Advertisement

Saturn revealed

Part of the Springer Praxis Books book series (PRAXIS)

Abstract

In 1970, following up the trajectory work by G.A. Flandro, NASA’s Jet Propulsion Laboratory began to design a sophisticated ‘Mark 2’ version of its highly successful Mariner series of planetary probes. The plan was to dispatch two pairs of vehicles to investigate the outer Solar System. The first pair would employ Jovian slingshots to reach Saturn, whereupon they would be deflected on to distant Pluto. The second pair would exploit Jupiter to visit first Uranus and then Neptune. Although funding for the development of this new vehicle was not forthcoming, JPL was permitted to modify its existing design to follow up Pioneer 11 with visits to Jupiter and Saturn. Working within this restricted budget, the engineers made every effort to ensure that if the new spacecraft was still healthy at Saturn, and if additional funding could be secured at that point, it would be capable of an ‘extended’ mission. In 1977, with the launches imminent, this ‘Mariner Jupiter-Saturn’ mission was renamed ‘Voyager’. It was fortunate, of course, that this window was conducive to eventually pursuing the ‘Grand Tour’.

Keywords

Solar Wind Radio Occultation Outer Solar System Planetary Magnetosphere Saturnian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    ‘Voyager imaging experiment’, B.A. Smith, G.A. Griggs, G.E. Danielson, A.F. Cook, M.E. Davies, G.E. Hunt, H. Masursky, L.A. Soderblom, T.C. Owen, C.E. Sagan and V.E. Suomi. Space Sci. Rev., vol. 21, p. 103, 1977.CrossRefGoogle Scholar
  2. 2.
    ‘The Voyager mission photopolarimeter experiment’, C.F. Lillie, C.W. Hoard, K. Pang, D.L. Coffeen and J.L. Hansen. Space Sci. Rev., vol. 21, p. 159, 1977.CrossRefGoogle Scholar
  3. 3.
    ‘Ultraviolet spectrometer experiment for the Voyager mission’, A.L. Broadfoot, B.R. Sandel, D.E. Shemansky, S.K. Atreya, T.M. Donahue, H.W. Moos, J.L. Bertaux, J.E. Blamont, J.M. Ajello, D.F. Strobel, J.C. McConnell, A. Dalgarno, R. Goody, M.B. McElroy and Y.L. Yung. Space Sci. Rev., vol. 21, p. 183, 1977.CrossRefGoogle Scholar
  4. 4.
    ‘The Voyager infrared spectroscopy and radiometry investigation’, R. Hanel, B. Conrath, D. Gautier, P. Gierasch, S. Kumar, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, C. Ponnamperuma and R. Samuelson. Space Sci. Rev., vol. 21, p. 129, 1977.CrossRefGoogle Scholar
  5. 5.
    ‘Infrared spectrometer for Voyager’, R.A. Hanel et al. Appl. Opt., vol. 19, p. 1391, 1980.CrossRefGoogle Scholar
  6. 6.
    ‘A plasma wave investigation for the Voyager mission’, F.L. Scarf and D.A. Gurnett. Space Sci. Rev., vol. 21, p. 289, 1977.CrossRefGoogle Scholar
  7. 7.
    ‘Planetary Radio Astronomy instrument for the Voyager missions’, J.W. Warwick, J.B. Pearce, R.G. Peltzer and A.C. Riddle. Space Sci. Rev., vol. 21, p. 309, 1977.CrossRefGoogle Scholar
  8. 8.
    ‘The plasma experiment on the 1977 Voyager mission’, H.S. Bridge, J.W. Belcher, R.J. Butler, A.J. Lazarus, A.M. Mavertic, J.D. Sullivam, G.L. Siscoe and V.M. Vasyluinas. Space Sci. Rev., vol. 21, p. 259, 1977.CrossRefGoogle Scholar
  9. 9.
