The Biological Function of Cauxin, a Major Urinary Protein of the Domestic Cat (Felis catus)

  • Masao Miyazaki
  • Tetsuro Yamashita
  • Hideharu Taira
  • Akemi Suzuki


A major protein component of domestic cat urine is the carboxylesterase family member termed cauxin. Cauxin is secreted into the urine from the proximal straight tubular cells of the kidney, and the level of cauxin excretion is species-, sex-, and age-dependent. Cauxin is excreted in large amounts in the closely related members of the Felidae lineage, the cat (Felis catus), bobcat (Lynx rufus), and lynx (Lynx lynx). Male and female immature cats begin excreting cauxin about 2.5 months after birth, and excretion levels increase with age. In mature cats, cauxin excretion is significantly higher in intact males than in castrated males or female cats. The physiological function of cauxin is to provide species-, sex-, and age-dependent regulation of 2-amino-7-hydroxy-5,5-dimethyl-4-thiaheptanoic acid (felinine) production. Cauxin hydrolyzes the peptide bond of the felinine precursor, 3-methylbutanol-cysteinylglycine, to produce felinine and glycine. The sulfur-containing volatile compounds, 3-mercapto-3-methyl-1-butanol, 3-mercapto-3-methylbutyl formate, 3-methyl-3-methylthio-1-butanol, and 3-methyl-3-(2-methyl-disulfanyl)-1-butanol, are identified as species-specific odorants and candidates of felinine derivatives from the headspace gas of cat urine. These cat-specific volatile compounds may represent pheromones used as territorial markers for conspecific recognition or reproductive purposes by mature cats. The elucidation of cauxin-dependent felinine production provides new evidence for the existence of species-specific odorants and pheromones produced by species-specific biosynthetic mechanisms in mammalian species.


