comets’, D. Boice and W. Huebner. Encyclopedia of the Solar System, P.R. Weissman, L.-A. McFadden and T.V. Johnson (Eds.). Academic Press, 1999.Google Scholar
  118. 122.
    ‘The dark side of Iapetus and the atmosphere and surface of Titan’, T.C. Owen, D.P. Cruikshank, C. Dalle Ore, T.R. Roush, R. Meier, T.R. Geballe, C.A. Griffiths, C. de Bergh, N. Biver, A. Marten, B.A. Smith, R.J. Terrile, H.E. Matthews and Y. Yung. European Geophysics Society XXV General Assembly, Nice, France, April 2000.Google Scholar
  119. 123.
    ‘Decoding the Domino: the dark side of Iapetus’, T.C. Owen. Icarus, vol. 149, p. 160, 2001.CrossRefGoogle Scholar
  120. 124.
    ‘A new look at the Saturn system: the Voyager 2 images’, B.A. Smith, L.A. Soderblom, R. Batson, P. Bridges, J. Inge, H. Masursky, E.M. Shoemaker, R. Beebe, J. Boyce, G. Briggs, A. Bunker, S.A. Collins, C.J. Hansen, T.V. Johnson, J.L. Mitchell, R.J. Terrile, A.F. Cook, J.N. Cuzzi, J.B. Pollack, G.E. Danielson, A.P. Ingersoll, M.E. Davies and G.E. Hunt. Science, vol. 215, p. 504, 1982.CrossRefGoogle Scholar
  121. 125.
    ‘How big is Iapetus’, J. Veverka, J. Burt, J.E. Elliot and J. Goguen. Icarus, vol. 33, p. 301, 1978.CrossRefGoogle Scholar
  122. 126.
    ‘Saturn’s icy satellites: thermal and structural models’, K. Ellsworth and G. Schubert. Icarus, vol. 54, p. 490, 1983.CrossRefGoogle Scholar
  123. 127.
    ‘Iapetus size, topography and dark-side surface structures’, T. Denk, K.-D. Matz, T. Roatsch, G. Neukum and R. Jaumann. European Geophysics Society XXV General Assembly, Nice, France, April 2000.Google Scholar
  124. 128.
    ‘Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion’, J.B. Plescia and J.M. Boyce. Nature, vol. 301, p. 666, 1983.CrossRefGoogle Scholar
  125. 129.
    ‘Phoebe: Voyager 2 observations’, P. Thomas. J. Veverka, D. Morrison, M. Davies and T.V. Johnson. J. Geophys. Res., vol. 88, p. 8736, 1983.Google Scholar
  126. 130.
    ‘Near-infrared colorimetry of J6 Himalia and S9 Phoebe: a summary of 0.3 to 2.2 micron reflectances’, J. Degewij, D.P. Cruikshank and W.K. Hartmann. Icarus, vol. 44, p. 541, 1980.CrossRefGoogle Scholar
  127. 131.
    Satellites of the Solar System, W. Sandner. The Scientific Book Club, p. 95, 1965.Google Scholar
  128. 132.
    ‘Discovery of 12 satellites of Saturn exhibiting orbital clustering’, B. Gladman, J.J. Kavelaars, M. Holman, P.D. Nicholson, J.A. Burns, C.A. Hergenrother, J.-M. Petit, B.G. Marsden, R. Jacobson, W. Gray and T. Grav. Nature, vol. 412, p. 6843, 2001.CrossRefGoogle Scholar

Copyright information

© Praxis Publishing Ltd. 2007

Personalised recommendations