    ‘The low-energy charged particle (LECP) experiment on the Voyager spacecraft’, S.M. Krimigis, T.P. Armstrong, W.I. Axford, C.O. Bostrom, C.Y. Fan, G. Gloeckler and L.J. Lanzerotti. Space Sci. Rev., vol. 21, p. 329, 1977.CrossRefGoogle Scholar
  10. 10.
    ‘Cosmic ray investigation for the Voyager missions: energetic particle studies in the outer heliosphere and beyond’, E.C. Stone, R.E. Vogt, F.B. McDonald, B.J. Teegarden, J.H. Trainor, J.R. Jokipii and W.R. Webber. Space Sci. Rev., vol. 21, p. 355, 1977.Google Scholar
  11. 11.
    ‘Radio science investigations with Voyager’, V.R. Eshleman, G.L. Tyler, J.D. Anderson, G. Fjeldbo, G.S. Levy, G.E. Wood and T.A. Croft. Space Sci. Rev., vol. 21, p. 207, 1977.CrossRefGoogle Scholar
  12. 12.
    ‘The Jupiter system through the eyes of Voyager 1’, B.A. Smith et al. Science, vol. 204, p. 951, 1979.CrossRefGoogle Scholar
  13. 13.
    ‘Jupiter’s Great Red Spot: a free atmospheric vortex?’, A.P. Ingersoll. Science, vol. 182, p. 1346, 1973.CrossRefGoogle Scholar
  14. 14.
    ‘Pioneer 10 and 11 observations of the dynamics of Jupiter’s atmosphere’, A.P. Ingersoll. Icarus, vol. 29, p. 245, 1976.CrossRefGoogle Scholar
  15. 15.
    ‘Rings of Saturn and Jupiter: so different, so similar’, J.N. Cuzzi and J.A. Burns. International Symposium‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  16. 16.
    ‘Io’s interaction with the plasma torus’, C.K. Goertz. J. Geophys. Res., vol. 85, p. 2949, 1980.CrossRefGoogle Scholar
  17. 17.
    ‘Discovery of currently active extraterrestrial volcanism’, L.A. Morabito, S.P. Synnott, P.N. Kupferman and S.A. Collins. Science, vol. 204, p. 972, 1979.CrossRefGoogle Scholar
  18. 18.
    ‘Melting of Io by tidal dissipation’, S.J. Peale, P.M. Cassen and R.T. Reynolds. Science, vol. 203, p. 892, 1979.CrossRefGoogle Scholar
  19. 19.
    ‘Heat flow from Io’, D.L. Matson, G.A. Ransford and T.V. Johnson. J. Geophys. Res., vol. 86, p. 1664, 1981.Google Scholar
  20. 20.
    ‘The magnetic field of Jupiter’, M.H. Acuna and N.F. Ness. J. Geophys. Res., vol. 81, p. 2917, 1976.Google Scholar
  21. 21.
    ‘The Galilean satellites and Jupiter: Voyager 2 imaging science results’, B.A. Smith et al. Science, vol. 206, p. 927, 1979.CrossRefGoogle Scholar
  22. 23.
    ‘Planetary Radio Astronomy observations from Voyager 1 near Saturn’, J.W. Warwick et al. Science, vol. 212, p. 239, 1981.CrossRefGoogle Scholar
  23. 24.
    ‘Saturn’s kilometric radiation: satellite modulation’, M.D. Desch and M.L. Kaiser. Nature, vol. 292, p. 739, 1981.CrossRefGoogle Scholar
  24. 25.
    ‘Saturnian kilometric radiation: source locations’, M.L. Kaiser and M.D. Desch. J. Geophys. Res., vol. 87, p. 4555, 1982.Google Scholar
  25. 26.
    ’source localisation of Saturn kilometric radio emission’, A. Lecacheux and F. Genova. J. Geophys. Res., vol. 88, p. 8993, 1983.Google Scholar
  26. 27.
    ‘Voyager measurement of the rotation period of Saturn’s magnetic field’, M.D. Desch and M.L. Kaiser. Geophys. Res. Lett., vol. 8, p. 253, 1981.Google Scholar
  27. 28.