Proximal Tubular Cell Scent Mark Intact Male Excretion Level Castrate Male 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacchin, A., Gaetan, E. and Cavaggion, A. (1992) Pheromone binding proteins of the mouse, Mus musculus. Experientia 48, 419–421.CrossRefGoogle Scholar
  2. Beynon, R.J. and Hurst, J.L. (2004) Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25, 1553–1563.PubMedCrossRefGoogle Scholar
  3. Cavaggion, A. and Mucignat-Caretta, C. (2000) Major urinary proteins, α2U-globulins and aphrodisin. Biochim. Biophys. Acta 1482, 218–228.Google Scholar
  4. D’Amico, G. and Bazz, C. (2003) Pathophysiology of proteinuria. Kidney Int. 63, 809–825.PubMedCrossRefGoogle Scholar
  5. Ecroyd, H., Belghaz, M., Dacheux, J.L. and Gatt, J.L. (2005) The epididymal soluble prion protein forms a high-molecular-mass complex in association with hydrophobic proteins. Biochem. J. 392, 211–219.PubMedCrossRefGoogle Scholar
  6. Ecroyd, H., Belghaz, M., Dacheux, J.L., Miyazak, M., Yamashita, T. and Gatt, J.L. (2006) An epididymal form of cauxin, a carboxylesterase-like enzyme, is present and active in mammalian male reproductive fluids. Biol. Reprod. 74, 439–447.PubMedCrossRefGoogle Scholar
  7. Hendriks, W.H., Woolhouse, A.D., Tarttelin, M.F. and Moughan, P.J. (1995a) Synthesis of felinine, 2-amino-7-hydroxy-5,5-dimethyl-4-thiahep-tanoic acid. Bioorg. Chem. 23, 89–100.CrossRefGoogle Scholar
  8. Hendriks, W.H., Harding, D.R. and Rutherfurd-Markwick, K.J. (2004) Isolation and characterisation of renal metabolites of γ -glutamylfelinylglycine in the urine of the domestic cat (Felis catus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 245–251.PubMedCrossRefGoogle Scholar
  9. Hendriks, W.H., Moughan, P.J., Tarttelin, M.F. and Woolhouse, A.D. (1995b) Felinine: a urinary amino acid of Felidae. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 112, 581–588.CrossRefGoogle Scholar
  10. Hendriks, W.H., Tarttelin, M.F. and Moughan, P.J. (1995c) Twenty-four hour felinine excretion patterns in entire and castrated cats. Physiol. Behav. 58, 467–469.CrossRefGoogle Scholar
  11. Heymann, E. (1980) Carboxylesterases and amidases. In: W.B. Jakoby (Ed.), Enzymatic Basis Detoxification, Vol. II, Academic Press, New York, pp. 291–323.Google Scholar
  12. Heymann, E. (1982) Hydrolysis of carboxylic esters and amides. In: W.B. Jakoby, J.R. Bend and J. Caldwell (Eds.), Metabolic Basis Detoxification, Academic Press, New York, pp. 229–245.Google Scholar
  13. Hurst, J.L., Payne, C.E., Nevison, C.M., Marie, A.D., Humphries, R.E., Robertson, D.H., Cavaggion, A. and Beynon, R.J. (2001) Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634.PubMedCrossRefGoogle Scholar
  14. Hurst, J.L., Robertson, D.H.L., Tolladay, U. and Beynon, R.J. (1998) Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297.PubMedCrossRefGoogle Scholar
  15. Johnson, W.E., Eizirik, E., Pecon-Slattery, J., Murphy, W.J., Antunes, A., Teeling, E. and O’Brien, S.J. (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311, 73–77.PubMedCrossRefGoogle Scholar
  16. Joulain, D. and Laurent, R. (1989). The catty odour in blackcurrant extracts versus the black-currant odour in the cat’s urine? In: (S.C. Bhattacharyya, N. Sen and K.L. Sethi (Eds.), 11th International Congress of Essential Oils, Fragrances, and Flavours, Oxford IBH Publishing. New Delhi, India, pp. 89.Google Scholar
  17. Lohr, J.W., Willsky, G.R. and Acara, M.A. (1998) Renal drug metabolism. Pharmacol. Rev. 50, 107–141.PubMedGoogle Scholar
  18. MacDonald, M.L., Rogers, Q.R. and Morris, J.G. (1984) Nutrition of the domestic cat, a mammalian carnivore. Annu. Rev. Nutr. 4, 521–562.PubMedCrossRefGoogle Scholar
  19. Mattina, M.J.I., Pignatello, J.J. and Swiharat, R.K. (1991) Identification of volatile components of bobcat (Lynx rufus) urine. J. Chem. Ecol. 17, 451–462.CrossRefGoogle Scholar
  20. Miyazak, M., Kamiie, K., Soeta, S., Taira, H. and Yamashita, T. (2003) Molecular cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus). Biochem. J. 370, 101–110.CrossRefGoogle Scholar
  21. Miyazak, M., Yamashita, T., Hosokawa, M., Taira, H. and Suzuk, A. (2006a) Species-, sex-, and age-dependent urinary excretion of cauxin, a mammalian carboxylesterase family. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 145, 270–277.CrossRefGoogle Scholar
  22. Miyazak, M., Yamashita, T., Suzuk, Y., Soeta, S., Taira, H. and Suzuk, A. (2006b) A major urinary protein of the domestic cat regulates the production of felinine, a putative pheromone precursor. Chem. Biol. 13, 1071–1079.CrossRefGoogle Scholar
  23. Nevison, C.M., Armstrong, S., Beynon, R.J., Humphries, R.E. and Hurst, J.L. (2003) The ownership signature in mouse scent marks is involatile. Proc. Biol. Sci. 270, 1957–1963.PubMedCrossRefGoogle Scholar
  24. Robertson, D.H.L., Beynon, R.J. and Evershed, R.P. (1993) Extraction, characterization and binding analysis of two pheromonally active ligands associated with major urinary protein of house mouse (Mus musculus). J. Chem. Ecol. 19, 1405–1416.CrossRefGoogle Scholar
  25. Rutherfurd, K.J., Rutherfurd, S.M., Moughan, P.J. and Hendriks, W.H. (2002) Isolation and characterization of a felinine-containing peptide from the blood of the domestic cat (Felis catus). J. Biol. Chem. 277, 114–119.PubMedCrossRefGoogle Scholar
  26. Rutherfurd, S.M., Zhang, F., Harding, D.R., Woolhouse, A.D. and Hendriks, W.H. (2004) Use of capillary (zone) electrophoresis for determining felinine and it’s application to investigate the stability of felinine. Amino Acids 27, 49–55.PubMedCrossRefGoogle Scholar
  27. Rutherfurd-Markwick, K.J., McGrath, M.C., Weidgraaf, K., and Hendriks, W.H. (2006) γ-glutamylfelinylglycine metabolite excretion in the urine of the domestic cat (Felis catus). J. Nutr. 136, 2075S–2077S.PubMedGoogle Scholar
  28. Satoh, T. and Hosokawa, M. (1998) The mammalian carboxylesterases: from molecules to functions. Annu. Rev. Pharmacol. Toxicol. 38, 257–288.PubMedCrossRefGoogle Scholar
  29. Tarttelin, M.F., Hendriks, W.H. and Moughan, P.J. (1998) Relationship between plasma testosterone and urinary felinine in the growing kitten. Physiol. Behav. 65, 83–87.PubMedCrossRefGoogle Scholar
  30. Wang, W. and Ballator, N. (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol. Rev. 50, 335–356.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2008

Authors and Affiliations

  • Masao Miyazaki
    • 1
  • Tetsuro Yamashita
  • Hideharu Taira
  • Akemi Suzuki
  1. 1.Sphingolipid Expression LaboratoryRIKEN Frontier Research SystemHirosawa 2-1Japan

Personalised recommendations