    ‘First Voyager view of the rings of Saturn’, S.A. Collins et al. Nature, vol. 288, p. 439, 1980.CrossRefGoogle Scholar
  28. 29.
    ‘Voyager observations of Saturn’s rings’, C.C. Porco. PhD Thesis, Caltech, Pasadena, 1983.Google Scholar
  29. 30.
    ‘The dynamical evolution of the Saturnian ring spokes’, J.R. Hill and D.A. Mendis. J. Geophys. Res., vol. 87, p. 7413, 1982.Google Scholar
  30. 31.
    ‘Impulsive radio discharges near Saturn’, D.R. Evans, J.W. Warwick, J.B. Pearce, T.D. Carr and J.J. Schauble. Nature, vol. 292, p. 716, 1981.CrossRefGoogle Scholar
  31. 32.
    ‘The source of Saturn’s electrostatic discharges’, D.R. Evans, J.H. Romig, C.W. Hord, K.E. Simmons, J.W. Warwick and A.L. Lane. Nature, vol. 299, p. 236, 1982.CrossRefGoogle Scholar
  32. 33.
    ‘Saturn electrostatic discharges: properties and theoretical considerations’, D.R. Evans, J.H. Romig and J.W. Warwick. Icarus, vol. 54, p. 267, 1983.CrossRefGoogle Scholar
  33. 34.
    ‘A model for the formation of spokes in Saturn’s ring’, C.K. Goertz and G.E. Morfill. Icarus, vol. 53, p. 219, 1983.CrossRefGoogle Scholar
  34. 35.
    ‘The evolution of spokes in Saturn’s B-ring’, E. Grün. G.E. Morfill, R.J. Terrile, T.V. Johnson and G.J. Schwein. Icarus, vol. 54, p. 227, 1983.CrossRefGoogle Scholar
  35. 36.
    ‘Saturn as a radio source’, M.L. Kaiser et al. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 378, 1984.Google Scholar
  36. 37.
    ‘Electrodynamic processes in the ring system of Saturn’, D.A. Mendis, J.R. Hill, W.-H. Ip, C.K. Goertz and E. Grün. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 546, 1984.Google Scholar
  37. 38.
    ‘Stability of negatively charged dust grains in Saturn’s ring plane’, T.G. Northrop and J.R. Hill. J. Geophys. Res., vol. 87, p. 6045, 1982.Google Scholar
  38. 39.
    ‘The dynamical evolution of Saturnian ring spokes’, J.R. Hill and D.A. Mendis. J. Geophys. Res., vol. 87, p. 7413, 1982.Google Scholar
  39. 40.
    ‘Saturn’s electrostatic discharges: could lightning be the cause?’, J.A. Burns, M.R. Showalter, J.N. Cuzzi and R.H. Durisen. Icarus, vol. 54, p. 280, 1983.CrossRefGoogle Scholar
  40. 41.
    ‘Atmospheric storm explanation of Saturn’s electrostatic disharges’, M.L. Kaiser, J.E.P. Connerney and M.D. Desch. Nature, vol. 303, p. 50, 1983.CrossRefGoogle Scholar
  41. 42.
    The planet Saturn: a history of observation, theory and discovery, A.F.O’D. Alexander. Faber and Faber, 1962.Google Scholar
  42. 43.
    ‘Theory of motion of Saturn’s co-orbiting satellites’, C.F. Yoder, G. Colombo, S.P. Synnott and K.A. Yoder. Icarus, vol. 53, p. 431, 1983.CrossRefGoogle Scholar
  43. 44.
    ‘Discovering the rings of Uranus’, J.L. Elliot, E. Dunham and R.L. Millis. Sky and Telescope, vol. 53, p. 412, 1977.Google Scholar
  44. 45.
    Rings: discoveries from Galileo to Voyager, J.L. Elliot and R. Kerr. MIT Press, 1984.Google Scholar
  45. 46.
    ‘Towards a theory for the Uranian rings’, P. Goldreich and S. Tremaine. Nature, vol. 277, p. 97, 1979.CrossRefGoogle Scholar
  46. 47.
    ‘Dynamical features in the northern hemisphere of Saturn from Voyager 1 images’, G.E. Hunt, D. Godfrey, J.-P. Muller and R.F.T. Barrey. Nature, vol. 297, p. 132, 1982.CrossRefGoogle Scholar
  47. 48.
    ‘Density waves in Saturn’s rings’, J.N. Cuzzi, J. Lissauer and F.H. Shu. Nature, vol. 292, p. 703, 1981.CrossRefGoogle Scholar
  48. 50.
    ‘The outer magnetosphere [of Saturn]’, A.W. Schardt et al. In Saturn, T. Gehrels and M.S. Matthews(Eds.). University of Arizona Press, p. 416, 1984.Google Scholar
  49. 51.
    ‘Vertical distribution of scattering hazes in Titan’s upper atmosphere’, K. Rages and J.B. Pollack. Icarus, vol. 55, p. 50, 1983.CrossRefGoogle Scholar
  50. 52.
    ‘Abundances of the elements in the Solar System’, A.G.W. Cameron. Space Science Reviews, vol. 15, p. 121, 1973.CrossRefGoogle Scholar
  51. 53.
    ‘Clathrate and ammonia hydrates at high pressure-application to the origin of methane on Titan’, J.I. Lunine and D.J. Stevenson. Icarus, vol. 70, p. 61, 1987.CrossRefGoogle Scholar
  52. 54.
    ‘The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements’, G.F. Lindal, G.E. Wood, H.B. Hotz and D.N. Sweetnam. Icarus, vol. 53, p. 348, 1983.CrossRefGoogle Scholar
  53. 55.
    ‘Propane and methyl acetylene in Titan’s atmosphere’, W.C. Maguire, R.A. Hanel, D.E. Jennings, V.G. Kunde and R.E. Samuelson. Nature, vol. 292, p. 683, 1981.CrossRefGoogle Scholar
  54. 56.
    ‘Mean molecular weight and hydrogen abundance of Titan’s atmosphere’, R.E. Samuelson, R.A. Hamel, V.G. Kunde and W.C. Maguire. Nature, vol. 292, p. 688, 1981.CrossRefGoogle Scholar
  55. 57.
    ‘Laboratory investigation of the formation of unsaturated hydrocarbons in Titan’s atmosphere’, K.L. Kaiser, O. Asvany, C.C. Chiong, D. Rolland, Y.T. Lee, F. Stahl, P.v.R. Schleyer and H.F. Schaefer. European Geophysics Society XXV General Assembly, Nice, France, April 2000.Google Scholar
  56. 58.
    ‘Organic chemistry in the atmosphere [of Titan]’, C.E. Sagan. In The atmosphere of Titan, D.M. Hunten (Ed.). NASA SP-340, p. 134, 1974.Google Scholar
  57. 59.
    ‘Tholins’, CE. Sagan and B.N. Khare. Nature, vol. 277, p. 102, 1979.CrossRefGoogle Scholar
  58. 60.
    ‘The escape of H2 from Titan’, D.M. Hunten. J. Atmos. Sci., vol. 30, p. 726, 1973CrossRefGoogle Scholar
  59. 61.
    ‘Titan’s gas and plasma torus’, A. Eviatar and M. Podolak. J. Geophys. Res., vol. 88, p. 883, 1983.Google Scholar
  60. 62.
    ‘Whence comes the “Titan’ hydrogen torus’, D.E Shemansky and G.R. Smith. EOS, vol. 63, p. 1019, 1982.Google Scholar
  61. 63.
    ‘Ethane ocean on Titan’, J.I. Lunine, D.J. Stevenson and Y.L. Yung. Science, vol. 222, p. 1229, 1983.CrossRefGoogle Scholar
  62. 64.
    ‘Orbits of the Tethys Lagrangian bodies’, H.J. Reitsema. Icarus, vol. 48, p. 140, 1981.CrossRefGoogle Scholar
  63. 65.
    ‘The “braided’ F-ring of Saturn’, S.F. Demott. Nature, vol. 290, p. 454, 1981.CrossRefGoogle Scholar
  64. 66.
    ‘A numerical study of Saturn’s F-ring’, M.R. Showalter and J.A. Burns. Icarus, vol. 52, p. 526, 1982.CrossRefGoogle Scholar
  65. 67.
    ‘Orbits of Saturn’s F-ring and its shepherding satellites’, S.P. Synnott, R.J. Terrile and B.A. Smith. Icarus, vol. 53, p. 156, 1983.CrossRefGoogle Scholar
  66. 68.
    ‘Clumps in Saturn’s F-ring and their interaction with Prometheus’, M.R. Showalter. International Symposium‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  67. 69.
    ‘On the braids and spokes in Saturn’s ring system’, J.R. Hill and D.A. Mendis. Moon and Planets, vol. 24, p. 431, 1981.CrossRefGoogle Scholar
  68. 70.
    ‘Drunken shepherds: random walk models for Pandora and Prometheus’, L.W. Esposito. European Geophysical Society XXVII General Assembly Nice, France, A-05215, April, 2002.Google Scholar
  69. 71.
    ‘Ringed planets: still mysterious (Part 1)’, J.N. Cuzzi. Sky and Telescope, vol. 68, no. 6, p. 511, December 1984.Google Scholar
  70. 72.
    ‘Particle size distribution in Saturn’s rings from Voyager 1 radio occultation’, E.A. Marouf, G.L. Tyler, H.A. Zebker, R.A. Simpson and V.R. Eshleman. Icarus, vol. 54, p. 189, 1983.CrossRefGoogle Scholar
  71. 73.
    ‘Apparent thickness of Saturn’s rings’, A. Brahic and B. Sicardy. Nature, vol. 289, p. 447, 1981.CrossRefGoogle Scholar
  72. 74.
    ‘Saturn’s rings: structure, dynamics and particle properties’, L.W. Esposito, J.N. Cuzzi, J.B. Holberg, E.A. Marouf, G.L. Tyler and C.C. Porco. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 463, 1984.Google Scholar
  73. 75.
    ‘Moonlets in Saturn’s rings?’, J. Lissauer, F.H. Shu and J.N. Cuzzi. Nature, vol. 292, p. 707, 1981.CrossRefGoogle Scholar
  74. 76.
    ‘A simple model of Saturn’s rings’, M. Henon. Nature, vol. 293, p. 33, 1981.CrossRefGoogle Scholar
  75. 78.
    ‘The origin of the E-ring of Saturn’, J.R. Hill and D.A. Mendis. EOS, vol. 63, p. 1019, AGU Fall Meeting, San Francisco, California, December 1982.Google Scholar
  76. 79.
    ‘The E-ring of Saturn and its satellite Enceladus’, K.D. Pang, C.C. Voge, J.W. Rhoads and J.M. Ajello. Proc. Lunar Planet. Sci. Conf., p. 592, 1983.Google Scholar
  77. 80.
    ‘Saturn’s rings: structure, dynamics and particle properties’, L.W. Esposito, J.N. Cuzzi, J.B. Holberg, E.A. Marouf, G.L. Tyler and C.C. Porco. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 463, 1984.Google Scholar
  78. 81.
    ‘Theory, measurement and models of the upper atmosphere and ionosphere of Saturn’, S.K. Atreya, J.H. Waitz, T.M. Donahue, A.F. Nagy and J.M. McConnell. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 239, 1984.Google Scholar
  79. 82.
    ‘Infrared observations of the Saturnian system from Voyager 1’, R.A. Hanel et al. Science, vol. 212, p. 192, 1981.CrossRefGoogle Scholar
  80. 83.
    ‘The helium abundance of Jupiter from Voyager 1’, D. Gautier, B.J. Conrath, F.M. Flasar, R. Hanel, V. Kunde, A. Chedin and N. Scott. J. Geophys. Res., vol. 86, p. 8713, 1981.Google Scholar
  81. 84.
    ‘Cosmogonical implications of elemental and isotopic abundances in atmospheres of the giant planets’, D. Gautier and T.C. Owen. Nature, vol. 304, p. 691, 1983.CrossRefGoogle Scholar
  82. 85.
    ‘On the convection and gravitational layering in Jupiter and in stars of small mass’, E.E. Salpeter. Ap. J., vol. 181, L.83, 1973.CrossRefGoogle Scholar
  83. 86.
    ‘A calculation of Saturn’s gravitational contraction history’, J.B. Pollack et al. Icarus, vol. 30, p. 111, 1977.CrossRefGoogle Scholar
  84. 87.
    ‘Comparative atmospheres of Jupiter and Saturn: deep atmospheric composition, clouds and vertical mixing’, S.K. Atreya. International Symposium‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  85. 88.
    ‘Helium and deuterium in Jupiter and Saturn’, D.M. Hunten. International Symposium ‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  86. 89.
    ‘Hydrodynamic instability in the solar nebula in the presence of a planetary core’, F. Perri and A.G.W. Cameron. Icarus, vol. 22, p. 416, 1974.CrossRefGoogle Scholar
  87. 90.
    ‘Formation of giant planets’, H. Mizuno. Prog. Theor. Phys., vol. 64, p. 544, 1980.CrossRefGoogle Scholar
  88. 91.
    ‘Dust to planetesimals: settling and coagulation in the solar nebula’, S.J. Weidenschilling. Icarus, vol. 44, p. 172, 1980.CrossRefGoogle Scholar
  89. 92.
    ‘On the origin and initial temperature of Jupiter and Saturn’, V.S. Safronov and E.L. Ruskol. Icarus, vol. 49, p. 284, 1982.CrossRefGoogle Scholar
  90. 93.
    ‘Evolution of giant gaseous protoplanets embedded in the primitive solar nebula’, A.G.W. Cameron, W.M. DeCampli and P. Bodenheimer. Icarus, vol. 49, p. 298, 1982.CrossRefGoogle Scholar
  91. 94.
    ‘From icy planetesimals to outer planets and comets’, R. Greenberg, S.J. Weidenschilling, C.R. Chapman and D.R. Davis. Icarus, vol. 59, p. 87, 1984.CrossRefGoogle Scholar
  92. 95.
    ‘Orbital resonances in the solar nebula: implications for planetary accretion’, S.J. Weidenschilling and D.R. Davis. Icarus, vol. 62, p. 16, 1985.CrossRefGoogle Scholar
  93. 96.
    ‘Comparisons of solar nebula models’, S.J. Weidenschilling. In Workshop on the origins of the solar systems, J. Nuth and P. Sylvester (Eds.). Technical Report No. 88-04, Lunar and Planetary Institute, Houston, p. 31, 1988.Google Scholar
  94. 97.
    ‘The physics of planetesimal formation’, S.J. Weidenschilling, B. Donn and P. Meakin. In The formation and evolution of planetary systems. H. Weaver and L. Danly (Eds.). Cambridge University Press, p. 131, 1989.Google Scholar
  95. 98.
    ‘Early stages of accumulation in the solar nebula’, S.J. Weidenschilling. Adv. Space Res., vol. 10, p. 101, 1990.CrossRefGoogle Scholar
  96. 99.
    ‘Formation of planetesimals in the solar nebula’, S.J. Weidenschilling and J.N. Cuzzi. In Protostars and planets III, E. Levy and J.I. Lunine (Eds.). Univ. of Arizona Press, p. 1031, 1993.Google Scholar
  97. 100.
    ‘Coagulation of grains in static and collapsing protostellar clouds’, S.J. Weidenschilling and T.V. Ruzmaikina. Ap. J., vol. 430, p. 713, 1994.CrossRefGoogle Scholar
  98. 101.
    ‘Planetesimals from Stardust’, S.J. Weidenschilling. In From Stardust to planetesimals, Y. Pendleton and A.G.G.M. Tielens (Eds.), ASP Conference Series, vol. 122, p. 281, 1997.Google Scholar
  99. 102.
    ‘Galileo Probe measurements of the deep zonal winds of Jupiter’, D.H. Atkinson. In The three Galileos: the man, the spacecraft, the telescope, C. Barbieri, J.H. Rahe, T.V. Johnson and A.M. Sohus (Eds.). Kluwer Academic Press, p. 279, 1997.Google Scholar
  100. 103.
    ‘Atmospheric dynamics of Jupiter and Saturn’, A.P. Ingersoll. International Symposium ‘The Jovian System after Galileo. The Saturnian System before Cassini/Huygens’, Nantes, France, May 1998.Google Scholar
  101. 104.
    ‘Compositional chemistry of Saturn’s atmosphere’, R.G. Prinn, H.P. Larson, J.J. Caldwell and D. Gautier. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 88, 1984.Google Scholar
  102. 105.
    ‘Clouds and aerosols in Saturn’s atmosphere’, M.G. Tomasko, R.A. West, G.S. Orton and V.G. Tejfel. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 150, 1984.Google Scholar
  103. 106.
    ‘Structure and dynamics of Saturn’s atmosphere’, A.P. Ingersoll, R.F. Beebe, B.J. Conrath and G.E. Hunt. In Saturn, T. Gehrels and M.S. Matthews (Eds.). University of Arizona Press, p. 195, 1984.Google Scholar
  104. 107.
    ‘Possible traversais of Jupiter’s distant magnetic tail by Voyager and Saturn’, F.L. Scarf. J. Geophys. Res., vol. 84, p. 4422, 1979.Google Scholar
  105. 108.
    ‘Evidence for a distant (> 8,700 Rj) Jovian magnetotail: Voyager 2 observations’, R.P. Lepping, L.F. Burlaga, M.D. Desch and L.W. Klein. Geophys. Res. Lett., vol. 9, p. 885, 1982.Google Scholar
  106. 109.
    ‘Observations of Jupiter’s distant magnetotail and wake’, W.S. Kurth, J.D. Sullivan, D.A. Gurnett, F.L. Scarf, H.S. Bridge and E.C. Sittler. J. Geophys. Res., vol. 87, p. 10373, 1982.Google Scholar
  107. 110.
    ‘Radio emission signatures of Saturn’s immersions in Jupiter’s magnetic tail’, M.D. Desch. J. Geophys. Res., vol. 88, p. 6904, 1983.Google Scholar
  108. 111.
    ‘Physical properties of Saturn’s rings’, J.N. Cuzzi. Planetary Rings Conf., Tulouse, France, August 1982.Google Scholar
  109. 112.
    ‘Ringed planets: still mysterious (Part 1)’, J.N. Cuzzi. Sky and Telescope, vol. 69, no. 1, p. 19, January 1985.Google Scholar
  110. 113.
    ‘Voyager PPS stellar occultation of Saturn’s rings’, L.W. Esposito et al. J. Geophys. Res., vol. 88, p. 8643, 1983.Google Scholar
  111. 114.
    ‘Photopolarimetry from Voyager 2: preliminary results on Saturn, Titan, and the rings’, A.L. Lane et al. Science, vol. 215, p. 537, 1982.CrossRefGoogle Scholar
  112. 115.
    ‘The structure of Saturn’s rings: implications from the Voyager stellar occultation’, L.W. Esposito, M. O‘Callaghan and R.A. West. Icarus, vol. 56, p. 439, 1983.CrossRefGoogle Scholar
  113. 116.
    ‘How tidal heating on Io drives the Galilean orbital resonance locks’, C.F. Yoder. Nature, vol. 279, p. 767, 1979CrossRefGoogle Scholar

Copyright information

© Praxis Publishing Ltd. 2007

Personalised recommendations